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ABSTRAK

Kebisingan dengan intensitas tinggi di lingkungan pabrik tekstil merupakan
masalah serius yang tidak hanya berdampak pada kesehatan pendengaran pekerja
tetapi juga secara signifikan menurunkan kejelasan komunikasi verbal, yang krusial
untuk keselamatan dan efisiensi operasional. Penelitian ini bertujuan untuk
mengembangkan dan mengevaluasi sistem reduksi kebisingan cerdas berbasis deep
learning untuk mengatasi masalah tersebut. Metode yang diusulkan menggunakan
arsitektur U-Net Convolutional Neural Network (U-Net CNN) untuk memisahkan
sinyal ucapan dari kebisingan latar yang kompleks. Sinyal audio yang
terkontaminasi oleh derau mesin diubah menjadi representasi spektogram 2D, yang
kemudian diproses oleh model U-Net untuk mengestimasi sebuah Ideal Ratio Mask
(IRM). Masker ini secara selektif menekan komponen kebisingan sambil
mempertahankan karakteristik esensial dari sinyal ucapan. Hasil pengujian
kuantitatif pada dataset uji menunjukkan bahwa sistem yang dikembangkan mampu
mencapai peningkatan Signal-to-Noise Ratio (SNR) rata-rata sebesar 63.28 dB dan
tingkat pemeliharaan spektral (spectral preservation) rata-rata 99.97%. Hasil ini
membuktikan bahwa pendekatan berbasis U-Net CNN sangat efektif dalam
mereduksi kebisingan industrial secara signifikan sambil menjaga kualitas dan
kealamian suara asli, sehingga berpotensi besar untuk diimplementasikan sebagai
alat bantu fungsional guna meningkatkan kejelasan komunikasi verbal di
lingkungan pabrik.

Kata Kunci: Reduksi Kebisingan Audio, U-Net CNN, Deep Learning, Kebisingan
Industri, Spektogram.



ABSTRACT

High-intensity noise in textile factory environments is a critical issue that
not only impacts workers' auditory health but also significantly degrades the clarity
of verbal communication, which is crucial for operational safety and efficiency.
This research aims to develop and evaluate an intelligent deep learning-based noise
reduction system to address this problem. The proposed method utilizes a U-Net
Convolutional Neural Network (U-Net CNN) architecture to separate speech
signals from complex background noise. Audio signals contaminated by machinery
noise are transformed into 2D spectrogram representations, which are then
processed by the U-Net model to estimate an Ideal Ratio Mask (IRM). This mask
selectively suppresses noise components while preserving the essential
characteristics of the speech signal. Quantitative evaluation on a dedicated test
dataset demonstrates that the developed system achieves an average Signal-to-
Noise Ratio (SNR) improvement of 63.28 dB and an average spectral preservation
rate of 99.97%. These results prove that the U-Net CNN-based approach is highly
effective in significantly reducing industrial noise while maintaining the quality and
naturalness of the original voice, thus showing great potential for implementation
as a functional tool to enhance verbal communication clarity in factory
environments.

Keywords: Audio Noise Reduction, U-Net CNN, Deep Learning, Industrial Noise,
Spectrogram.
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BAB 1
PENDAHULUAN
1.1. Latar Belakang

Industri tekstil merupakan salah satu sektor manufaktur yang paling dinamis
dan penting dalam perekonomian global. Peningkatan permintaan akan produk
tekstil mengakibatkan peningkatan produksi pabrik tekstil. Volume kebisingan yang
besar dihasilkan di pabrik-pabrik tekstil karena adanya mesin-mesin berkecepatan
tinggi, seperti mesin berputar dan tenun, atau mesin pencelupan [1]. Bekerja di area
pabrik ini dapat sulit akibat tingkat kebisingan yang tinggi, menimbulkan
kekhawatiran tentang kesehatan dan keselamatan pekerja, serta komunikasi yang
efektif di antara karyawan.

Lingkungan kerja berisiko karena suara berlebih yang dapat menyebabkan
gangguan pendengaran, peningkatan tingkat stres, kelelahan, dan kemungkinan
lebih besar terjadinya masalah kardiovaskular [1]. Selain berdampak pada
kesehatan, tingkat kebisingan yang tinggi juga menghambat interaksi verbal di
antara karyawan. Demi keselamatan, efisiensi, dan produktivitas dalam lingkungan
produksi, komunikasi yang jelas dan efektif sangat penting. Komunikasi yang tepat
membantu mencegah sejumlah besar kesalahan operasional dan insiden di tempat
kerja, yang dapat memengaruhi produktivitas dan efektivitas fungsi pabrik[2].

Peralatan yang ditujukan untuk keselamatan pribadi, seperti penutup telinga dan
sumbat telinga, serta penggunaan dinding dan sekat peredam suara, adalah metode
yang banyak diterapkan untuk mengurangi kebisingan di lingkungan manufaktur
tekstil [3]. Namun, strategi ini seringkali menunjukkan fleksibilitas terbatas dan
hanya menghasilkan sedikit pengurangan tingkat kebisingan. Selain itu,
penggunaan alat pelindung diri dalam jangka panjang dapat menyebabkan
ketidaknyamanan bagi pekerja, yang pada gilirannya dapat memengaruhi
kemampuan kerja mereka. Di sisi lain, alat pelindung diri seperti sumbat telinga
dan penutup telinga juga dapat mengisolasi pekerja dari lingkungan sekitar dan
mempersulit komunikasi verbal.

Dalam kasus di mana kapasitas pendengaran seseorang sangat berkurang, dapat
dipahami bahwa pekerja mungkin akan mengalami kesulitan besar dalam
memahami dan menafsirkan instruksi atau pesan penting dari rekan atau atasan
mereka dengan efektif di dalam perusahaan. Hal ini dapat menyebabkan kerusakan
komunikasi serius yang dapat membahayakan keselamatan dan kesejahteraan
semua orang di lingkungan kerja[4]. Selain itu, sering kali dapat diamati bahwa
hambatan suara dan perangkat untuk mengurangi kebisingan sering kali tidak
memadai di berbagai bagian fasilitas, terutama di daerah yang membutuhkan
mobilitas dan akses bebas yang substansial, sehingga meningkatkan kerumitan
dalam melaksanakan strategi pengendalian kebisingan yang efektif di lingkungan
aktif seperti pabrik tekstil [5].

Dengan kemajuan teknologi, munculnya kecerdasan buatan (Al), khususnya
Jaringan Saraf Buatan (ANN), menyajikan cara baru dan inovatif untuk mengatasi



tantangan terkait kebisingan [4]. ANN berfungsi sebagai sistem komputasi yang
dimodelkan berdasarkan jaringan saraf biologis, yang memungkinkannya untuk
belajar dari pola data yang kompleks dan membuat penyesuaian adaptif [6]. Dalam
hal mengurangi kebisingan, jaringan saraf buatan (ANN) dapat dilatith untuk
mengenali pola kebisingan yang berbeda dan menghasilkan output yang membantu
mengurangi suara yang tidak diinginkan secara instan.

Menggunakan ANN untuk pengurangan kebisingan di manufaktur tekstil
membawa beberapa manfaat. Pertama, ANN memiliki kemampuan untuk terus
memproses dan mengevaluasi data kebisingan, memungkinkan sistem
menyesuaikan diri sesuai dengan kondisi lingkungan yang berubah-ubah.
Selanjutnya, ANN dapat dengan mudah diintegrasikan dengan teknologi
pemrosesan sinyal yang ada untuk meningkatkan efektivitas pengurangan
kebisingan secara keseluruhan [7]. Terakhir, karena kemampuannya untuk belajar,
sistem berbasis jaringan saraf buatan (ANN) dapat terus meningkatkan dirinya
sendiri dari waktu ke waktu, menghasilkan solusi yang lebih efektif dalam jangka
panjang.

Tujuan penelitian ini adalah untuk menciptakan model jaringan saraf buatan
(ANN) yang efektif untuk meminimalkan polusi suara di lingkungan manufaktur
tekstil, serta menilai dampaknya terhadap kejelasan komunikasi verbal di antara
karyawan. Inisiatif ini tidak hanya bertujuan untuk memupuk lingkungan kerja yang
lebih aman dan lebih menyenangkan, tetapi juga untuk meningkatkan interaksi di
antara staf - sehingga meningkatkan produktivitas dan langkah-langkah
keselamatan dalam lingkungan produksi tekstil.

Selain itu, penelitian ini berupaya memberikan kontribusi signifikan pada
diskusi akademis tentang penerapan ANN untuk pengurangan kebisingan,
khususnya dalam sektor tekstil, sambil memperdalam pemahaman tentang
bagaimana teknologi canggih dapat mengatasi tantangan akustik dan komunikasi
yang dihadapi di lingkungan pabrik [8]. Dengan demikian, investigasi ini memiliki
implikasi praktis yang melampaui pengetahuan teoretis dengan menawarkan
kemajuan potensial dalam standar keselamatan, tingkat kenyamanan pekerja, dan
efektivitas operasional di tengah masalah kebisingan yang sering dijumpai selama
berbagai proses produksi tekstil.

1.2. Rumusan Masalah
Berdasarkan latar belakang yang telah diuraikan, rumusan masalah dalam

penelitian ini adalah sebagai berikut:

1. Bagaimana pengembangan model Artificial Neural Network (ANN) yang
efektif dapat mendukung pengurangan kebisingan di lingkungan industri
tekstil?

2. Bagaimana pengaruh penerapan ANN terhadap peningkatan kejelasan
komunikasi verbal, keselamatan, dan kenyamanan kerja di lingkungan bising?



1.3. Tujuan Penelitian

Penelitian ini bertujuan untuk:

1. Mengembangkan model Artificial Neural Network (ANN) yang efektif untuk
mengurangi kebisingan di lingkungan industri tekstil.

2. Mengevaluasi pengaruh penerapan ANN terhadap peningkatan kejelasan
komunikasi verbal, keselamatan, dan kenyamanan kerja di lingkungan bising.

1.4. Manfaat Penelitian

Penelitian ini diharapkan dapat memberikan manfaat sebagai berikut:

1. Manfaat Teoritis: Menambah wawasan dan literatur akademik mengenai
penggunaan ANN untuk pengurangan kebisingan di industri tekstil, serta
memperkaya pemahaman tentang penerapan teknologi canggih dalam
mengatasi tantangan kebisingan industri.

2. Manfaat Praktis: Memberikan solusi yang inovatif dan efektif untuk
mengurangi kebisingan di pabrik tekstil, yang dapat meningkatkan
keselamatan, kenyamanan kerja, dan produktivitas pekerja.

1.5. Batasan Penelitian
Agar penelitian ini lebih fokus dan terarah, maka ditetapkan beberapa batasan

penelitian sebagai berikut:

1. Penelitian ini hanya akan mengkaji pengurangan kebisingan di pabrik tekstil
dengan menggunakan model ANN.

2. Evaluasi dampak penerapan ANN akan difokuskan pada aspek kejelasan
komunikasi verbal dan keselamatan kerja di lingkungan pabrik tekstil, melalui
data rekaman suara.

3. Data yang digunakan dalam penelitian ini akan diperoleh dari pabrik tekstil
yang bersedia bekerja sama dalam penyediaan data kebisingan dan informasi
terkait lainnya, yaitu PT. EMBEE PLUMBON TEKSTILE Unit 2.

1.6. Keaslian Penelitian

Pada penelitian yang dilakukan oleh Wang, dkk. [9], dikembangkan sebuah
sistem diagnosis kerusakan mesin (EFD) yang menggabungkan analisis intensitas
suara, Wavelet Packet Analysis (WPA), dan Artificial Neural Network (ANN).
Penelitian ini menggunakan sinyal kebisingan dari mesin untuk mengekstrak fitur-
fitur kerusakan spesifik melalui WPA, yang efektif untuk memproses sinyal non-
stasioner. Fitur-fitur tersebut kemudian dimasukkan ke dalam model ANN yang
telah dilatih untuk melakukan klasifikasi dan mengenali berbagai pola kerusakan
mesin. Hasil penelitian menunjukkan bahwa model WPA-ANN yang diusulkan
sangat efektif dan akurat dalam mendiagnosis kerusakan mesin berdasarkan suara,
membuktikan bahwa kombinasi teknik pemrosesan sinyal canggih dengan metode
pembelajaran mesin merupakan pendekatan yang kuat untuk diagnosis di bidang
permesinan.



Dalam penelitian yang dilakukan P. Zannin [10], dibahas pemanfaatan Jaringan
Syaraf Tiruan (ANN) dalam simulasi penghalang suara yang efektif untuk
mengurangi kebisingan hasil rekonstruksi jalan raya. Koefisien absorpsi material
penghalang terbukti memiliki pengaruh signifikan terhadap redaman suara,
sementara tinggi penghalang berkorelasi dengan pembentukan area bayangan
akustik. Hasil simulasi menunjukkan bahwa tingkat kebisingan dapat dikurangi
hingga mencapai batas yang dapat diterima secara hukum, sehingga menegaskan
pentingnya desain penghalang suara yang optimal dalam mitigasi dampak
kebisingan di lingkungan perkotaan.

Penelitian H. Zhang [11] mengkaji penerapan Deep Adaptive Noise
Cancellation (Deep ANC), yang terbukti efektif dalam mengurangi kebisingan lebar
pita serta mampu beradaptasi dengan baik terhadap kebisingan yang tidak terlatih.
Metode ini mampu mempertahankan sinyal target dalam kondisi bising, seperti
sinyal bicara, dan menunjukkan kinerja yang lebih baik dibandingkan metode ANC
tradisional, terutama dalam situasi dengan distorsi nonlinier.

Selain itu, penelitian oleh S. A. D. Prasetyowati dkk. [12] mengeksplorasi
pembatalan kebisingan generator yang bersifat monoton menggunakan algoritma
Least Mean Square (LMS) adaptif. Studi ini menganalisis karakteristik kebisingan
melalui statistik, FFT/IFFT, dan distribusi frekuensi sisa kebisingan. Hasilnya
menunjukkan bahwa pembatalan kebisingan dengan LMS adaptif dapat terwujud
dengan baik, meskipun ada sisa kebisingan yang terdistribusi normal dan tidak
mengganggu.

Terinspirasi oleh penelitian-penelitian menjanjikan tersebut, penelitian ini
berfokus pada pengembangan model ANN yang spesifik untuk industri tekstil.
Berbeda dengan penelitian sebelumnya, penelitian ini membahas masalah
kebisingan di pabrik tekstil dengan pendekatan baru. Fokusnya yang spesifik pada
industri tekstil menjadi nilai unik yang membedakannya dari penelitian
pengurangan kebisingan menggunakan ANN sebelumnya.

Tujuan utama penelitian ini—yaitu meningkatkan kejelasan komunikasi verbal
di antara pekerja—merupakan aspek penting yang belum banyak diteliti
sebelumnya. Penggunaan supervised learning neural network dan pengembangan
model ANN yang dirancang khusus untuk mengurangi kebisingan dan
meningkatkan komunikasi verbal di pabrik tekstil menjadi kontribusi orisinal dari
penelitian ini. Selain itu, penelitian ini akan diterapkan langsung di lingkungan
pabrik tekstil yang nyata, memungkinkan evaluasi efektivitas model ANN dalam
situasi sebenarnya. Pengembangan lebih lanjut dari penelitian ini dapat meliputi
analisis jenis kebisingan spesifik di pabrik tekstil, evaluasi performa model ANN
dengan berbagai metrik, serta pertimbangan implikasi etika dari penerapan model
ANN tersebut.



1.7. Sistematika Penulisan
Sistematika penulisan tesis ini adalah sebagai berikut:

Bab 1

Pendahuluan — Membahas latar belakang, rumusan masalah, tujuan penelitian,
manfaat penelitian, batasan penelitian, dan sistematika penulisan.

Bab 2

Tinjauan Pustaka — Mengulas teori-teori yang relevan dengan penelitian ini,
termasuk konsep dasar kebisingan, komunikasi verbal di lingkungan kerja, dan
aplikasi ANN.

Bab 3

Metodologi Penelitian — Menjelaskan metode penelitian yang digunakan, termasuk
desain penelitian, teknik pengumpulan data, dan metode analisis data.

Bab 4

Hasil dan Pembahasan — Menyajikan hasil penelitian dan analisis data, serta
pembahasan mengenai temuan-temuan penelitian.

Bab 5

Kesimpulan dan Saran — Menyimpulkan hasil penelitian dan memberikan saran-
saran yang relevan berdasarkan temuan penelitian.

Dengan sistematika tersebut, diharapkan penelitian ini dapat tersusun secara
sistematis dan memberikan kontribusi yang signifikan dalam bidang pengurangan
kebisingan industri, khususnya di sektor tekstil.



BABII
TINJAUAN PUSTAKA DAN DASAR TEORI

2.1. Tinjauan Pustaka

Kebisingan merupakan salah satu masalah utama di industri tekstil yang dapat
berdampak negatif pada kesehatan pekerja dan efektivitas komunikasi verbal.
Menurut penelitian oleh Nada et al. (2014)[13], tingkat kebisingan di pabrik tekstil
seringkali melebihi batas aman yang ditetapkan oleh organisasi kesehatan, yang
dapat menyebabkan gangguan pendengaran dan stres bagi pekerja. Abraham et al.
(2019)[14] menambahkan bahwa kebisingan tinggi juga menghambat komunikasi
verbal yang efektif, yang penting untuk koordinasi dan keselamatan di lingkungan
kerja.

2.1.1. Metode Pengurangan Kebisingan

Berbagai metode telah dikembangkan untuk mengurangi kebisingan di
lingkungan industri. Setyaningrum et al. (2019)[15] membahas analisi isolasi
penggunaan bahan penyerap suara sebagai solusi untuk meredam kebisingan.
Namun, metode ini memiliki keterbatasan dalam hal biaya dan efektivitas.
Penelitian oleh Subandrio et al. (2023)[16] menunjukkan bahwa penggunaan
perangkat lunak pemrosesan sinyal digital dapat memberikan hasil yang lebih baik
dalam mengurangi kebisingan dibandingkan dengan metode fisik tradisional.

2.1.2. Artificial Neural Network dalam Pemrosesan Sinyal

Artificial Neural Network (ANN) telah digunakan secara luas dalam berbagai
aplikasi pemrosesan sinyal, termasuk pengurangan kebisingan. Syabila et al.
(2023)[17] menunjukkan bahwa ANN dapat dilatih untuk mengenali sinyal audio,
sehingga meningkatkan kejelasan sinyal yang diinginkan. Krisna et al. (2018)[18]
mengembangkan model ANN yang dapat mengenali data suara yang mengalami
noise dengan menggunakan jaringan Syaraf tiruan Hebb pada Tingkat pengenalan
87,5%.

2.1.3. Penerapan ANN untuk Pengurangan Kebisingan di Pabrik Tekstil

Penerapan Artificial Neural Network (ANN) dalam pengurangan kebisingan di
pabrik tekstil menunjukkan potensi besar, seperti yang ditunjukkan oleh penelitian
Kwon et al. [19]. Penelitian tersebut mengimplementasikan Long Short-Term
Memory (LSTM), jenis ANN, dalam algoritma kontrol kebisingan aktif (ANC)
untuk memprediksi dan meminimalkan kebisingan mesin diesel secara efektif,
bahkan lebih baik dari algoritma konvensional. LSTM juga menunjukkan respons
cepat terhadap perubahan kebisingan tanpa memerlukan waktu adaptasi. Hal ini
membuktikan bahwa teknologi LSTM, serupa dengan ANN, dapat meningkatkan
kejelasan komunikasi di lingkungan pabrik tekstil dengan memisahkan suara
manusia dari kebisingan mesin, sehingga meningkatkan kenyamanan dan
produktivitas.



Pemilihan algoritma supervised learning neural network sangat tepat untuk
pengurangan kebisingan di pabrik tekstil karena beberapa alasan utama:
1. Pembelajaran dari Data Berlabel:
Jaringan saraf memerlukan dataset yang telah dilabeli (input dengan output yang
diketahui). Dalam pengurangan kebisingan, model belajar membedakan antara
kebisingan dan suara yang relevan dari rekaman suara bising dan suara yang
diinginkan.

2. Kemampuan Generalisasi
Setelah dilatih, model dapat mengenali pola kebisingan dalam situasi baru dan
diterapkan pada kondisi operasional pabrik yang bervariasi.

3. Pengolahan Data Non-Linear

Jaringan saraf mampu menangani hubungan non-linear yang kompleks dan tidak
teratur pada karakteristik kebisingan pabrik, memberikan solusi yang lebih efektif
daripada metode linear tradisional.

4. Adaptasi terhadap Perubahan
Algoritma dapat diperbarui dengan data baru secara berkala, memungkinkan model
beradaptasi dengan perubahan kondisi kebisingan pabrik dan tetap efektif.

5. Prediksi Real-Time

Jaringan saraf dapat diimplementasikan untuk respons real-time dalam
mengidentifikasi dan mengurangi kebisingan yang muncul, menciptakan
lingkungan kerja yang lebih nyaman.

6. Fleksibilitas Arsitektur

Supervised learning neural network fleksibel dalam desain arsitektur,
memungkinkan penggunaan Convolutional Neural Networks (CNN) untuk analisis
spektrum frekuensi atau Recurrent Neural Networks (RNN) untuk data urutan
waktu, disesuaikan dengan kebutuhan spesifik pengurangan kebisingan.

Dengan mempertimbangkan semua karakteristik ini, algoritma supervised learning
neural network menjadi pilihan yang sangat efektif untuk mengatasi masalah
kebisingan di pabrik tekstil, memberikan solusi berbasis data yang adaptif terhadap
kondisi yang berubah.

2.2. Dasar Teori

Pekerja di sektor tekstil jauh lebih rentan terhadap paparan kebisingan, risiko
umum yang terkait dengan bidang ini [20]. Sumber utama kebisingan selama
pemintalan benang berasal dari peralatan yang digunakan dalam produksi, termasuk
mesin pemintalan (TFO, atau two-for-one twist) dan mesin lain yang beroperasi
terus-menerus [21]. Jika dibandingkan dengan industri lain, individu yang bekerja
di tekstil sering kali menghadapi tingkat kebisingan yang lebih tinggi yang berasal
dari karakteristik metode produksi mereka dan ketergantungan yang besar pada
mesin[22]. Paparan kebisingan tingkat tinggi yang berkepanjangan dapat



berdampak buruk pada kesehatan pekerja, yang mengakibatkan peningkatan tingkat
stres, p otensi kehilangan pendengaran, dan penurunan efisiensi [23].

2.2.1. Definisi Kebisingan

Kebisingan adalah suara yang tidak diinginkan dan mengganggu yang dapat
menyebabkan berbagai efek buruk pada kesehatan manusia dan mengganggu
aktivitas sehari-hari [22]. Kebisingan diukur dalam desibel (dB), dengan tingkat
kebisingan yang melebihi 85 dB dianggap berbahaya jika terpapar terus-menerus.
Di sektor tekstil, tingkat kebisingan yang tinggi dapat mengakibatkan stres kronis
di antara pekerja, mengganggu konsentrasi, dan menurunkan produktivitas secara
keseluruhan [24]. Lebih jauh lagi, paparan kebisingan yang berkepanjangan juga
dapat memicu masalah emosional seperti mudah tersinggung dan depresi.
Organisasi Kesehatan Dunia (WHO) menyatakan bahwa paparan kebisingan yang
berlebihan dalam jangka panjang dapat menyebabkan gangguan pendengaran
bersama dengan masalah kesehatan lainnya seperti stres, gangguan tidur, dan
masalah kardiovaskular.

2.2.2. Sumber Kebisingan di Pabrik Tekstil

Di pabrik tekstil yang mengkhususkan diri dalam pemintalan benang katun,
kebisingan merupakan masalah utama yang dihasilkan oleh berbagai peralatan
dengan karakteristik pengoperasian yang berbeda. Sumber-sumber utama
kebisingan berasal dari mesin-mesin berkecepatan tinggi seperti
Twisting Mill (TFO) dan Mesin Pemintal Cincin, yang menghasilkan suara kontinu
berintensitas tinggi[21]. Mesin lain seperti Carding Machine dan Mesin Sisir juga
berkontribusi pada tingkat kebisingan keseluruhan melalui gerakan cepat dan
operasional yang berat, meskipun karakteristik frekuensinya mungkin berbeda.
Sementara itu, peralatan seperti

Mesin Penarik, Mesin Roving, dan Winder juga menambahkan kebisingan
signifikan ke lingkungan pabrik. Secara keseluruhan, aktivitas mekanis yang intens
dari berbagai mesin ini menciptakan lingkungan yang sangat bising, yang
memerlukan strategi pengendalian komprehensif, termasuk penerapan teknologi
pengurangan kebisingan canggih.

Karena aktivitas mekanis yang intens, pabrik tekstile menghasilkan banyak
kebisingan selama pengoperasian. Secara keseluruhan, pengendalian kebisingan di
pabrik benang katun memerlukan strategi menyeluruh, termasuk memilih mesin
yang lebih senyap, mengatur ulang tata letak pabrik, dan memastikan bahwa
karyawan mengenakan alat pelindung diri[22]. Penelitian dan pengembangan lebih
lanjut tentang perangkat pengurangan kebisingan yang lebih canggih juga
diperlukan untuk membuat tempat kerja lebih aman dan nyaman.



2.2.3. Dampak Kebisingan pada Pekerja

Paparan kebisingan tinggi di lingkungan pabrik tekstil dapat menyebabkan
berbagai dampak negatif pada kesehatan fisik, mental, dan kesejahteraan umum
pekerja. Dampak-dampak ini meliputi:
1. Kehilangan Pendengaran
Paparan kebisingan berkepanjangan dapat merusak sel-sel rambut di telinga bagian
dalam, menyebabkan kehilangan pendengaran permanen dan tinitus (suara
berdengung di telinga), yang berdampak pada kualitas hidup dan komunikasi efektif
[25].

2. Stres Mental

Kebisingan berlebihan menyebabkan stres psikologis parah, mengurangi
konsentrasi, produktivitas, dan meningkatkan kemungkinan kesalahan di tempat
kerja, serta memicu kelelahan mental berlebihan [26].

3. Kelelahan Fisik
Kebisingan konstan memaksa tubuh beradaptasi secara biologis, menguras energi
dan menyebabkan kelelahan kronis [26].

4. Dampak pada Kesehatan Mental
Stres akibat kebisingan dapat menimbulkan gejala seperti kecemasan, kesedihan,
dan insomnia [26].

5. Masalah Kardiovaskular

Kebisingan keras dapat meningkatkan tekanan darah (melalui pelepasan hormon
stres seperti kortisol) dan risiko penyakit jantung koroner, serangan jantung, serta
aritmia jantung [27]. Komunikasi Lisan di Lingkungan Kerja

2.2.3.1. Pentingnya komunikasi verbal

Komunikasi verbal yang efektif sangat penting untuk koordinasi tim yang baik,
terutama dalam situasi yang membutuhkan reaksi cepat dan kerja sama tim yang
kuat. Komunikasi yang jelas dan akurat dapat mencegah kesalahan operasional
serta menjamin keselamatan dan efisiensi tempat kerja. Hal ini esensial untuk:
1. Koordinasi Tim
Memastikan semua pekerja di industri tekstil memahami peran dan tanggung jawab
mereka, menghindari kesalahpahaman yang mengganggu alur kerja.

2. Petunjuk dan Perintah
Memungkinkan pemberian instruksi yang akurat dan mudah dipahami, mengurangi
risiko kesalahan operasional yang memengaruhi kualitas dan efisiensi produksi.

3. Peringatan Keselamatan
Memastikan peringatan bahaya atau darurat dikomunikasikan dan dipahami secara
efektif oleh semua pekerja untuk melindungi diri mereka.



2.2.3.2.Tantangan Komunikasi di Lingkungan Bising

Tingkat kebisingan tinggi di pabrik tekstil menghambat komunikasi verbal,
menyebabkan kesalahpahaman, kecelakaan, dan mengurangi efisiensi operasional.
Karyawan kesulitan memahami instruksi dan peringatan penting, yang
meningkatkan risiko keselamatan dan berdampak pada koordinasi tim. Tantangan
komunikasi meliputi:

1. Gangguan Akustik

Kebisingan tinggi menyebabkan suara lisan sulit didengar, berpotensi
mengakibatkan kesalahan operasional dan kecelakaan, terutama saat respons cepat
diperlukan.

2. Penggunaan Alat Pelindung Diri (APD)
APD efektif melindungi pendengaran, namun menghalangi instruksi dan peringatan
penting, mempersulit komunikasi verbal dan meningkatkan risiko keselamatan.

3. Risiko Keselamatan
Kegagalan mendengar instruksi dan peringatan keselamatan meningkatkan risiko
kecelakaan kerja, seperti tidak menanggapi kerusakan mesin atau bahaya bahan.

4. Efisiensi Operasional
Miskomunikasi mengganggu alur kerja, menyebabkan penundaan, dan mengurangi
efisiensi. Solusi seperti interkom atau headset peredam bising diperlukan untuk
komunikasi efektif di lingkungan bising, yang pada akhirnya meningkatkan
keselamatan dan efisiensi.

2.2.4. Pendekatan Tradisional terhadap Pengurangan Kebisingan
Pendekatan tradisional untuk pengurangan kebisingan di pabrik tekstil
melibatkan penggunaan alat pelindung diri (APD) dan insulasi suara. Tujuannya
adalah melindungi pekerja dari dampak negatif kebisingan.
1. Alat Pelindung Diri (APD)
Penggunaan penyumbat telinga dan penutup telinga umum dilakukan untuk
membatasi tingkat suara yang mencapai telinga, sehingga melindungi pendengaran
pekerja dari kerusakan. APD secara signifikan mengurangi tingkat kebisingan dan
sangat penting di lingkungan kerja yang bising untuk mencegah gangguan
pendengaran permanen. Penggunaan jangka panjang dapat menyebabkan
ketidaknyamanan (misalnya, iritasi kulit). APD juga dapat mengisolasi pekerja dari
suara penting seperti alarm atau peringatan darurat, meningkatkan risiko
kecelakaan, dan mempersulit komunikasi verbal, yang memengaruhi koordinasi.

2. Kedap Suara dan Insulasi

Metode ini menggunakan dinding dan insulasi suara untuk mengurangi penyebaran
suara dan menciptakan lingkungan kerja yang lebih tenang. Insulasi suara bekerja
dengan menyerap dan memblokir gelombang suara, efektif terutama di area pabrik
dengan konsentrasi kebisingan tinggi seperti dekat mesin besar.
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Solusi ini tidak selalu praktis atau efektif di semua area. Pemasangan penghalang
kebisingan tidak cocok untuk area yang memerlukan mobilitas tinggi dan akses
terbuka. Biaya pemasangan dan pemeliharaan juga bisa mahal, dan hambatan
kebisingan dapat menghambat alur kerja serta mengurangi fleksibilitas tata letak
pabrik.

2.2.5. Pendekatan inovatif dalam pengurangan kebisingan

Selain metode tradisional, pendekatan inovatif dalam pengurangan kebisingan
di pabrik tekstil meliputi teknologi peredam kebisingan aktif dan penggunaan
material baru. Teknologi Peredam Kebisingan Aktif (Active Noise Cancellation -
ANC), memanfaatkan mikrofon dan speaker untuk mendeteksi dan membatalkan
kebisingan dengan menghasilkan gelombang suara yang saling berlawanan.
Teknologi ini dapat diterapkan di berbagai area pabrik tanpa perubahan signifikan
pada struktur fisik. Namun, penerapannya masih dalam tahap pengembangan dan
memerlukan investasi awal yang signifikan.

Bahan Inovatif untuk Pengurangan Kebisingan Penggunaan material inovatif
dengan kapasitas penyerapan kebisingan tinggi menawarkan solusi yang layak.
Bahan seperti busa akustik, papan serat, dan komposit dapat digunakan di dinding
dan langit-langit pabrik untuk mengurangi pantulan suara dan menurunkan tingkat
kebisingan. Material yang mudah dipasang dan dilepas juga memungkinkan
perencanaan peralatan yang fleksibel. Dengan mengadopsi metode yang sudah
mapan dan baru, pabrik tekstil dapat mempertahankan efisiensi operasional tinggi
serta meningkatkan keselamatan dan kenyamanan tenaga kerjanya.

2.2.6. Arsitektur Convolutional Neural Network sebagai Fondasi Model

Penelitian ini secara spesifik mengadopsi arsitektur Convolutional Neural
Network (CNN), sebuah kelas khusus dari Jaringan Saraf Tiruan (ANN) yang
fundamentalnya merupakan kerangka komputasi yang meniru cara kerja jaringan
saraf biologis di otak manusia [28]. Berbeda dengan ANN konvensional, CNN
dirancang secara khusus untuk memproses data yang memiliki topologi seperti grid,
misalnya citra. Dalam konteks penelitian ini, sinyal audio yang telah
ditransformasikan menjadi representasi spektogram diperlakukan sebagai 'citra' 2D.
Pendekatan ini memungkinkan model untuk mengeksploitasi keunggulan utama
CNN, yaitu kemampuannya untuk mengenali pola-pola spasial hierarkis—seperti
struktur harmonik dan formant pada spektogram—yang sulit dideteksi oleh metode
analisis sinyal tradisional.

Kemampuan CNN untuk belajar dan membuat keputusan berakar pada
prinsip ANN, di mana jaringan belajar mengenali pola dari data input yang
kompleks, berkembang berdasarkan pengalaman, dan membuat prediksi [29].
Arsitektur CNN yang mendalam biasanya terdiri dari tiga jenis lapisan utama:
lapisan input, lapisan tersembunyi (hidden layers), dan lapisan output [30]. Lapisan
tersembunyi pada CNN didominasi oleh lapisan konvolusional yang menerapkan
serangkaian filter untuk mengekstraksi fitur, dan lapisan pooling yang mereduksi
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dimensi spasial untuk efisiensi komputasi [31]. Melalui serangkaian lapisan ini,
CNN mampu membangun representasi fitur dari level rendah (misalnya, tepi atau
tekstur pada spektogram) hingga level tinggi (misalnya, pola vokal yang kompleks).
Proses pembelajaran ini dimungkinkan melalui mekanisme penyempurnaan bobot
filter secara iteratif berdasarkan kesalahan prediksi, yang umumnya menggunakan
algoritma backpropagation [28].

2.2.6.1. Prinsip Supervised Learning pada CNN

Supervised learning merupakan paradigma pembelajaran mesin yang
digunakan dalam penelitian ini. Pendekatan ini melibatkan pelatihan model
menggunakan dataset yang telah dilabeli, di mana setiap data input (spektogram
bising) memiliki pasangan output target yang diketahui (spektogram bersih) [32].
Dengan memberikan pasangan data ini, model CNN secara iteratif belajar untuk
memetakan input ke output yang diinginkan. Dalam konteks reduksi kebisingan,
model dilatih untuk mengestimasi sebuah masker spektral yang, ketika
diaplikasikan pada spektogram bising, akan menghasilkan spektogram yang
semirip mungkin dengan spektogram bersih target. Proses pelatihan dan prediksi
ini didasari oleh prinsip matematis yang kuat untuk meminimalkan fungsi
kesalahan (loss function) antara prediksi dan target [33].

2.2.6.2. Rumus-Rumus dalam Supervised Learning pada ANN

1. ReLU (Rectified Linear Unit)
ReLU populer karena kemampuannya untuk menghindari masalah vanishing
gradient dan sering digunakan di hidden layer.

_ (xjikax >0 2.1)
f) = {0 jikax <0
Penjelasan:

a. ReLU hanya mengembalikan nilai input jika positif, dan nol jika negatif.

b. Sangat populer karena komputasi cepat dan kemampuan untuk menghindari
masalah vanishing gradient dibandingkan sigmoid dan tanh.

c¢. Umumnya digunakan di hidden layer jaringan dalam pemrosesan audio,
termasuk pengurangan kebisingan.

d. Dalam penelitian ini, ReLU bisa digunakan untuk menangkap pola frekuensi
yang relevan dari sinyal suara.

2. Tanh (Hyperbolic Tangent)
Tanh mirip dengan sigmoid, tetapi menghasilkan nilai antara -1 hingga 1,
membantu dalam normalisasi data internal jaringan.

eX— =X

f(x)=tanh (x) = (2.2)

eX+e~x

Penjelasan:
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Mirip dengan sigmoid, tapi menghasilkan nilai antara -1 hingga 1, sehingga
lebih baik untuk normalisasi data internal.

Digunakan ketika kita ingin neuron dapat merepresentasikan polaritas
(misalnya: frekuensi tinggi vs rendah).

Dalam konteks penelitian ini, tanh bisa digunakan untuk membedakan
komponen frekuensi yang dominan dalam kebisingan mesin tekstil .

3. Perhitungan Output Neuron

Output dari suatu neuron dihitung sebagai:

n
yj = fz wijx; + b; 2:3)
i=1
Penjelasan:

a. Yj = output dari neuron ke-j,
b. w;; = bobot koneksi antara neuron input i dan neuron j,
¢. xi = nilai input dari neuron i,
d. bj= bias pada neuron j,
e. f=fungsi aktivasi.
f. Setiap neuron menerima beberapa input (x;), yang masing-masing dikalikan

dengan bobot (w;).

Hasilnya dijumlahkan lalu ditambah bias (j ), dan hasil akhirnya dilewatkan
ke fungsi aktivasi .

Ini adalah proses dasar bagaimana neuron memproses informasi dan
menghasilkan prediksi.

Dalam penelitian ini, setiap neuron memproses fitur audio frekuensi dan
amplitudo dari rekaman suara.

4. Fungsi Loss (Error Function)

Untuk mengukur kesalahan prediksi selama pelatihan, digunakan fungsi loss seperti
Mean Squared Error (MSE):

1 m
E= EZ(tk — Yi)? (2.4)
k=1

Penjelasan:

a.

© a0 o

E: error total,

ty: target aktual (suara verbal bersih),

V.. output prediksi (suara hasil pengolahan ANN),

m: jumlah data pelatihan.

MSE mengukur rata-rata kuadrat selisih antara prediksi model (y; ) dan nilai
sebenarnya (tp).
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f. Semakin kecil nilai MSE, semakin baik model ANN dalam memprediksi
sinyal verbal yang bersih dari kebisingan.

Penggunaan Mean Squared Error (MSE) sebagai fungsi loss sangat relevan dalam
tugas ini karena tujuan utama model adalah meregresi atau mengestimasi nilai
magnitudo dari spektogram ucapan yang bersih. Dengan meminimalkan rata-rata
kuadrat selisih antara magnitudo spektogram yang diprediksi oleh model (y;,) dan
magnitudo spektogram target (t;), proses pelatihan secara langsung mendorong
bobot jaringan untuk menghasilkan sebuah output yang secara struktural dan
numerik semirip mungkin dengan representasi spektral dari sinyal ucapan yang
ideal.

5. Backpropagation dan Update Bobot

Backpropagation adalah mekanisme pembelajaran paling penting dalam
ANN, yaitu cara sistem "belajar dari kesalahan" dan menyesuaikan diri. Bayangkan
ketika sedang melatih sebuah sistem untuk mengenali pola suara. Pertama, sistem
mencoba memprediksi (melalui Forward Propagation). Kemudian, ia menghitung
seberapa besar kesalahannya (menggunakan Fungsi Loss seperti MSE). Setelah itu,
Backpropagation mengambil kesalahan ini dan "menyebarkannya" kembali ke
seluruh jaringan, dari lapisan output hingga lapisan input. Tujuannya adalah untuk
mencari tahu "bobot" mana di setiap koneksi yang paling berkontribusi terhadap
kesalahan tersebut.
Selama proses ini, bobot diperbarui menggunakan algoritma backpropagation.
Perubahan bobot dihitung dengan:

A. Turunan Parsial Bobot

o0E
Aw;; = —1. W, (2.5)

Penjelasan:

1. n = Learning rate menentukan seberapa besar perubahan bobot dalam satu
iterasi pelatihan. Ini adalah faktor penting yang mengontrol seberapa
"agresif' model dalam mengubah bobotnya. Learning rate yang terlalu
besar bisa membuat model "melompat" melewati solusi terbaik, sementara
yang terlalu kecil bisa membuat proses belajar sangat lambat.

E ) ) ) .
2. o Turunan parsial dari error terhadap bobot menunjukkan kontribusi
ij

tiap bobot terhadap kesalahan. Nilai ini memberi tahu arah dan besaran
perubahan yang ideal untuk bobot tertentu agar error berkurang.

baru
i
disesuaikan berdasarkan perhitungan error dan learning rate, siap
digunakan untuk iterasi pelatihan berikutnya.

3.w = Bobot baru setelah diperbarui. Ini adalah nilai bobot yang telah
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lama

pelatihan sebelumnya.

= Bobot sebelum diperbarui. Ini adalah nilai bobot dari iterasi

0E
ow

Untuk menghitung (yaitu, seberapa besar perubahan bobot w;; harus dilakukan

ij

agar error E berkurang), kita perlu tahu bagaimana perubahan kecil pada bobot itu
memengaruhi output neuron, yang pada gilirannya memengaruhi output lapisan
berikutnya, dan akhirnya memengaruhi error total. Karena efek ini berantai (seperti
efek domino), kita menggunakan aturan matematika yang disebut ""Chain Rule".
Aturan ini memungkinkan kita menghitung turunan (tingkat perubahan) sebuah
fungsi yang tersusun dari beberapa fungsi lainnya, satu per satu dari belakang ke
depan. Jadi, kita mulai menghitung turunan error terhadap output terakhir, lalu
output terakhir terhadap input sebelumnya, dan seterusnya, sampai ke bobot yang
ingin kita perbarui. Ini memastikan bahwa penyesuaian bobot dilakukan secara
akurat, berdasarkan kontribusi spesifiknya terhadap kesalahan total jaringan.

B. Update Bobot

wht = wit™e 4 Aw;; (2.6)
Proses Update Bobot (Integrasi): Formula (2.7) adalah intinya. Bobot lama

i

berdasarkan turunan error dan learning rate. Dengan kata lain, model mengambil

) ditambahkan dengan nilai perubahan bobot (Aw;;) yang dihitung

bobot yang ada, menghitung seberapa banyak dan ke arah mana bobot itu harus
berubah untuk mengurangi kesalahan, dan kemudian menerapkan perubahan
tersebut untuk mendapatkan bobot baru. Proses ini dilakukan berulang kali selama
pelatihan, secara bertahap "mengukir" bobot jaringan agar semakin akurat dalam
memprediksi sinyal ucapan yang bersih dari kebisingan. Dalam konteks penelitian
ini, backpropagation digunakan untuk menyesuaikan bobot neuron agar ANN lebih
tepat dalam memisahkan suara bising dari suara manusia.

2.2.6.3. Proses Pelatihan Supervised Learning pada (ANN)

Proses pelatihan Supervised Learning dalam pengenalan suara bising
melibatkan beberapa tahapan penting yang berlangsung secara berurutan dan
berulang[34]. Dimulai dari pra-pemrosesan data, dilanjutkan dengan forward
propagation, perhitungan error, hingga proses backpropagation untuk memperbaiki
bobot, seluruh langkah ini bertujuan untuk melatih model agar semakin akurat
dalam menghasilkan prediksi hingga mencapai konvergensi atau batas maksimum
epoch. Tahapan-tahapan tersebut dapat dilihat secara lebih jelas pada Gambar 2.1,
yang menggambarkan alur proses pelatihan model Supervised Learning dari awal
hingga akhir.

Untuk memperoleh pemahaman yang lebih jelas mengenai tahapan-tahapan
proses pelatihan Supervised Learning pada Artificial Neural Network, silakan
merujuk pada Gambar 2.1.
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Alur Proses Pelatihan model yang mengilustrasikan urutan langkah-langkah yang
akan dijelaskan secara terperinci. Bayangkan proses ini seperti melatih seorang
siswa untuk membedakan antara suara musik dan suara kebisingan.

Gambar 2.1 mengilustrasikan alur kerja fundamental dari supervised
learning yang digunakan untuk melatih model ANN. Berikut adalah penjelasan
rinci untuk setiap tahapan kunci dalam konteks penelitian reduksi kebisingan ini:

Input Suara pra .| Ekstrasi Forward
 — - f— 4l
Start bising emme-—» Normalisasi Fitor ™ Progation <

Prediksi Suara

. Dengan itLlIlg
— Backpropagation |«
MSE error ?

Gambar 2.1. Alur Proses Pelatihan model

Ulangi

Model Siap

1. Mulai (Start)
Ini adalah titik awal proses pelatihan model Supervised Learning. Model siap untuk
menerima data dan memulai pembelajarannya.

2. Input Suara Bising (Input)

Pada tahap ini, model menerima data suara yang masih mengandung kebisingan.
Bayangkan ini seperti rekaman suara di pabrik yang penuh dengan suara mesin dan
suara orang berbicara. Ini adalah "tugas" atau "soal" yang diberikan kepada siswa.

3. Normalisasi (Pra-pemrosesan)

Normalisasi adalah langkah pra-pemrosesan data yang krusial sebelum data
dimasukkan ke dalam model deep learning. Dalam pemrosesan sinyal audio, tujuan
utamanya ada dua:

a. Stabilitas Pelatihan, Sinyal audio mentah memiliki rentang amplitudo yang
dapat berbeda secara signifikan antar sampel. Perbedaan ini dapat
menyebabkan satu sinyal dengan amplitudo tinggi mendominasi proses
pembelajaran, sehingga pembaruan bobot menjadi tidak stabil. Dengan
melakukan normalisasi, rentang nilai amplitudo diseragamkan sehingga
model dapat mempelajari pola secara lebih konsisten.

b. Efisiensi Konvergensi, Normalisasi yang mengubah data ke rentang
tertentu, seperti [—1,1], memastikan bahwa nilai input berada dalam rentang
kerja optimal dari fungsi aktivasi, misalnya Sigmoid atau Tanh. Kondisi ini
membantu mencegah permasalahan seperti vanishing gradient dan
exploding gradient, sehingga proses pembelajaran dapat berlangsung lebih
efisien dan model mencapai konvergensi lebih cepat.
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Dalam penelitian ini, normalisasi dilakukan pada sinyal audio berbentuk
waveform (sinyal satu dimensi) setelah melalui tahap resampling. Proses ini
mencakup penskalaan amplitudo setiap sinyal sehingga nilai puncaknya
mencapai 1.0  (peak  normalization), atau  menggunakan fungsi
librosa.util.normalize yang melakukan penyesuaian berdasarkan nilai root mean
square (RMS) dari sinyal. Langkah ini bertujuan untuk memastikan bahwa
seluruh sampel audio memiliki tingkat amplitudo yang setara, sehingga tidak
ada sinyal yang secara tidak proporsional lebih kuat dan berpotensi
memengaruhi proses pembelajaran jaringan secara bias.

4. Ekstraksi Fitur (Ekstrasi Fitur)

Setelah dinormalisasi, sinyal suara diolah untuk "mengekstrak" fitur-fitur penting
darinya. Ini seperti mengambil ciri-ciri khas dari suara tersebut (misalnya pola
frekuensi dan amplitudo dari waktu ke waktu) , yang kemudian akan menjadi
"gambar" atau representasi visual (seperti spektogram) yang bisa dimengerti oleh
jaringan saraf.

5. Forward Propagation

Fitur-fitur yang sudah diekstrak ini kemudian "dimasukkan" ke dalam jaringan
saraf. Ini adalah proses di mana informasi bergerak maju melalui setiap lapisan
neuron dalam jaringan, dari lapisan input, melalui lapisan tersembunyi, hingga
mencapai lapisan output. Di sini, jaringan saraf membuat "prediksi suara" , yaitu
mencoba menghasilkan suara yang menurutnya bersih dari kebisingan.

6. Hitung Error? (Dengan MSE)

Tahap “Hitung Error” merupakan bagian inti dari supervised learning. Setelah

model menghasilkan prediksi melalui forward propagation, langkah ini digunakan

untuk mengukur selisih antara hasil prediksi dan ground truth. Nilai selisih tersebut

menjadi indikator seberapa besar kesalahan model dan menentukan arah

pembelajaran selanjutnya.

Dalam penelitian ini digunakan Mean Squared Error (MSE) sebagaimana

dirumuskan pada Rumus (2.4). Metrik ini menghitung rata-rata selisih kuadrat

antara nilai target dan nilai prediksi.

Konteks dalam Penelitian Ini

Pada pemrosesan spektrogram:

a. t : merepresentasikan magnitudo spektrogram dari sinyal ucapan bersih.

b. yx : merupakan magnitudo spektrogram hasil prediksi model U-Net.

c. MSE : menghitung perbedaan tersebut pada setiap elemen frekuensi-waktu,
kemudian merata-ratakannya untuk mendapatkan satu nilai error keseluruhan.

Semakin kecil nilai MSE, semakin baik kemampuan model dalam merekonstruksi

sinyal yang mendekati sinyal bersih.
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7. Backpropagation (Update Bobot)
Backpropagation digunakan untuk memperbaiki kesalahan yang diukur oleh MSE
dengan menyesuaikan bobot-bobot jaringan agar error dapat berkurang pada iterasi
berikutnya.
Backpropagation berlangsung melalui langkah-langkah berikut:
a. Propagasi Mundur
Nilai error dari langkah sebelumnya disebarkan kembali melalui seluruh
lapisan jaringan, dari lapisan output menuju lapisan sebelumnya.
b. Perhitungan Gradien
Kontribusi setiap bobot terhadap error dihitung melalui turunan parsial
sebagaimana dijelaskan pada Rumus (2.5). Nilai gradien ini menunjukkan
arah perubahan bobot yang diperlukan untuk menurunkan error.
c. Pembaruan Bobot
Setelah gradien diperoleh, pembaruan bobot dilakukan mengikuti aturan
pada Rumus (2.6), yang memanfaatkan learning rate untuk menentukan
besar perubahan bobot.
8. Ulangi (Loop)
Rangkaian forward propagation — hitung error — backpropagation diulang
selama sejumlah epoch hingga nilai error (MSE) mencapai tingkat yang stabil dan
model dianggap konvergen.

9. Model Konvergen(Evaluasi Konvergensi)

Selama pengulangan ini, sistem akan terus mengecek apakah model sudah
"konvergen". Ini berarti apakah model sudah belajar dengan cukup baik dan
kesalahannya sudah sangat kecil atau tidak ada lagi perbaikan yang signifikan.

a. Tidak: Jika model belum konvergen (masih ada kesalahan yang signifikan),
proses akan terus berulang (loop "Tidak" kembali ke Backpropagation dan
Forward Propagation).

b. Ya: Jika model sudah konvergen (sudah pintar dan akurat), maka proses
pelatihan akan berhenti.

10. Model Siap (Output)

Setelah model dianggap konvergen, itu berarti model sudah "Siap" untuk
digunakan. Model ini telah dilatih secara efektif untuk memisahkan suara bicara
dari kebisingan.

11. Selesai (End)

Ini adalah akhir dari seluruh proses pelatihan Supervised Learning. Model yang
telah terlatih kini dapat digunakan untuk mengurangi kebisingan pada rekaman
suara baru. Secara keseluruhan, supervised learning ini seperti melatih seorang
anak dengan memberinya banyak contoh soal dan jawabannya, lalu mengoreksi
kesalahannya berulang kali sampai dia benar-benar mengerti bagaimana cara
menyelesaikan soal serupa di masa depan.
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2.2.6.4. Keunggulan ANN dalam Pengolahan Sinyal

Jaringan Saraf Tiruan (ANN) sangat efektif dalam pemrosesan sinyal berkat
beberapa keunggulan utamanya. ANN memiliki kemampuan adaptasi yang hebat
[30], memungkinkannya belajar dan beradaptasi dengan berbagai pola kebisingan,
termasuk kondisi yang berubah-ubah [35]. Ini memungkinkan ANN melakukan
penyesuaian real-time untuk mengurangi kebisingan dan mengoptimalkan kualitas
suara di lingkungan akustik yang dinamis. Selain itu, ANN mampu memproses data
dalam jumlah besar secara parallel [36], sangat meningkatkan kecepatan dan
efisiensi pemrosesan sinyal. Struktur paralel ini memungkinkan ANN memberikan
respons cepat dan akurat, ideal untuk aplikasi seperti sistem komunikasi suara dan
teknologi pengenalan suara. ANN juga memiliki kemampuan generalisasi tinggi,
memungkinkannya mendeteksi dan menangani pola kebisingan tak terduga
berdasarkan pengalaman sebelumnya, bahkan dalam situasi yang belum pernah
ditemui selama pelatihan. Kemampuan ini menjadikan ANN andal dan fleksibel
dalam berbagai situasi nyata.

2.2.6.5. Aplikasi ANN dalam Pengurangan Kebisingan

Jaringan Saraf Tiruan (ANN), terutama Convolutional Neural Network (CNN)
seperti U-Net yang akan digunakan dalam penelitian ini, telah menunjukkan
penerapan yang sangat efektif dalam bidang pengurangan kebisingan (noise
reduction). Kemampuannya untuk belajar dari pola data yang kompleks,
beradaptasi dengan kondisi dinamis, dan melakukan generalisasi menjadikannya
alat yang sangat kuat untuk memisahkan sinyal yang diinginkan dari gangguan.
Berikut adalah beberapa aplikasi utama ANN dalam pengurangan kebisingan yang
relevan dengan pemrosesan sinyal:
1. Pembatalan Kebisingan Aktif (ANC)
ANN digunakan untuk memodelkan dan memprediksi pola kebisingan (mekanis,
lalu lintas, latar belakang) dan menghasilkan sinyal "anti-noise" yang berlawanan
untuk menekan kebisingan secara efektif [37]. Kemampuan adaptifnya
memungkinkan penyesuaian parameter filter real-time untuk kinerja optimal dalam
kondisi akustik dinamis.Pengenalan dan Peningkatan Kualitas Suara (Speech
Enhancement).

2. Pengenalan dan Peningkatan Kualitas Suara (Speech Enhancement)

ANN berperan penting dalam meningkatkan kualitas suara yang terdistorsi oleh
kebisingan latar belakang [38]. Dengan dilatih pada data suara dan kebisingan,
ANN memisahkan komponen suara yang relevan dari kebisingan, menghasilkan
suara yang lebih jernih dan mudah dikenali.Pemrosesan Sinyal Audio di Perangkat
Seluler.
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3. Pemrosesan Sinyal Audio di Perangkat Seluler

ANN meningkatkan kualitas suara di lingkungan bising pada perangkat seluler dan
headset dengan mengidentifikasi kebisingan latar belakang dan menyesuaikan
pengaturan audio secara adaptif [39].

4. Pengurangan Kebisingan dalam Sistem Komunikasi
ANN digunakan dalam sistem komunikasi (suara atau data nirkabel) untuk
mengidentifikasi dan mengurangi kebisingan pada sinyal yang diterima,
memastikan transmisi informasi lebih bersih [40].
5. Pemrosesan Gambar untuk Pengurangan Noise (Image Denoising)
ANN, khususnya CNN, efektif dalam mendeteksi dan mengurangi noise pada
gambar digital yang disebabkan oleh gangguan perekaman [41]. Jaringan dilatih
untuk memisahkan pola noise dari detail visual, menghasilkan gambar yang lebih
bersih dan tajam.

Secara keseluruhan, kemampuan adaptif, paralelisme, dan generalisasi
ANN menjadikannya alat yang sangat efektif dan serbaguna dalam berbagai
aplikasi pengurangan kebisingan, baik pada sinyal audio, gambar, maupun
komunikasi, membuka peluang untuk inovasi lebih lanjut.

2.2.7. Dari Sinyal Audio ke Rekonstruksi Ucapan Menggunakan U-Net CNN

Pengurangan kebisingan di lingkungan yang kompleks seperti pabrik tekstil
menggunakan deep learning bukanlah sekadar aplikasi jaringan saraf biasa. Proses
ini memerlukan serangkaian transformasi data yang canggih dan arsitektur jaringan
yang dirancang khusus untuk tugas separasi sinyal. Alur kerja lengkapnya dapat
dipahami melalui empat tahap utama yang saling terkait erat: (1) Representasi
Sinyal, (2) Ekstraksi Fitur Kontekstual, (3) Rekonstruksi Sinyal Presisi, dan (4)
Generasi Output dan Konversi Kembali ke Audio.

2.2.7.1. Transformasi Audio menjadi Citra melalui STFT dan Spektogram

Secara alami, manusia dapat membedakan berbagai jenis suara dengan
mudah. Namun, bagi komputer, sinyal audio direpresentasikan sebagai deretan nilai
satu dimensi berupa amplitudo terhadap waktu. Agar model deep learning berbasis
visi seperti Convolutional Neural Network (CNN) dapat mengolah dan memahami
pola-pola pada sinyal suara, diperlukan transformasi dari sinyal 1D menjadi
representasi 2D yang lebih informatif, yaitu spektrogram.

1. STFT : Analisis Frekuensi yang Berubah terhadap Waktu

STFT adalah teknik fundamental untuk menganalisis bagaimana konten frekuensi
dari sebuah sinyal berubah seiring waktu. Karena sinyal seperti ucapan dan
kebisingan bersifat non-stasioner (karakteristiknya berubah), STFT memecahnya
menjadi segmen-segmen kecil di mana sinyal dapat diasumsikan stasioner untuk
sementara. Prosesnya adalah sebagai berikut:
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a. Segmentasi

Sinyal audio x[n] dibagi menjadi segmen-segmen pendek yang saling tumpang
tindih (overlapping). Segmentasi ini diperlukan agar analisis frekuensi dapat
mengikuti dinamika perubahan sinyal.

b. Windowing

Setiap segmen dikalikan dengan fungsi jendela w[n] (misalnya jendela Hann).
Fungsi jendela digunakan untuk mereduksi amplitudo pada bagian tepi segmen
sehingga mengurangi spectral leakage, yaitu penyebaran energi frekuensi ke bin
tetangga dalam domain frekuensi.

c. Transformasi Fourier
Fast Fourier Transform (FFT) diterapkan pada setiap segmen yang telah diberi
jendela untuk memperoleh representasi spektral dari segmen tersebut.

Secara matematis, STFT dari sinyal diskrit x[#] didefinisikan sebagai:

N-1
SIm, k] = Z x[n].w[n — mH]. e~j2mkn/N 2.7)

n=0
Penjelasan komponen rumus (2.7) adalah sebagai berikut:

a. S/m,k] adalah nilai STFT pada frame waktu ke-mmm dan bin frekuensi ke-£.
x/n] adalah sinyal input dalam domain waktu.

w/n—mH] adalah fungsi jendela yang digeser berdasarkan hop length.

N adalah ukuran FFT.

H adalah hop length, yaitu jJumlah pergeseran antara dua jendela berturut-turut.

© a0 o

2. Spektogram: "Citra" dari Suara

Meskipun STFT menghasilkan nilai kompleks, untuk input ke CNN
umumnya hanya digunakan magnitudo-nya. Spektogram magnitudo diperoleh
dengan mengambil nilai absolut dari setiap elemen dalam spektogram kompleks,
|X(m,w)|. Untuk meningkatkan kualitas representasi, penelitian ini secara spesifik
menggunakan Log-Mel Spektrogram dengan dimensi input 128 x N.
a. Skala Mel
Sumbu frekuensi pada spektrogram dikonversi ke skala Mel, yaitu skala frekuensi
yang lebih mendekati sensitivitas pendengaran manusia. Skala ini memberikan
resolusi lebih tinggi pada frekuensi rendah, tempat banyak informasi penting dari
sinyal ucapan berada.

b. Skala Logaritmik
Nilai amplitudo dikonversi ke skala logaritmik untuk mengompresi rentang dinamis
sinyal suara. Transformasi ini membuat variasi energi yang kecil tetap terlihat,
sambil mengurangi dominasi komponen berenergi tinggi.

Hasil akhirnya berupa representasi visual menyerupai citra dua dimensi, di
mana pola akustik dapat dianalisis. Struktur harmonik pada sinyal ucapan biasanya
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terlihat sebagai garis-garis horizontal, sedangkan kebisingan mesin yang bersifat
konstan dapat tampak sebagai pita energi yang berkelanjutan pada spektrogram.

3. Fungsi Aktivasi Sigmoid (untuk Masking)

Pada tahap akhir pemrosesan, model U-Net menghasilkan nilai untuk setiap
elemen pada spektrogram guna menentukan apakah bagian tersebut merupakan
komponen sinyal ucapan atau kebisingan. Untuk mengubah keluaran jaringan
menjadi nilai yang dapat digunakan sebagai masking, fungsi aktivasi Sigmoid
digunakan karena mampu memetakan setiap nilai input ke rentang [0,1], sehingga
dapat ditafsirkan sebagai derajat atau probabilitas.

Rumusnya:

=1 28)

1+e™*
Penjelasan komponen rumus (2.8) adalah sebagai berikut:

1. x: Input ke Neuron Terakhir Ini

Merupakan nilai sebelum aktivasi (pre-activation) yang dihasilkan jaringan.
Nilai ini dapat positif, negatif, atau nol dan mencerminkan tingkat keyakinan awal
model terhadap suatu elemen spektrogram.

2. e—x : Bagian Eksponensial
Komponen ini menentukan bentuk kurva Sigmoid.
a. Jika x bernilai positif besar, e menjadi sangat kecil sehingga keluaran
Sigmoid mendekati 1.
b. Jika x bernilai negatif besar, e * menjadi sangat besar sehingga keluaran
Sigmoid mendekati 0.
c. Jika x =0, maka e~ = 1, menghasilkan keluaran di sekitar 0,5.

3. Hasil Akhir f{x) : Nilai Masker (antara 0 dan 1)
Nilai Sigmoid f{x)berada pada rentang [0,1] dan berfungsi sebagai nilai masking:
a. Mendekati 1 = bagian spektrogram cenderung dianggap sebagai sinyal
ucapan.
b. Mendekati 0 = bagian tersebut lebih terkait dengan kebisingan.
c. Nilai di tengah (+0,5) = menunjukkan ketidakpastian, sehingga bagian
tersebut dipertahankan sebagian.
Penggunaan fungsi Sigmoid memungkinkan model menghasilkan masker dengan
nilai kontinu, bukan keputusan biner, sehingga proses pemisahan antara komponen
ucapan dan kebisingan dapat dilakukan secara lebih halus dan adaptif.

2.2.7.2. Ekstraksi Fitur Kontekstual: Jalur Encoder pada U-Net

Setelah audio diubah menjadi spektogram, arsitektur U-Net—seperti yang
dirinci pada Gambar 3.3 dalam penelitian ini—mulai bekerja. Bagian pertama
adalah Jalur Encoder, yang bertujuan untuk "memahami" konten atau konteks dari
citra spektogram melalui ekstraksi fitur hierarkis.
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a. Operasi Konvolusi dan Aktivasi

Setiap blok encoder menerapkan serangkaian filter 2D (kernel) pada peta fitur
inputnya. Sebagai contoh, Encoder Block 1 menggunakan lapisan konvolusi dengan
32 filter. Filter-filter ini belajar mengenali pola-pola lokal. Setelah konvolusi, fungsi
aktivasi non-linear seperti ReLU (Rectified Linear Unit) diterapkan untuk
memungkinkan model mempelajari hubungan yang kompleks.

b. Normalisasi dan Downsampling

Batch Normalization digunakan di setiap blok untuk menstabilkan dan
mempercepat proses pelatihan. Setelah itu, MaxPooling mengurangi ukuran peta
fitur (misalnya, dari 128xN menjadi 64x(N/2)), yang bertujuan mengurangi beban
komputasi dan memperluas "bidang reseptif" (receptive field). Ini memungkinkan
neuron di lapisan berikutnya untuk memahami konteks global dari suara.

c. Representasi Abstrak

Proses ini diulang dengan jumlah filter yang meningkat (32, 64, 128) seiring data
bergerak lebih dalam di sepanjang jalur encoder. Di lapisan Bottleneck , yang
menggunakan 256 filter, jaringan memiliki pemahaman yang paling terkonsentrasi
dan abstrak tentang "apa" yang ada di dalam sinyal, tetapi informasi spasial "di
mana" (lokasi waktu dan frekuensi yang tepat) sebagian besar telah hilang.

2.2.7.3. Rekonstruksi Sinyal: Jalur Decoder dan Kekuatan Skip Connections
Tujuan utama dari pengurangan kebisingan adalah merekonstruksi sinyal ucapan
dengan fidelitas tinggi. Ini memerlukan informasi lokasi yang presisi, yang hilang
selama encoding. Di sinilah kejeniusan Jalur Decoder dan Skip Connections pada
U-Net bersinar.

1. Operasi Upsampling (Transposed Convolution)

Jalur decoder bekerja secara terbalik dari encoder. Ia mengambil peta fitur yang
abstrak dan terkompresi, lalu secara bertahap memperbesar ukurannya
(upsampling) menggunakan transposed convolutions untuk merekonstruksi citra
spektogram kembali ke resolusi aslinya.

2. Kekuatan Skip Connections

Operasi upsampling sendiri akan menghasilkan output yang kabur. Skip
Connections mengatasi masalah ini dengan menghubungkan peta fitur dari jalur
encoder langsung ke lapisan yang sesuai di jalur decoder. Proses ini secara krusial
"menyuntikkan" kembali informasi spasial beresolusi tinggi yang mengandung
detail lokasi yang presisi. Lapisan konvolusi di decoder kemudian menggunakan
informasi gabungan ini (konteks abstrak dari upsampling dan detail presisi dari skip
connection) untuk merekonstruksi sinyal dengan jauh lebih akurat. Mekanisme ini
memungkinkan U-Net untuk menjawab pertanyaan "di mana" harus menempatkan
fitur "apa" yang telah dipelajarinya.
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2.2.7.4. Generasi Output dan Konversi Kembali ke Audio

Lapisan terakhir dari U-Net menghasilkan spektogram yang telah diproses.
Dalam penelitian ini, strategi yang digunakan adalah masking, yang didukung oleh
penggunaan fungsi aktivasi Sigmoid pada lapisan output.

1. Masking

Jaringan tidak langsung mengeluarkan spektrogram bersih; ia hanya memproduksi
sebuah masker berupa matriks yang setiap elemennya berada di antara 0 dan 1. Agar
nilai tetap dalam rentang tersebut, lapisan output dipasang fungsi aktivasi sigmoid:

@) =—

1+e~%’
mengalikan kedua matriks secara elemen-demi-elemen (perkalian Hadamard,

Masker ini kemudian disapukan ke spektrogram bising dengan cara

dilambangkan seperti perkalian biasa tetapi diberi catatan “elemen-demi-elemen”):
Spectrogramciean=Spectrogramnoisy X Mpredicted

Dimana “x” bukan perkalian matriks penuh, melainkan setiap elemen seletak
dikalikan langsung). Nilai 1 pada masker berarti “pertahankan frekuensi-waktu ini”
(dianggap ucapan), nilai 0 berarti “redam sepenuhnya” (dianggap noise). Masker
yang dipelajari berbentuk Ideal Ratio Mask (IRM). IRM bukan masker biner,
melainkan memberikan bobot kontinu 0—1 yang menyatakan rasio energi ucapan
terhadap total energi (ucapan + noise) pada setiap titik. Dengan IRM, komponen
yang sedikit tercampur noise hanya dilemahkan sedikit, sedangkan komponen yang
kuat noise-nya dilemahkan besar, sehingga hasil audio mengalami distorsi lebih

rendah dan terdengar lebih natural.

2. Fungsi Loss dan Pelatihan

Model dilatih dengan meminimalkan kesalahan antara output yang dihasilkan
(setelah masking) dan target sebenarnya (spektogram ucapan bersih). Fungsi
kesalahan seperti Mean Squared Error (MSE) digunakan untuk mengukur
perbedaan ini dan memperbarui bobot jaringan melalui proses backpropagation.

3. Konversi Kembali ke Audio
Setelah spektogram bersih diperoleh, langkah terakhir adalah mengubahnya
kembali menjadi sinyal audio 1D yang dapat didengar menggunakan algoritma
Inverse Short-Time Fourier Transform (ISTFT). Proses ini juga memerlukan
estimasi fasa dari sinyal untuk merekonstruksi gelombang suara secara utuh.
Secara keseluruhan, arsitektur U-Net yang diterapkan pada spektogram
menyediakan kerangka kerja end-fo-end yang sangat kuat dan sesuai dengan
rancangan penelitian, mampu belajar memisahkan pola ucapan yang kompleks dari
kebisingan industri yang menantang dengan mempertahankan detail dan kejernihan
sinyal yang diinginkan.
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2.2.8. Keuntungan dan Tantangan

Penerapan ANN untuk pengurangan kebisingan menawarkan serangkaian
keuntungan signifikan yang didasari oleh kemampuannya untuk belajar dan
beradaptasi. Keunggulan utamanya adalah kemampuan adaptasi terhadap pola data
yang kompleks, yang memungkinkan sistem untuk menyesuaikan diri secara real-
time dengan kondisi lingkungan akustik yang bervariasi. Hal ini didukung oleh
kemampuan pemrosesan paralel yang dapat mengolah data dalam jumlah besar
secara efisien, sehingga sistem mampu memberikan respons yang cepat dan akurat.
Selain itu, ANN memiliki daya generalisasi yang tinggi untuk mengenali pola-pola
baru yang tidak terduga berdasarkan pengalaman sebelumnya, yang pada akhirnya
meningkatkan kualitas suara dengan memisahkan sinyal relevan dari kebisingan
dan membuka peluang untuk solusi inovatif di berbagai bidang seperti manufaktur
dan komunikasi.

Meskipun demikian, implementasi ANN juga dihadapkan pada sejumlah
tantangan yang perlu diatasi. Tantangan mendasar adalah kebutuhan akan data
pelatihan yang besar dan beragam, di mana proses pengumpulan dan
pengolahannya bisa menjadi sangat kompleks, terutama di lingkungan industri.
Pembangunan model yang efektif juga memerlukan pemahaman mendalam tentang
arsitektur jaringan dan parameter pelatihan, yang sering kali menuntut keterampilan
khusus serta sumber daya yang signifikan. Selama pelatihan, terdapat pula risiko
overfitting, di mana model gagal melakukan generalisasi pada data baru di dunia
nyata. Dari sisi praktis, tantangan lainnya meliputi biaya implementasi yang dapat
menjadi penghalang bagi perusahaan kecil, kesulitan integrasi dengan sistem
industri yang sudah ada, serta ketergantungan yang tinggi pada teknologi yang
menuntut adanya rencana pemeliharaan dan cadangan yang baik.

Pada akhirnya, meskipun terdapat berbagai tantangan, keuntungan yang
ditawarkan oleh ANN dalam pengurangan kebisingan sangatlah signifikan. Dengan
kemampuan adaptasi, pemrosesan paralel, dan generalisasi yang baik, ANN dapat
memberikan solusi inovatif untuk masalah kebisingan di berbagai sektor, termasuk
industri tekstil. Namun, perhatian penuh harus diberikan pada tantangan-tantangan
yang ada untuk memastikan implementasi dapat berjalan dengan efektif dan efisien.

2.2.9. Metrik Evaluasi Kinerja

Untuk mengukur efektivitas dan performa dari sistem pengurangan kebisingan
yang dikembangkan, serangkaian metrik kuantitatif dan kualitatif digunakan.
Metrik-metrik ini diadopsi dari dokumentasi teknis proyek untuk memastikan
penilaian yang komprehensif terhadap kualitas audio dan karakteristik sistem.

1. SNR Improvement (Peningkatan SNR)

Signal-to-Noise Ratio (SNR) adalah metrik fundamental yang mengukur rasio
antara daya sinyal yang diinginkan (ucapan bersih) dengan daya sisa kebisingan
(residual noise) setelah diproses. Peningkatan SNR, yang diukur dalam desibel
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(dB), menjadi indikator utama keberhasilan sistem dalam meningkatkan kejelasan
audio. Peningkatan sebesar 6-15 dB menandakan reduksi noise yang sangat efektif.
Rumus: SNR dihitung menggunakan rumus berikut:

SNR = 10 log1o (ZH “’”2) 2.9)

Sh=g e(m)?
Di mana:
a. s(n) adalah sampel dari sinyal ucapan bersih (target).

b. e(n) adalah sampel dari sinyal error atau sisa kebisingan (hasil proses -
sinyal bersih).

c. N adalah jumlah total sampel.

Peningkatan SNR (SNR Improvement) dihitung sebagai selisih antara SNR
sinyal hasil pemrosesan dan SNR sinyal asli sebelum proses reduksi kebisingan.

Peningkatan antara 6—15 dB umumnya menunjukkan reduksi kebisingan yang
efektif.

2. Spectral Preservation (Pemeliharaan Spektral)

Metrik ini bertujuan untuk mengukur seberapa baik sistem mempertahankan
konten frekuensi dari sinyal ucapan asli setelah proses denoising. Target
pemeliharaan di atas 95% menunjukkan bahwa sistem mampu menghilangkan
noise tanpa merusak atau menghilangkan detail penting dari suara asli, sehingga
menjaga kealamian dan karakter vokal.

Rumus untuk Pemeliharaan spektral dapat dikuantifikasi menggunakan Spectral
Preservation Index (SPI) yang secara konseptual membandingkan magnitudo
spektogram bersih dengan hasil proses:

SPI=1=

Zk | Sciean m
M (km)- S
( proc (& ”) x 100%

Zkm| Sclean(k,m)|

(2.10)

Di mana:

a. Sclean(k,m) adalah magnitudo pada bin frekuensi k dan frame waktu m dari
spektogram ucapan bersih.

b. Sproc(k,m) adalah magnitudo pada bin frekuensi k dan frame waktu m dari
spektogram hasil proses.

Nilai SPI di atas 95% mengindikasikan bahwa sistem berhasil menjaga

karakteristik spektral sinyal ucapan sambil tetap menekan kebisingan.

3. Artifact Minimization (Minimisasi Artefak)

Metrik ini bersifat kualitatif untuk mengevaluasi munculnya distorsi suara yang
tidak diinginkan sebagai efek samping dari pemrosesan, seperti musical noise
(artefak nada pendek acak) atau efek "robotik". Sistem yang baik harus mampu
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meminimalkan artefak ini, yang dalam proyek ini dicapai melalui teknik
penghalusan masker (mask smoothing) untuk memastikan transisi yang mulus.

4. Processing Speed (Kecepatan Pemrosesan)

Processing Speed atau Kecepatan Pemrosesan adalah metrik yang mengukur
seberapa cepat dan efisien program Anda dalam menyelesaikan tugas reduksi noise
pada sebuah file audio. Metrik ini dinyatakan sebagai rasio perbandingan, yang
menunjukkan berapa kali lebih cepat program Anda dibandingkan durasi asli audio
tersebut (real-time).

Rumus untuk menghitung kecepatan pemrosesan sangat sederhana:

Waktu Pemrosesan (detik)
Durasi Audio Asli (detik)

Kecepatan Pemrosesan = (2.11)

a. Durasi Audio Asli
Panjang total file audio yang Anda proses, dalam satuan detik.

b. Waktu Pemrosesan
Waktu yang dibutuhkan oleh program Anda untuk menjalankan seluruh
algoritma dari awal hingga akhir, dalam satuan detik.

Nilai rasio yang lebih besar menunjukkan kinerja pemrosesan yang lebih cepat.

Sebagai contoh apabila memiliki sebuah file audio dengan detail berikut:

e Durasi Audio Asli: 60 detik (1 menit)

e Program membutuhkan waktu 12 detik untuk membersihkan noise dari file
tersebut.

60 (detik)

12 (detik)

Hasil 5 ini berarti kecepatan pemrosesan program adalah 5x lebih cepat dari real-

time. Dengan kata lain, untuk setiap satu detik audio, program hanya butuh 0.2 detik

untuk memprosesnya.

Nilai ini sangat penting untuk menunjukkan bahwa aplikasi tidak hanya efektif

dalam mengurangi noise, tetapi juga praktis dan tidak membuat pengguna

menunggu terlalu lama.

Maka, perhitungannya adalah: Kecepatan Pemrosesan =

2.2.10. Skenario Pengujian

Untuk mengukur performa sistem secara kuantitatif, serangkaian pengujian
dilakukan dengan menjalankan skrip evaluate model.py pada dataset uji. Dataset
ini terdiri dari pasangan file audio: versi asli yang bising (noisy) dan versi bersih
sebagai ground truth. Skrip akan memproses file bising dan membandingkan
hasilnya dengan file bersih untuk menghitung metrik performa.
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BAB III
METODOLOGI PENELITIAN

3.1. Desain Penelitian

Penelitian ini merupakan penelitian terapan dengan pendekatan simulasi
dan rekayasa model. Tujuannya adalah membangun sistem pengurangan
kebisingan berbasis deep learning menggunakan arsitektur U-Net Convolutiona
Neura Network (CNN). Sistem akan dilatih untuk membedakan sinyal bicara dari
kebisingan pabrik tekstil.
Desain penelitian mencakup:
1) Pengumpulan data audio (clean speech dan noisy speech).
2) Praproses data menjadi bentuk spectrogram.
3) Pelatihan model menggunakan dataset tersebut.
4) Evauas hasil menggunakan metrik kinerja seperti SNR Improvement, Spectral

Preservation, dan Artifact Minimization.

3.2. Lokasi dan Waktu Penelitian

Penelitian dilaksanakan di PT. Embee Plumbon Tekstile, Unit 2, yang memiliki
tingkat kebisingan tinggi di area produksi. Lokasi ini dipilih karena menyediakan
data nyata untuk melatih dan menguji model ANN. Waktu penelitian direncanakan
berlangsung dari Januari hingga Juli 2025, mencakup tahap pengumpulan data,
pelatihan model, dan evaluasi hasil.

3.3. Populasi dan Sampel

Populasi dalam penelitian ini adalah seluruh area produksi di PT. Embee
Plumbon Tekstile yang menghasilkan kebisingan akibat operasional mesin. Dari
populasi tersebut, sampel dipilih menggunakan metode purposive sampling, yang
mencakup lima area produksi utama dengan tingkat kebisingan tertinggi. Di setiap
area sampel, dilakukan perekaman suara selama 1-20 menit untuk mengumpulkan
data kebisingan dan komunikasi verbal secara representatif.

Dari lima area produksi yang dijadikan lokasi penelitian, dilakukan proses
perekaman audio untuk mengumpulkan data sampel. Secara total, berhasil
dikumpulkan 9 sampel rekaman suara bersih (clean speech) dan 9 sampel rekaman
kebisingan pabrik murni (factory noise). Sampel-sampel inilah yang menjadi
fondasi untuk proses augmentasi data, di mana keduanya digabungkan secara
sintetis dalam berbagai rasio untuk menciptakan dataset pelatihan yang bervariasi
dan robust.

3.4.Variabel Penelitian

Untuk memastikan objektivitas dan kejelasan, penelitian ini mendefinisikan
variabel secara spesifik untuk menganalisis hubungan sebab-akibat. Variabel bebas
(independent variable) dalam penelitian ini adalah Model Artificial Neural Network
(ANN) berbasis U-Net CNN yang dikembangkan, yang bertindak sebagai
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intervensi untuk mengurangi kebisingan. Efek dari intervensi ini diukur melalui
variabel terikat (dependent variables), yaitu tingkat kebisingan yang berhasil
direduksi, yang dianalisis secara kuantitatif dalam desibel (dB). Guna memastikan
bahwa perubahan yang diamati disebabkan oleh variabel bebas, beberapa variabel
kendali (control variables) turut diperhatikan, seperti parameter mesin produksi dan
kondisi lingkungan pabrik saat pengambilan data.

3.5. Instrumen Penelitian

Penelitian ini menggunakan beberapa instrumen utama untuk mendukung
proses pengumpulan dan analisis data. Instrumen tersebut meliputi mikrofon
kondensor untuk merekam data suara dari area produksi , perangkat lunak
pengolahan suara berbasis Python untuk melakukan preprocessing data , serta
platform TensorFlow dan Python untuk pengembangan dan pelatihan model ANN.
Selain itu, sebuah aplikasi decibel meter yang diukur melalui handphone digunakan
untuk mengukur tingkat kebisingan sebelum dan sesudah penerapan sistem ANN.

3.6. Teknik Pengumpulan Data

Teknik pengumpulan data diawali dengan perekaman suara langsung di lokasi
produksi menggunakan handphone dengan metode perekaman bergerak untuk
menangkap variasi suara dari berbagai sudut, yang mencakup suara mesin dan
komunikasi verbal pekerja. Data mentah ini kemudian diperbanyak melalui proses
augmentasi data, di mana variasi noise ditambahkan untuk melatih ANN agar lebih
adaptif terhadap berbagai kondisi kebisingan. Tahap terakhir adalah preprocessing,
di mana data suara diolah melalui normalisasi, penghapusan noise yang tidak
relevan, dan ekstraksi fitur-fitur penting seperti frekuensi dan amplitudo.

3.7. Teknik Analisis Data

Pengumpulan data dilakukan dengan merekam suara langsung di lima area
produksi PT. Embee Plumbon Tekstile Unit 2 menggunakan mikrofon kondensor
via handphone, mencakup suara mesin dan komunikasi verbal. Data kemudian
diaugmentasi, yaitu diperbanyak dengan menambahkan variasi kebisingan ke
rekaman suara bicara yang bersih agar model ANN lebih adaptif. Selanjutnya, data
dipraproses melalui normalisasi, pemisahan sinyal, dan ekstraksi fitur spektral
(misalnya Log-Mel Spectrogram) agar siap menjadi input model.

3.8. Prosedur Penelitian

Prosedur penelitian ini dilaksanakan melalui tiga tahap utama: persiapan,
pelaksanaan, dan evaluasi. Tahap persiapan meliputi identifikasi lokasi dan alat,
pengumpulan data suara, serta penyusunan data pelatihan untuk ANN. Selanjutnya,
pada tahap pelaksanaan, model ANN dilatih dengan data yang telah di- preprocess
dan diimplementasikan di lokasi uji coba. Proses evaluasi kemudian dilakukan
dengan mengukur tingkat kebisingan menggunakan decibel meter, mengumpulkan
tanggapan pekerja mengenai kejelasan komunikasi, dan membandingkan hasil
dengan kondisi awal.
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Seluruh penelitian ini dijalankan dengan mematuhi pedoman etika, yang
mencakup perolehan persetujuan tertulis dari manajemen pabrik, menjaga
anonimitas data suara, dan membatasi penggunaan data hanya untuk keperluan
akademis. Aspek validitas penelitian dipastikan melalui pengukuran kebisingan
berulang, sementara reliabilitas diuji dengan mengevaluasi model pada dataset yang
berbeda untuk memastikan konsistensi dan kemampuan generalisasi. Meskipun
demikian, penelitian ini memiliki beberapa keterbatasan, antara lain ketergantungan
pada kualitas rekaman suara, kompleksitas desain ANN yang memerlukan waktu
pelatihan lama, dan tidak mencakup analisis dampak jangka panjang terhadap
produktivitas kerja.

3.9. Etika Penelitian

Penelitian ini dilaksanakan dengan mengikuti pedoman etika penelitian yang
ketat. Prinsip utama yang dipegang adalah mendapatkan persetujuan tertulis dari
pihak manajemen pabrik sebelum proses pengumpulan data dimulai. Selain itu,
anonimitas data dijaga dengan memastikan bahwa data suara yang direkam tidak
mengidentifikasi individu tertentu. Data yang terkumpul juga hanya digunakan
untuk keperluan akademis dan tidak akan dibagikan kepada pihak ketiga tanpa izin
resmi.

3.10. Validitas dan Reliabilitas

Untuk memastikan kualitas hasil penelitian, aspek validitas dan reliabilitas
menjadi perhatian utama. Validitas data diuji untuk memastikan representasi yang
akurat dari kondisi lapangan, yang dilakukan melalui pengukuran kebisingan secara
berulang. Sementara itu, reliabilitas model ANN diuji dengan mengaplikasikannya
pada dataset yang berbeda untuk memastikan konsistensi hasil serta kemampuan
generalisasi model terhadap data baru.

3.11. Keterbatasan Penelitian

Dalam pelaksanaannya, penelitian ini menghadapi beberapa keterbatasan yang
perlu diakui. Keterbatasan tersebut antara lain adalah ketergantungan pada kualitas
data rekaman suara, di mana suara yang tidak jelas atau terdistorsi berpotensi
memengaruhi efektivitas pelatihan model. Selain itu, terdapat tantangan dalam
kompleksitas desain ANN yang membutuhkan waktu pelatihan yang relatif lama.
Keterbatasan lainnya adalah cakupan penelitian yang tidak mencakup analisis
jangka panjang mengenai dampak penerapan sistem ANN terhadap produktivitas
kerja.
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3.12. Diagram Alir Perancangan

Dalam pengembangan sistem pemrosesan suara yang efektif, diperlukan sebuah
alur kerja yang sistematis dan terstruktur. Untuk memberikan gambaran yang jelas
mengenai tahapan yang dilakukan, keseluruhan proses pengolahan data suara mulai
dari augmentasi hingga evaluasi model dirangkum dalam diagram alir pada Gambar
3.1. Setiap kotak dan panah dalam diagram ini merepresentasikan langkah atau
keputusan spesifik yang dirancang untuk memastikan kualitas hasil yang optimal.

Untuk memperoleh pemahaman yang lebih jelas mengenai tahapan-tahapan
proses pengembangan model dalam proyek ini, silakan merujuk pada Gambar 3.1.
Diagram alir alur kerja pengolahan data suara yang akan dijelaskan secara terperinci
sebagai berikut:

1. Persiapan Dataset (Data Acquisition & Augmentation)

Gambar 3.1 mengilustrasikan alur kerja komprehensif pengolahan data suara
yang dimulai dari tahap Persiapan Dataset. Pada tahap ini, data sumber diperoleh
melalui perekaman langsung di lingkungan PT. Embee Plumbon Tekstile Unit 2.
Sesuai dengan metodologi yang dijelaskan dalam Sub-bab 3.3 (Populasi dan
Sampel), data dikumpulkan secara terpisah dalam dua kategori utama:

a. Sinyal Ucapan Bersih (Clean Speech)
Direkam dalam kondisi akustik terkendali, berisi percakapan instruksional yang
akan menjadi target output sistem.

b. Sinyal Kebisingan Pabrik (Factory Noise)

c. Direkam dari operasional mesin tekstil (TFO, Carding, dll.) tanpa kontaminasi
sinyal ucapan.

Pendekatan rekaman terpisah ini dipilih untuk memberikan fleksibilitas dalam

sintesis data dan kontrol yang ketat terhadap variabel tingkat kebisingan selama

proses augmentasi.

2. Pemisahan Data (Data Separation for Supervised Learning)

Tahap Augmentasi Data merupakan proses kritis dalam penelitian ini.
Mengingat keterbatasan memperoleh data percakapan dalam kondisi bersih dan
bising secara simultan di lingkungan industri, diterapkan teknik pencampuran
sintetis  (synthetic mixing) untuk menghasilkan dataset pelatihan yang
komprehensif.

Secara teknis, proses augmentasi dilakukan dengan:

a. Mengambil sampel sinyal ucapan bersih s(z).

b. Mencampurkannya dengan sampel kebisingan pabrik (7).

c. Menggunakan variasi Signal-to-Noise Ratio (SNR) yang berbeda

d. Menghasilkan sinyal input: x(2) = s(z) + n(?)
Hasil proses ini menghasilkan pasangan data pelatihan yang terdiri dari:
a. Input: Sinyal "Suara Bising + Bicara"
b. Target: Sinyal "Suara Tanpa Bising" asli
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Proses ini diulang secara sistematis dengan berbagai kombinasi segmen suara
dan kebisingan untuk menciptakan dataset yang robust dan beragam, yang essential
untuk melatih model U-Net agar mampu beradaptasi dengan berbagai kondisi
akustik.

3. Pra-pemrosesan (Preprocessing)

Secara teknis, tahap prapemrosesan ini diawali dengan Resampling seluruh file
audio ke frekuensi sampel standar 16.000 Hz untuk memastikan konsistensi.
Selanjutnya, dilakukan Normalisasi amplitudo untuk mencegah variasi volume
yang ekstrem. Normalisasi merupakan tahap krusial dalam prapemrosesan data
audio sebelum dimasukkan ke dalam model jaringan saraf. Tujuan utama dari
normalisasi adalah untuk menyeragamkan skala nilai amplitudo dari seluruh sinyal
audio ke rentang yang konsisten, biasanya antara -1 dan 1. Proses ini, yang dalam
penelitian ini dilakukan menggunakan fungsi librosa.util.normalize, sangat penting
karena beberapa alasan.

Pertama, ia mencegah sampel audio dengan volume yang sangat tinggi
mendominasi proses pembelajaran secara tidak proporsional. Kedua, normalisasi
memastikan bahwa model menerima input dengan distribusi yang lebih stabil, yang
dapat mempercepat proses konvergensi selama pelatihan dan meningkatkan kinerja
generalisasi model secara keseluruhan. Tanpa normalisasi, model mungkin akan
kesulitan untuk belajar secara efektif karena harus beradaptasi dengan rentang data
input yang sangat bervariasi.

Proses augmentasi data (Noise Addition) kemudian dilakukan untuk
menciptakan dataset pelatihan yang robust. Untuk ekstraksi fitur, setelah melalui
proses STFT, representasi akhir yang menjadi input bagi model adalah Log-Mel
Spectrogram yang dikonversi menggunakan 128 filter Mel (n_mels) untuk meniru
persepsi pendengaran manusia.

4. Pembagian Data untuk Pelatihan (Dataset Splitting)

Setelah melalui proses augmentasi, dataset yang terbentuk kemudian dibagi
secara proporsional menjadi tiga subset yang tidak saling tumpang-tindih (non-
overlapping datasets):

a. Training Set (70-80%)

b. Validation Set (10-15%), Digunakan untuk memantau proses pelatihan dan
mencegah overfitting

c. Test Set (10-15%), Digunakan untuk evaluasi final kinerja model

Pembagian ini memastikan bahwa model dapat dievaluasi secara objektif pada
data yang belum pernah dilihat selama proses pelatihan, sebagaimana tercermin
dalam hasil kinerja yang dilaporkan pada Tabel 4.2 di Bab IV.
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Gambar 3.1. Diagram alir alur kerja pengolahan data suara
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5. Pelatihan Model (Model Training)

Ini adalah inti dari pengembangan proyek, di mana model ANN benar-benar
"belajar". Model dengan arsitektur U-Net CNN dilatih menggunakan data dari train
set. Selama pelatihan, model akan memprediksi suara bersih dari input bising dan
terus-menerus menyesuaikan pengaturan internalnya (bobot) untuk meminimalkan
kesalahan prediksi, sebuah proses yang berulang hingga model mencapai tingkat
keahlian yang diinginkan.

6. Evaluasi Model (Model Evaluation)

Proses evaluasi kinerja model dilaksanakan secara kuantitatif dan sistematis
untuk mengukur efektivitas sistem dari berbagai aspek. Mengacu pada prosedur
yang diilustrasikan pada Lampiran 2, pengujian ini dijalankan menggunakan skrip
evaluate_model.py pada dataset vji yang telah dipisahkan secara khusus .

Dataset ini diorganisir ke dalam struktur direktori yang terdiri dari folder clean
untuk data referensi (ground truth) dan noisy untuk data masukan . Skrip evaluasi
secara otomatis memproses setiap file audio dari folder noisy, menyimpan hasilnya
ke folder processed output, dan kemudian membandingkan hasil tersebut dengan
data referensi yang bersesuaian untuk menghitung serangkaian metrik kinerja
secara objektif, yang meliputi Peningkatan SNR, Pemeliharaan Spektral, dan
Kecepatan Proses.

7. Siklus Iteratif & Pengambilan Keputusan

Tahap ini menunjukkan sifat iteratif dari pengembangan model melalui sebuah
siklus pengambilan keputusan. Setelah evaluasi, ditentukan apakah performa model
telah mencapai kinerja yang diinginkan. Jika ya, model dianggap siap dan proses
berlanjut ke tahap akhir. Namun, jika performa belum memuaskan, ada dua jalur
perbaikan yang dapat ditempuh: melakukan tuning parameter (seperti learning rate
atau epoch) dan melatih kembali model, atau jika data diduga kurang, maka alur
akan kembali ke tahap augmentasi untuk menambah variasi data sebelum seluruh
proses diulang. Setelah semua siklus perbaikan selesai dan performa model
dianggap memuaskan serta konvergen, model dinyatakan siap.

8. Akhir (End)

Tahap ini adalah titik akhir dari seluruh proses pengembangan model. Model
yang telah terlatih kini dapat digunakan untuk aplikasi sebenarnya dalam
mengurangi kebisingan, yang sekaligus menandai selesainya proyek.

3.13. Digitalisasi Suara (Analog ke Digital)

Proses awal yang fundamental dan esensial dalam setiap sistem pengolahan
suara digital adalah digitalisasi suara, yaitu konversi sinyal audio analog menjadi
representasi digital. Sinyal audio analog, seperti gelombang suara kontinu yang
ditangkap oleh Mikrofon Kondensor (yang berfungsi sebagai sensor input dalam
penelitian ini ), secara alami bervariasi secara terus-menerus dalam amplitudo dan
waktu. Agar sinyal ini dapat diproses, dianalisis, dan dimanipulasi oleh komputer
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serta jaringan saraf tiruan (seperti CNN), ia harus diubah menjadi serangkaian nilai
numerik diskrit.

Konversi ini secara fisik dilakukan oleh perangkat keras yang disebut 4Analog-
to-Digital Converter (ADC). Proses digitalisasi ini melibatkan dua parameter kunci
yang sangat memengaruhi kualitas dan akurasi representasi digital:

1. Frekuensi Sampling (Sampling Rate)

Ini menentukan berapa kali per detik sinyal analog diukur atau "disampel" untuk
diubah menjadi sampel digital. Menurut teorema Nyquist-Shannon, frekuensi
sampling harus setidaknya dua kali lipat dari frekuensi tertinggi yang ingin
direproduksi. Semakin tinggi frekuensi sampling, semakin akurat representasi
komponen frekuensi tinggi dari sinyal analog asli, yang krusial untuk menjaga
fidelitas audio.

2. Kedalaman Bit (Bit Depth/Quantization)

Parameter ini mengacu pada jumlah bit yang digunakan untuk merepresentasikan
amplitudo setiap sampel digital. Kedalaman bit menentukan jumlah kemungkinan
nilai diskrit yang dapat digunakan untuk menyimpan setiap sampel. Semakin tinggi
kedalaman bit (misalnya, 16-bit, 24-bit), semakin besar rentang dinamis (perbedaan
antara suara paling keras dan paling lembut) dan resolusi amplitudo sinyal yang
dapat direproduksi, sehingga mengurangi quantization noise dan meningkatkan
fidelitas suara secara keseluruhan.

Sinyal digital yang dihasilkan dari proses ini, yang terdiri dari serangkaian sampel
diskrit dengan nilai amplitudo tertentu, inilah yang kemudian menjadi input yang
valid dan dapat diolah lebih lanjut oleh tahapan berikutnya dalam alur pemrosesan,
khususnya transformasi ke spektogram.

3.14. Blok Diagram Sistem

Penelitian ini mengadopsi pendekatan terapan dengan fokus pada simulasi dan
rekayasa model untuk mengatasi tantangan kebisingan di pabrik tekstil. Inti dari
sistem yang dikembangkan adalah arsitektur U-Net Convolutional Neural Network
(CNN), sebuah model deep learning yang dirancang khusus untuk membedakan
sinyal bicara dari kebisingan latar belakang yang kompleks. Desain penelitian
secara holistik mencakup pengumpulan data audio, pra-pemrosesan data menjadi
representasi spektral, pelatthan model CNN dengan dataset yang disiapkan, dan
evaluasi hasil menggunakan metrik objektif SNR. Untuk pemahaman alur kerja
yang lebih detail, mari kita tinjau diagram alir perancangan dan blok diagram sistem
yang menjadi fondasi implementasi ini.

Proses pengurangan kebisingan dirancang untuk mengubah sinyal audio mentah
yang terkontaminasi kebisingan menjadi output suara yang lebih jernih. Alur ini
mencakup serangkaian tahapan yang saling terkait, dimulai dari akuisisi suara
hingga rekonstruksi akhir, dengan fokus pada pemrosesan cerdas di domain
frekuensi untuk isolasi dan eliminasi kebisingan, seperti yang diilustrasikan pada
Gambar 3.2 di bawah ini.
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Untuk memperoleh pemahaman yang lebih mendalam mengenai arsitektur dan
alur kerja Audio Noise Reduction Tool secara visual, kita dapat merujuk pada
Gambar 3.2. Blok Diagram Sistem. Diagram ini secara jelas mengilustrasikan setiap
tahapan kunci dan interaksi antar komponen, yang akan kita bahas lebih lanjut
sebagai berikut:

1. Akuisisi Suara Mentah (Microphone - Suara Raw)

Sebagai titik awal dalam rantai pemrosesan, tahap Microphone (Suara Raw)
bertanggung jawab atas akuisisi sinyal audio awal dari lingkungan sekitar. Pada fase
ini, suara asli, yang merupakan campuran dari sinyal yang diinginkan (misalnya,
ucapan manusia) dan berbagai jenis kebisingan latar belakang (seperti suara kipas,
lalu lintas, atau desisan elektronik), ditangkap oleh mikrofon. Hasilnya adalah data
audio mentah yang belum diproses, yang kemudian akan menjadi input bagi
algoritma pengurangan kebisingan selanjutnya. Kualitas input pada tahap ini sangat
memengaruhi kinerja keseluruhan sistem.

INPUT

Sensor :
Mikrofon
(Kondensor)
(Input Sinyal :
Suara bising dari
pabrik tekstil)

ENCODER

Spectral Analysis
Engine.

Short-Time Fourier
Transform (STFT)
(Pengubah suara
menjadi Spektograf)

PROSESOR

A 4

Machine Learning-
Inspired Spectral
Analysis
Techniques
(Proses: Reduksi
Kebisingan)

OUTPUT

Aktuator :
Speaker/Sistem
Audio
(Output Sinyal:
Suara Noice yang
sudah berkurang)

DECODER

Signal
Reconstruction <

A

(Pengubah Spektograf
menjadi Suara)

Gambar 3.2. Blok Diagram Sistem

2. Transformasi ke Spektogram (Encoder)

Setelah sinyal audio berhasil didigitalisasi, tahap selanjutnya yang krusial adalah
Transformasi Suara Digital ke Representasi Citra (Encoder). Dalam konteks
arsitektur internal alat ini, fungsi ini secara spesifik diimplementasikan oleh
Spectral Analysis Engine yang memanfaatkan teknik Short-Time Fourier
Transform (STFT). STFT adalah metode fundamental dalam pemrosesan sinyal
yang memecah sinyal audio digital yang bervariasi seiring waktu menjadi segmen-
segmen pendek yang tumpang tindih. Pada setiap segmen tersebut, dilakukan
Transformasi Fourier untuk menganalisis konten frekuensinya, menghasilkan
spektrum frekuensi lokal. Hasil dari STFT adalah spektogram, sebuah representasi
visual dua dimensi yang kaya informasi. Pada spektogram, sumbu horizontal secara
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tipikal merepresentasikan waktu, sumbu vertikal merepresentasikan frekuensi, dan
intensitas warna (atau kecerahan piksel) pada setiap titik menunjukkan amplitudo
atau energi suara pada frekuensi spesifik di titik waktu yang bersangkutan.
Representasi visual ini secara efektif mengonversi sinyal audio yang kompleks dan
berbasis waktu menjadi format "citra" yang terstruktur dan berbasis frekuensi.

Lebih lanjut, dalam banyak aplikasi deep learning untuk audio, termasuk
penelitian ini, spektogram ini sering kali dikonversi menjadi Log-Mel Spectrogram.
Konversi ke skala Mel melibatkan pemetaan frekuensi linier ke skala non-linier
yang lebih mirip dengan cara telinga manusia memproses frekuensi, sehingga
menekankan area frekuensi yang paling relevan untuk persepsi suara manusia.
Sementara itu, penerapan skala logaritmik membantu menekan rentang dinamis
data, menjadikannya lebih stabil dan cocok sebagai input untuk jaringan saraf.
Representasi

Log-Mel Spectrogram inilah yang secara efektif bertindak sebagai "citra"
2D dari sinyal audio. Ia berfungsi sebagai "encoder" karena secara efektif
mengonversi representasi audio yang kompleks menjadi format visual yang dapat
diolah langsung oleh jaringan saraf konvolusional (CNN) untuk mengekstraksi fitur
spasial dan temporal layaknya pada sebuah citra, sehingga memungkinkan analisis
dan manipulasi kebisingan yang lebih presisi.

3. Pemrosesan Pengurangan Kebisingan (Proses CNN - Noise Reduction)

Inti dari kapabilitas pengurangan kebisingan pada aplikasi ini terletak pada
implementasi model deep learning dengan arsitektur Convolutional Neural
Network (CNN) U-Net. Model ini telah dilatih secara khusus pada dataset pasangan
audio bising dan bersih untuk mempelajari cara memisahkan suara manusia dari
kebisingan latar secara cerdas.

Prosesnya memperlakukan spektogram audio sebagai sebuah "citra". Model U-Net
menganalisis citra spektogram yang bising ini dan belajar untuk merekonstruksi
versi bersihnya melalui beberapa tahapan inti:

A. Encoder Path (Ekstraksi Fitur)

Tahap pertama adalah menganalisis spektogram bising. Menggunakan serangkaian
lapisan konvolusional (convolutional layers) dan pooling, Encoder Path secara
bertahap mengurangi dimensi "citra" spektogram sambil mengekstrak fitur-fitur
abstrak yang esensial. Proses ini memungkinkan model untuk memahami konteks
dan membedakan antara karakteristik pola suara manusia dengan pola kebisingan
pabrik yang kompleks.

B. Decoder Path (Rekonstruksi Spektogram)

Setelah fitur diekstraksi, Decoder Path bertugas untuk membangun kembali
spektogram menjadi versi yang bersih. Ini dilakukan melalui lapisan upsampling
atau transposed convolution. Keunggulan utama arsitektur U-Net terletak pada
penggunaan skip connections, yang menghubungkan langsung lapisan dari Encoder
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ke Decoder. Fitur ini memungkinkan detail-detail penting dari sinyal asli yang
mungkin hilang selama kompresi untuk dipulihkan, sehingga hasil audio menjadi
jernih tanpa terdengar terdistorsi atau "mendem".

C. Prediksi Masker Spektral dan Aplikasi

Pada lapisan akhirnya, U-Net tidak melakukan gating sederhana, melainkan
memprediksi sebuah masker spektral (spectral mask) yang canggih. Masker ini
adalah sebuah matriks bernilai antara 0 dan 1 yang kemudian dikalikan dengan
spektogram bising asli. Nilai yang mendekati 1 akan mempertahankan komponen
sinyal (suara), sementara nilai yang mendekati 0 akan menekan komponen sinyal
(noise). Kemampuan untuk menghasilkan masker yang bernilai gradien ini (bukan
hanya 0 atau 1) memungkinkan proses penyaringan yang jauh lebih halus dan alami,
serta secara efektif meminimalkan artefak seperti musical noise.

D. Rekonstruksi Sinyal Audio (ISTFT)

Tahap terakhir adalah mengambil magnitudo spektogram yang telah dibersihkan
(setelah aplikasi masker) dan menggabungkannya kembali dengan informasi fase
dari sinyal asli. Hasilnya kemudian diubah kembali dari domain frekuensi ke
domain waktu menggunakan Inverse Short-Time Fourier Transform (ISTFT) untuk
menghasilkan file audio akhir yang jernih.

4. Rekonstruksi Sinyal Audio (Decoder)

Setelah spektogram berhasil "dibersihkan" dari kebisingan melalui proses
filtering oleh CNN, tahap selanjutnya yang krusial adalah Pengubah Spektogram
Menjadi Suara (Decoder), atau yang lebih dikenal sebagai rekonstruksi sinyal
audio. Fungsi vital ini diemban oleh komponen Signal Reconstruction dalam inti
algoritma. Pada dasarnya, tahap ini melakukan operasi invers dari Short-Time
Fourier Transform (STFT) yaitu, ia mengubah representasi data dari domain
frekuensi (spektogram yang telah dimodifikasi dan difilter) kembali ke domain
waktu.

Penting untuk dicatat bahwa informasi fase asli dari sinyal yang diperoleh
dari STFT awal tetap dipertahankan dan digabungkan kembali selama proses
rekonstruksi ini untuk memastikan akurasi dan koherensi sinyal audio yang
dihasilkan. Tanpa informasi fase yang tepat, suara yang direkonstruksi akan
terdengar tidak alami atau terdistorsi, meskipun konten frekuensinya sudah benar.
Hasil dari tahap ini adalah file audio yang telah dikurangi kebisingannya secara
signifikan dan siap untuk didengar. Proses ini secara efektif bertindak sebagai
"decoder", menerjemahkan kembali "citra" visual dan termanipulasi (spektogram
bersih) menjadi bentuk audio yang dapat dipersepsi oleh telinga manusia. Ini adalah
langkah terakhir dalam mengembalikan data dari representasi visual yang diolah
oleh CNN ke bentuk suara yang dapat digunakan.

5. Output Audio Akhir (Speaker)
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Sebagai tahap final dalam pipeline pemrosesan, Speaker (Output)
merepresentasikan titik di mana sinyal audio yang telah dimurnikan disalurkan ke
pengguna. Pada fase ini, suara yang telah melewati seluruh proses pengurangan
kebisingan dan rekonstruksi dapat diputar melalui perangkat speaker untuk
didengarkan secara langsung, atau disimpan sebagai file audio digital yang telah
diproses dan bersih. Ini menandai penyelesaian siklus penuh pengurangan
kebisingan, menyajikan hasil akhir berupa audio yang ditingkatkan dengan
kejernihan yang jauh lebih baik dan pengurangan kebisingan yang signifikan
dibandingkan dengan input mentahnya.

3.15. Rancangan Jaringan Saraf Tiruan (ANN)

Model Artificial Neural Network (ANN) yang dirancang untuk penelitian ini
adalah U-Net Convolutional Neural Network (CNN). Arsitektur ini dipilih karena
performanya yang sangat baik dalam tugas pemrosesan audio seperti pengurangan
kebisingan, di mana ia mampu mempertahankan detail penting dari sinyal asli
(suara verbal) sambil secara efektif menghilangkan komponen kebisingan yang
kompleks. Arsitektur dari model U-Net ini, yang terdiri dari Input Layer, Hidden
Layers (mencakup Encoder Path, Bottleneck, dan Decoder Path dengan Skip
Connections), serta Output Layer, diilustrasikan secara visual pada Gambar 3.3.
memproses data input berupa Log-Mel Spectrogram untuk menghasilkan output
berupa spektrogram yang telah dikurangi kebisingannya atau segmentasi fitur
tertentu. Berikut adalah penjelasan untuk setiap komponen utama dalam arsitektur

tersebut:
- --""7"""7/"7/7/7/7/-/---s-o-----T---T---===== Output: -
| HIDDEN LAYERS (Arsitektur U-Net) Spektogram Bersih /
Masker Spektral
i
: ENCODER PATH DECODER PA!
|
 CEEEE—
I [Em:oder Block 1 . Decoder Block 1 OUTPUT LAYER
| INPUT LAYER Skip Connection
Convolution (32filter) || _ _ _ L L L L L b e e e e e e e e e e e e L ing, Concat Output: i Jantung
| Input; 128x 128 Batch Normalization > Convolution (32 filter) » kuran Thr : Otomat
Gray-Scale Segmentatio jultiran Fhreshiolct Gtomatiorf
| &y ReLU ReLU (Evaluasi : IOU + Similarity)
N—
: v POOLING/4x4 UPSAMPLING/4x4 A
T
I Encoder Block 2 Skip Connection Decoder Block 2
I Convolution (641ilter) | _ _ _ _ L e P | Upsampiing
| Batch Normalization Concat, Conv (64)
ReLU ReLU
| UPSAMPLING/4x4
—
: v POOLING/4x4 A
CE—
I Block 3 Skip Connection Decoder Block 3
I Comvolution | _ P | Upsampiing
| Batch Norm (128) Convolution (128 filter)
ReLU ReLU
| UPSAMPLING/4x4
—
: POOLING/4x4
|
| BOTTLENECK
I —> Rl @z
Flatten
| Dropout (256)
|
: | Downsampling (Kompresi) 1 Upsampling (Ekspansi)
|
|
: Keterangan Skip Connections
= = Skip Connection: Menghubungkan fitur encoder ke decoder
|
| « Mempertahankan detail spasial dari encoder path « Meningkatkan akurasi segmentasi
— + Membantu mengatasi informasi detail saat downsampling « Fitur encoder dikombinasikan dengan fitur decoder

pada resolusi spasial yang sama

Gambar 3.3. Blok Diagram Jaringan Saraf Tiruan (ANN) Model U-Net
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1. INPUT LAYER

Lapisan ini menerima input berupa matriks Log-Mel Spectrogram dengan dimensi
128 x N (di mana N adalah jumlah frame waktu) dan dalam format Gray Scale
Segmentatio. Data ini kemudian diteruskan ke Encoder Path.

2. HIDDEN LAYERS (Arsitektur U-Net)

Bagian ini merupakan inti dari arsitektur model yang digunakan, terdiri dari
serangkaian lapisan tersembunyi yang membentuk struktur U-Net. Komponen-
komponen ini bekerja secara sinergis untuk memproses dan memfilter spektogram,
yang dapat dibagi menjadi tiga bagian fungsional utama: Jalur Pengekstraksi Fitur
(Encoder Path), Leher Botol (Bottleneck), dan Jalur Rekonstruksi (Decoder Path).

A. Jalur Pengekstraksi Fitur (Encoder Path)

Jalur encoder berfungsi sebagai ekstraktor fitur (feature extractor) dalam
arsitektur CNN. Tujuannya adalah untuk mengekstraksi representasi fitur yang
semakin kaya dan abstrak dari spektogram input. Proses ini dicapai melaui
serangkaian blok konvolusi yang secara progresif mengurangi resolusi spasial dari
peta fitur melalui operas downsampling (Pooling). Setiap blok dalam jalur ini
mulai dari Encoder Block 1 hingga 3 menerapkan operasi konvolusi untuk
mendeteks pola-pola lokal, diikuti oleh Batch Normalization untuk menstabilkan
pelatihan, dan fungsi aktivasi ReLU untuk memperkenakan non-linearitas.

Proses ekstraksi fitur hierarkis ini dimulai pada Encoder Block 1, yang
menerima input langsung dari Input Layer dan menerapkan 32 filter konvolusi.
Outputnya kemudian diteruskan ke Encoder Block 2 yang menggunakan 64 filter,
dan selanjutnya ke Encoder Block 3 dengan 128 filter. Peningkatan jumlah filter
pada setiap blok memungkinkan model untuk mempelgari fitur yang lebih
kompleks pada setiap level abstraksi. Di akhir setiap blok, operas MaxPooling
mengurangi dimensi spasial peta fitur, yang berfungsi untuk meningkatkan bidang
reseptif (receptive field). Hal ini memungkinkan neuron pada lapisan yang lebih
dalam untuk "melihat" konteksyang lebih luas dari spektogram, yang krusial untuk
membedakan antara pola kebisingan yang tersebar dan pola ucapan yang
terstruktur.

B. Leher Botol (Bottleneck)

Lapisan bottleneck merupakan titik transisi krusial dalam arsitektur U-Net,
berfungsi sebagai jembatan yang menghubungkan akhir dari jalur encoder dengan
awal dari jalur decoder. Pada level ini, peta fitur telah mencapai dimensi spasial
terkecil namun dengan kedalaman fitur (jumlah channel) terbesar, yaitu 256 filter.
Lapisan ini mengkonsolidasikan informasi kontekstual paling abstrak yang telah
diekstraksi dari keseluruhan spektogram.

Dalam model yang diusulkan, sebuah pendekatan unik diterapkan dengan
mengintegrasikan lapisan Fully Connected. Setelah peta fitur 2D dikonversi
menjadi vektor 1D melalui lapisan Flatten, ia diproses oleh lapisan Fully
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Connected. Desain ini memungkinkan model untuk menangkap dependensi global
antara semua fitur yang telah diekstraksi, melampaui hubungan lokal yang
ditangkap oleh lapisan konvolusional. Lapisan ini bertindak sebagai konsolidator
informasi tingkat tinggi sebelum sinyal direkonstruksi oleh decoder. Untuk
mencegah overfitting pada representasi fitur yang sangat terkonsentrasi ini,
mekanisme regularisasi Dropout juga diterapkan.

C. Jalur Rekonstruksi (Decoder Path)

Jalur decoder bertugas sebagai bagian generatif dari arsitektur, yang
bertujuan untuk merekonstruksi spektogram bersih secara bertahap kembali ke
resolusi spasial aslinya. Proses ini dilakukan melalui operasi upsampling, yang
dalam implementasi ini menggunakan lapisan Conv2DTranspose. Lapisan ini
memperbesar dimensi peta fitur sambil mempelajari bobot konvolusional untuk
mengisi detail.

Fitur kunci dari arsitektur U-Net terletak pada penggunaan skip connections.
Pada setiap blok decoder, peta fitur yang telah di-upsample digabungkan (melalui
operasi Concatenate) dengan peta fitur beresolusi tinggi yang bersesuaian dari jalur
encoder. Mekanisme ini secara fundamental memungkinkan model untuk
mengkombinasikan informasi semantik abstrak dari bottleneck ("apa" yang ada di
dalam sinyal) dengan informasi spasial presisi dari encoder ("di mana" lokasi fitur
tersebut). Penggabungan ini secara signifikan meningkatkan akurasi rekonstruksi,
mencegah hasil yang kabur, dan memastikan detail penting dari sinyal ucapan tetap
terjaga. Proses rekonstruksi ini berlanjut secara simetris, di mana Decoder Block 3
menggunakan /28 filter, Decoder Block 2 menggunakan 64 filter, dan Decoder
Block I menggunakan 32 filter.

D. Mekanisme Skip Connection

Skip connection merupakan inovasi arsitektural yang menjadi kunci utama
dari keunggulan U-Net, yang secara visual direpresentasikan oleh panah
penghubung antara jalur encoder dan decoder pada Gambar 3.3. Mekanisme ini
secara fundamental mengatasi tantangan hilangnya informasi spasial yang umum
terjadi pada arsitektur encoder-decoder standar. Fungsinya adalah untuk
mengambil peta fitur dari setiap level di jalur encoder dan menggabungkannya
secara langsung (melalui operasi Concatenate) dengan peta fitur yang relevan di
jalur decoder-.
Koneksi langsung ini memberikan tiga manfaat krusial:
1. Preservasi Detail Spasial
Informasi spasial beresolusi tinggi, seperti detail tepi dan tekstur halus pada
spektogram yang ditangkap oleh lapisan awal encoder, akan hilang selama proses
downsampling. Skip connection memastikan detail-detail penting ini tidak hilang
dan "disuntikkan" kembali selama proses rekonstruksi, sehingga output yang
dihasilkan lebih tajam dan akurat.
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2. Mitigasi Masalah Gradien

Pada jaringan yang sangat dalam, gradien bisa menjadi sangat kecil saat melalui
proses backpropagation dari akhir ke awal jaringan (vanishing gradient problem).
Skip connection menyediakan jalur pintas yang memungkinkan gradien mengalir

lebih mudah ke lapisan-lapisan awal, sehingga proses pelatihan menjadi lebih stabil
dan efektif.

3. Peningkatan Akurasi Rekonstruksi

Dengan mengkombinasikan informasi semantik yang abstrak dari decoder (konteks
"apa" yang ada di dalam sinyal) dengan informasi lokasional yang presisi dari
encoder (konteks "di mana" posisi fitur tersebut), skip connection secara signifikan
meningkatkan akurasi dan fidelitas sinyal yang direkonstruksi.

E. Lapisan Output (Output Layer)

Lapisan terakhir dari jaringan ini menerima output dari Decoder Block I dan
bertanggung jawab untuk menghasilkan luaran akhir model. Lapisan ini terdiri dari
satu lapisan konvolusi (Conv2D) dengan satu filter dan fungsi aktivasi Sigmoid.
Penggunaan aktivasi Sigmoid sangat krusial karena ia memetakan semua nilai
output ke rentang antara 0 dan 1. Hasilnya bukanlah spektogram bersih secara
langsung, melainkan sebuah masker spektral (spectral mask) yang canggih. Masker
ini nantinya akan dikalikan dengan spektogram bising asli untuk menekan
komponen derau dan mempertahankan komponen ucapan, sehingga menghasilkan
spektogram bersih sebagai output akhir dari keseluruhan sistem.

Model Artificial Neural Network (ANN) yang dirancang untuk penelitian ini
adalah U-Net Convolutional Neural Network (CNN). Arsitektur ini dipilih karena
performanya yang sangat baik dalam tugas pemrosesan audio seperti pengurangan
kebisingan, di mana ia mampu mempertahankan detail penting dari sinyal asli
(suara verbal) sambil secara efektif menghilangkan komponen kebisingan yang
kompleks. Struktur fundamental dari model U-Net ini, yang mencakup Input Layer,
Hidden Layers dengan jalur encoder-decoder dan Skip Connections, serta Output
Layer, diilustrasikan secara visual pada Gambar 3.3.

Setelah memahami gambaran umum arsitektur dan komponen-komponen

utama U-Net melalui Gambar 3.3, pemahaman yang lebih mendalam mengenai
mekanisme kerja internalnya menjadi krusial.
Untuk itu, Gambar 3.4 menyajikan sebuah diagram alir yang komprehensif.
Diagram ini dirancang untuk memfasilitasi pemahaman yang lebih detail, tidak
hanya dengan merinci setiap langkah sekuensial dalam pemrosesan data, tetapi juga
dengan memvisualisasikan bagaimana fitur-fitur diekstraksi, ditransformasi, dan
direkonstruksi, serta bagaimana berbagai titik keputusan logis—seperti evaluasi
kualitas, signifikansi fitur, dan ambang batas performa—secara aktif mengatur dan
mengoptimalkan aliran informasi melalui beragam tahapan yang kompleks di
dalam keseluruhan jaringan U-Net.
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Gambar 3.4. Diagram Alir Jaringan Syaraf Tiruan (ANN) Model U-Net CNN
Arsitektur Jaringan Saraf Tiruan (ANN) yang dirancang, seperti yang diilustrasikan
pada Gambar 3.4, adalah sebuah model U-Net Convolutional Neural Network
(CNN). Model ini secara sistematis memproses data audio, yang telah dikonversi
menjadi spektogram, untuk secara cerdas memisahkan sinyal suara verbal dari
kebisingan latar belakang yang kompleks. Diagram alir ini merinci setiap tahapan
fungsional, menunjukkan bagaimana fitur-fitur diekstraksi melalui konvolusi,
ditransformasi, direkonstruksi, serta bagaimana berbagai titik keputusan logis dan
mekanisme umpan balik mengatur aliran informasi untuk mengoptimalkan kinerja
keseluruhan jaringan CNN.

1. Tahap Inisiasi dan Pemrosesan Input Awal

Alur operasional model dimulai pada titik "Start”, menandakan kesiapan sistem
untuk menerima dan memproses data input. Data yang menjadi masukan utama
adalah "Input Layer: 128 x N log-mel Spectrogram", sebuah representasi visual dua
dimensi dari sinyal audio yang akan diolah lebih lanjut. Input mentah ("Raw input”)
ini kemudian segera diteruskan ke Encoder Block 1.

Di dalam blok ini, dilakukan transformasi awal melalui penerapan dua lapisan
konvolusi 2D dengan masing-masing 32 filter ("Apply 2x Conv2D 32 filters"), yang
bertujuan untuk mengekstraksi fitur-fitur dasar dan pola-pola level rendah dari
spektrogram input. Setelah proses konvolusi, hasil peta fitur dievaluasi melalui
sebuabh titik keputusan "Activation Threshold?".

Jika kualitas peta fitur dianggap lemah ("Feature Map Weak"), sistem akan
mengaktifkan mekanisme penyempurnaan fitur potensial ("Potential feature
Refinement"”) untuk meningkatkan representasi fitur. Sebaliknya, jika peta fitur
dinilai kuat ("Feature Map Strong"), alur proses dapat melanjutkan ke tahap
berikutnya tanpa intervensi tambahan. Output dari keseluruhan tahap Encoder
Block 1 ini kemudian mengalami operasi MaxPooling, sebuah proses
downsampling yang penting untuk mereduksi dimensi spasial dari peta fitur sambil
berupaya mempertahankan informasi yang paling signifikan atau dominan.

2. Proses Encoding Lanjutan, Seleksi Fitur, dan Pembentukan Representasi

Terkonsentrasi

Setelah operasi MaxPooling pertama, model melakukan evaluasi terhadap
signifikansi fitur-fitur yang telah diekstraksi ("Feature Signification"). Titik
keputusan ini mengarahkan alur data berdasarkan tingkat kepentingan fitur: fitur
dengan signifikansi tinggi ("High Significance”) akan diarahkan ke tahap
pemrosesan yang lebih lanjut dan mendalam, yaitu "Advanced Encoding"” yang
menuju ke Encoder Block 3.

Sementara itu, fitur dengan signifikansi rendah ("Low Significance") dapat
mengambil jalur alternatif ("Alternative Path") menuju Encoder Block 2, yang
merupakan tahap encoding berikutnya namun mungkin dengan perlakuan yang
berbeda atau untuk fitur yang kurang dominan.
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Encoder Block 3 dirancang untuk menangani fitur-fitur yang lebih signifikan,
melakukan pemrosesan dengan strategi retensi fitur parsial ("Partial Feature
Retention") untuk menjaga informasi penting, dan supresi fitur ("Feature
Suppression”) untuk menghilangkan kontribusi dari fitur yang dianggap tidak
relevan atau noise. Selanjutnya, diterapkan dua lapisan konvolusi 2D dengan 128
filter ("Apply 2x Conv2D, 128 Filters") guna menghasilkan fitur-fitur yang lebih
kompleks dan abstrak ("Complex Features"), yang memiliki daya representasi lebih
tinggi. Output dari Encoder Block 3 ini kemudian juga diakhiri dengan operasi
MaxPooling untuk reduksi dimensi lebih lanjut.

Secara paralel, Encoder Block 2 memproses fitur dari jalur alternatif dan juga
diakhiri dengan operasi MaxPooling. Sebelum masuk ke lapisan Bottleneck,
dilakukan evaluasi kompleksitas fitur ("Feature Compelkity") terhadap output dari
Encoder Block 2. Fitur yang telah disederhanakan ("Simplified Features") dari
tahap ini kemudian digabungkan atau diintegrasikan dengan fitur kompleks yang
berasal dari Encoder Block 3 (setelah MaxPooling) untuk membentuk sebuah
representasi fitur yang terkonsentrasi dan kaya informasi ("Concentrated
Representation”).

3. Lapisan Bottleneck dan Inisiasi Jalur Ekspansi (Decoding)

Representasi fitur yang terkonsentrasi dari jalur encoding tersebut kemudian
menjadi input bagi lapisan Bottleneck. Pada lapisan ini, diterapkan satu lapisan
konvolusi 2D dengan 256 filter ("Ix Conv2D 256 Filters"). Tujuan utama
Bottleneck adalah untuk mengurangi kompleksitas lebih lanjut ("Reduce
Complexity") dan mengkonsolidasikan fitur-fitur ("Feature Consolidation")
menjadi sebuah vektor fitur yang paling esensial, padat informasi, dan memiliki
dimensi yang lebih rendah dibandingkan inputnya.

Lapisan ini berfungsi sebagai jembatan kritis antara jalur kompresi (encoder)
dan jalur ekspansi (decoder). Setelah pemrosesan di Bottleneck, proses berbalik
arah menuju ekspansi atau rekonstruksi sinyal ("Expansion Begin"), yang dimulai
dengan mengalirkan output Bottleneck ke Decoder Block 3.

4. Jalur Dekoding (Decoder Path) dengan Pemanfaatan Skip Connections

Jalur dekoding bertugas untuk merekonstruksi sinyal atau peta fitur secara
bertahap ke resolusi spasial aslinya, sambil memanfaatkan informasi detail yang
ditangkap oleh jalur encoding melalui mekanisme skip connections. Proses dimulai
pada Decoder Block 3, yang menerima fitur dari Bottleneck (setelah Feature
Consolidation) dan fitur yang telah disederhanakan dari tahap encoding
sebelumnya.

Di sini, operasi Conv2D Transpose (upsampling) dilakukan untuk memperbesar
dimensi fitur. Langkah krusial berikutnya adalah konkatenasi (penggabungan)
dengan peta fitur yang relevan dari Encoder Block 3 melalui skip connection
("Concatenate with Encoder Block 3"). Penggabungan ini memungkinkan
informasi spasial detail dari tahap encoding untuk diintegrasikan kembali.
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DIAGRAM ALIR RANCANGAN JARINGAN SARAF TIRUAN (ANN)
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Gambar 3.4. Diagram Alir Jaringan Syaraf Tiruan (ANN) Model U-Net CNN
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Setelah penggabungan, diterapkan dua lapisan konvolusi 2D dengan 128 filter
("Apply 2x Conv2D 128 Filters") untuk memproses fitur gabungan dan memulai
rekonstruksi pada resolusi yang lebih tinggi. Alur serupa berlanjut ke Decoder
Block 2, yang menerima output dari Decoder Block 3. Dilakukan operasi Conv2D
Transpose, kemudian konkatenasi dengan fitur dari Encoder Block 2 (melalui skip
connection), diikuti oleh dua lapisan konvolusi 2D dengan 64 filter ("Apply 2x
Conv2D 64 Filters").

Hasil dari Decoder Block 2 ini kemudian dievaluasi kualitas rekonstruksinya
melalui titik keputusan "Successful Reconstruction?”. Jika rekonstruksi dianggap
belum optimal atau hanya parsial ("Partial Reconstruction”), sistem akan
mengaktifkan mekanisme kompensasi fitur ("Feature Compensation") untuk
memperbaiki kekurangan tersebut. Tahap terakhir pada jalur dekoding dilakukan
oleh Decoder Block 1.

Blok ini menerima output dari Decoder Block 2, dengan kemungkinan adanya
koreksi adaptif ("Adaptive Correction") jika pada evaluasi sebelumnya terdeteksi
masalah kualitas ("Quality Issues”) pada spektogram. Operasi yang dilakukan
meliputi Conv2D Transpose, kemudian konkatenasi dengan fitur dari Encoder
Block 1 (melalui skip connection), dan diakhiri dengan dua lapisan konvolusi 2D
dengan 32 filter ("Apply 2x Conv2D 32 Filters").

5. Penyempurnaan Output, Validasi, dan Keputusan Akhir

Output yang dihasilkan dari Decoder Block 1 selanjutnya dievaluasi kualitas
spektogramnya secara keseluruhan pada titik keputusan "Spectrogram Quality".
Jika kualitasnya dinilai tinggi ("High Quality"), proses dapat melanjutkan ke tahap
akhir. Namun, apabila teridentifikasi adanya masalah kualitas ("Quality issues”),
data akan diarahkan ke sebuah lapisan penyempurnaan ("Refinement Layer") yang
melibatkan mekanisme koreksi ("Correction Mechanism") dan kemungkinan
operasi Conv2D Transpose tambahan untuk perbaikan.

Model ini juga menyertakan mekanisme untuk penanganan kegagalan validasi.
Jika hasil validasi pada tahap tertentu gagal ("Fail Validation"), sistem dapat
dirancang untuk melakukan penyempurnaan secara iteratif ("/terative Refinement")
atau bahkan mengulang sebagian proses ("Retry”) melalui jalur "Recursive
Improvement" guna mengoptimalkan hasil. Setelah melalui berbagai tahap
penyempurnaan potensial, dilakukan validasi akhir ("Final Validation") terhadap
output yang dihasilkan. Jika hasil validasi ini lolos ("Pass Validation"), data
dianggap siap dan diteruskan ke Output Layer.

Langkah terakhir sebelum finalisasi adalah evaluasi terhadap ambang batas
performa yang telah ditetapkan ("Performance Threshold"). Jika performa output
masih berada di bawah ambang batas ("Below Threshold"), akan dipertimbangkan
untuk dilakukan pemrosesan tambahan ("Additional Processing”). Jika semua
kriteria performa telah terpenuhi ("Meets Criteria”), maka spektogram jernih final
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("Final Cleared Spectrogram") dianggap telah berhasil dihasilkan dengan kualitas
yang diinginkan.

6. Generasi Output Akhir oleh Output Layer dan Terminasi Proses

Lapisan QOutput Layer bertugas untuk menghasilkan output final dari model.
Lapisan ini menerapkan satu lapisan konvolusi 2D dengan 1 filter dan fungsi
aktivasi Sigmoid ("Output Layer Conv2D 1 filters Sigmoid Activation”).

Fungsi aktivasi Sigmoid memastikan bahwa output berada dalam rentang
tertentu (biasanya antara 0 dan 1), yang sangat sesuai untuk tugas-tugas seperti
pembuatan masker biner dalam segmentasi atau estimasi probabilitas, sehingga
menghasilkan "Final Cleared Spectrogram". Setelah output akhir ini berhasil
dihasilkan, alur operasional model kemudian berakhir pada titik "End".

3.16. Proses dan Konfigurasi Pelatihan Model

Proses pelatihan model dilakukan dengan konfigurasi spesifik untuk mencapai
konvergensi yang optimal dan mencegah overfitting. Model dikompilasi
menggunakan optimizer Adam dengan learning rate awal sebesar 0.001. Fungsi
loss yang dipilih untuk mengukur kesalahan antara prediksi model dan target
sebenarnya adalah 'mean_squared error' (MSE), yang efektif untuk tugas regresi
seperti merekonstruksi spektogram. Untuk mengelola proses pelatihan secara
otomatis dan efisien, serangkaian callbacks dari TensorFlow diimplementasikan:
1. EarlyStopping
Memantau val loss (kesalahan pada data validasi) dan akan menghentikan
pelatihan jika tidak ada perbaikan setelah 5 epoch (patience=5), serta
mengembalikan bobot model terbaik.

2. ModelCheckpoint
Menyimpan bobot model (best model.h5) hanya pada saat val loss mencapai nilai
terendah yang baru.

3. ReduceLROnPlateau

Mengurangi learning rate sebesar 50% (factor=0.5) jika val loss tidak
menunjukkan perbaikan selama 2 epoch (patience=2), untuk membantu model
keluar dari local minima.

Model dilatih dengan ukuran batch (batch_size) sebanyak 32 sampel per iterasi.
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BAB IV
HASIL DAN PEMBAHASAN

Sistem yang dikembangkan merupakan sebuah aplikasi web berbasis Streamlit
yang dirancang untuk menghilangkan noise (kebisingan) dari file audio. Aplikasi
ini memungkinkan pengguna mengunggah file audio, mengatur kekuatan reduksi
noise, serta melihat dan mengunduh hasil pembersihan suara dengan tampilan
visualisasi yang interaktif berupa waveform dan spectrogram. Proses utama
melibatkan konversi format audio, analisis spektral, serta penerapan model deep
learning berbasis arsitektur U-Net CNN.

4.1. Arsitektur Proyek dan Fondasi Lingkungan Penelitian yang Reproducible

Dalam penelitian yang mengandalkan metode komputasi, penyajian hasil tidak
dapat dipisahkan dari arsitektur perangkat lunak dan lingkungan di mana hasil
tersebut diperoleh. Oleh karena itu, sub-bab ini secara rinci menguraikan arsitektur
direktori proyek dan justifikasi teknologi yang digunakan, yang berfungsi sebagai
fondasi untuk memastikan validitas, modularitas, dan terutama, reprodusibilitas
dari seluruh temuan penelitian. Struktur yang diimplementasikan, sebagaimana
diilustrasikan pada Gambar 4.1, merupakan adopsi dari praktik terbaik dalam
rekayasa perangkat lunak dan ilmu data.

J—— | ‘ Dockerfite | ‘ compose.yml | | pyprolect.tont

s
‘ README.md ‘ init.py

utils.py main.py

Gambar 4. 1. Struktur Directori Project

Gambar 4.1 menyajikan cetak biru dari keseluruhan ekosistem penelitian.
Untuk mengapresiasi bagaimana setiap komponen saling berinteraksi untuk
membentuk sebuah alur kerja yang koheren dan dapat diverifikasi secara ilmiah,
analisis terperinci dari setiap direktori dan file konfigurasi akan dielaborasi di
bawabh ini.

4.1.1. Elaborasi Struktur Direktori

1. Direktori Aplikasi (app/):

Direktori ini menampung artefak final dari penelitian, yaitu aplikasi fungsional
yang mampu melakukan reduksi kebisingan. Pemisahan internalnya menjadi
main.py dan direktori src/ mengimplementasikan prinsip rekayasa perangkat lunak
pemisahan kepentingan (separation of concerns). main.py berfungsi sebagai lapisan
presentasi (presentation layer) yang mengelola antarmuka pengguna (UI) dan
interaksi dengan pengguna. Sementara itu, src/utils.py berisi logika inti (core logic)
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dari penelitian, termasuk fungsi-fungsi untuk prapemrosesan sinyal, inferensi
model, dan pascapemrosesan. Arsitektur ini memastikan bahwa kode ilmiah dapat
dikembangkan dan diuji secara independen dari antarmukanya.

2. Direktori Data (data/):

Direktori ini berfungsi sebagai pusat manajemen data yang menjamin
ketertelusuran data (data provenance). Pemisahan antara sub-direktori raw/ dan
results/ adalah fundamental. raw/ berisi dataset sumber yang bersifat immutable
atau tidak boleh diubah, seperti rekaman audio asli dari suara bersih dan kebisingan
pabrik. Hal ini memastikan bahwa sumber data primer selalu terjaga integritasnya.
Sebaliknya, results/ adalah repositori untuk semua artefak yang dihasilkan secara
komputasi, termasuk model yang telah dilatih, data yang telah diproses, dan
visualisasi seperti spektogram. Struktur ini memungkinkan setiap hasil dapat
ditelusuri kembali ke data mentah dan proses yang menghasilkannya.

3. Direktori Eksplorasi (notebooks/):

Direktori ini diibaratkan sebagai "laboratorium" atau "buku catatan digital"
peneliti. Di sinilah Jupyter Notebooks (denoiser.ipynb) digunakan untuk melakukan
analisis data eksploratif, pengujian hipotesis awal, visualisasi data interaktif, dan
iterasi cepat dalam pengembangan model. Kode dalam direktori ini bersifat
eksperimental dan berfungsi sebagai dasar sebelum logika yang telah terbukti solid
difaktorkan ulang dan diformalkan ke dalam modul di direktori app/.

4.1.2. Justifikasi Lingkungan Penelitian yang Terkontainerisasi

Salah satu tantangan terbesar dalam penelitian komputasi adalah krisis
reprodusibilitas, di mana hasil penelitian sulit atau tidak mungkin direplikasi oleh
pihak lain. Untuk mengatasi hal ini, proyek ini mengadopsi teknologi kontainerisasi
menggunakan Docker, yang didefinisikan melalui Dockerfile.

1. Peran Dockerfile dan Kontainerisasi

Dockerfile adalah sebuah file teks yang berisi serangkaian instruksi untuk
membangun sebuah image Docker. Image ini merupakan paket statis yang
mencakup semua yang dibutuhkan untuk menjalankan aplikasi: kode, runtime
(misalnya, Python), pustaka sistem, dan versi spesifik dari semua dependensi (yang
didefinisikan dalam pyproject.toml). Ketika image ini dijalankan, ia menciptakan
sebuah kontainer, yaitu sebuah unit perangkat lunak yang terstandarisasi dan
terisolasi.

2. Keunggulan Dibandingkan Metode Tradisional

Pendekatan ini secara signifikan lebih unggul dibandingkan virtualisasi
tradisional (Virtual Machine/VM). Sementara VM mensimulasikan seluruh
tumpukan perangkat keras yang membuatnya besar dan lambat, kontainer berbagi
kernel sistem operasi dari host-nya, membuatnya sangat ringan, cepat, dan efisien.
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3. Implikasi untuk Validitas [lmiah

Dalam konteks penelitian ini, penggunaan Dockerfile berarti bahwa seluruh
lingkungan komputasi mulai dari versi Python, versi TensorFlow, hingga versi
Librosa "dibekukan" di dalam satu paket. Ini menjamin bahwa jika kode dijalankan
di dalam kontainer ini, baik hari ini maupun beberapa tahun ke depan, di komputer
mana pun, hasilnya akan identik secara deterministik. Dengan demikian,
penggunaan Docker bukan sekadar pilihan teknis, melainkan sebuah pernyataan
metodologis yang kuat yang memastikan bahwa temuan-temuan dalam tesis ini
dapat diverifikasi, diuji, dan dibangun di atasnya oleh komunitas ilmiah secara luas.

4.2. Arsitektur Alur Kerja Pemrosesan Sinyal dan Inferensi Model

Alur kerja teknis dari sistem reduksi kebisingan, yang menjadi inti dari
implementasi pada skrip main.py, dirancang sebagai sebuah pipeline pemrosesan
sinyal yang sistematis. Keseluruhan proses yang terjadi dalam sistem ini untuk
mengubah audio bising menjadi audio bersih (dikenal sebagai proses inferensi)
dapat dibagi menjadi tiga tahap algoritmik utama. Proses ini mengacu pada alur
yang diilustrasikan pada Gambar 3.2 (Blok Diagram Sistem) dan Gambar 4.2 (Alur
Proses Teknis)

4.2.1. Fase 1 Transformasi dan Dekomposisi Sinyal

Fase pertama merupakan tahap preparasi data fundamental di mana sinyal
audio mentah dari domain waktu dikonversi menjadi representasi domain
frekuensi-waktu yang dapat dianalisis oleh arsitektur Convolutional Neural
Network (CNN). Proses ini diawali dengan akuisisi dan digitalisasi sinyal audio
.wav menjadi serangkaian sampel numerik diskrit (waveform) menggunakan
librosa.load.

Mengingat sinyal ucapan dan kebisingan industrial bersifat non-stasioner—
di mana karakteristik statistiknya berubah seiring waktu—analisis Fourier pada
seluruh sinyal menjadi tidak efektif. Oleh karena itu, diterapkan Short-Time Fourier
Transform (STFT) melalui librosa.stfi(). Teknik ini memecah waveform menjadi
segmen-segmen pendek yang saling tumpang tindih (overlapping frames), di mana
pada setiap segmen sinyal diasumsikan bersifat stasioner untuk sementara.
Transformasi Fourier kemudian diterapkan pada setiap segmen untuk mengekstrak
spektrum frekuensinya. Hasil dari proses ini adalah sebuah spektogram bernilai
kompleks, matriks dua dimensi di mana setiap elemen merepresentasikan
magnitudo dan fasa dari komponen frekuensi pada titik waktu tertentu.

Sebagai langkah akhir dari fase ini, spektogram kompleks tersebut
didekomposisi menjadi dua  matriks  terpisah, matriks  magnitudo
(merepresentasikan energi suara) dan matriks fasa (mengandung informasi
temporal). Matriks magnitudo inilah yang akan menjadi input utama bagi model U-
Net karena kemampuannya dalam merepresentasikan pola secara visual. Matriks
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fasa disimpan sementara untuk digunakan kembali pada fase rekonstruksi. Proses
transformasi ini dirangkum dalam Tahap 1 pada diagram alir di Gambar 4.2.

Gambar 4. 2. Alur Proses Teknis Program Reduksi Kebisingan

Diagram alir yang disajikan pada Gambar 4.2 tersebut berfungsi sebagai peta
konseptual yang memvalidasi alur kerja teknis yang telah dielaborasi. Representasi
visual ini menegaskan bahwa proses reduksi kebisingan yang diimplementasikan
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bukanlah sebuah 'kotak hitam', melainkan serangkaian transformasi sinyal yang
logis dan dapat dipertanggungjawabkan. Alur yang terstruktur dari transformasi
input, inferensi model, hingga rekonstruksi output ini menjadi fondasi metodologis
untuk analisis hasil yang akan disajikan secara empiris pada sub-bab berikutnya.

Fase pertama ini menyiapkan audio untuk dianalisis dan mengubahnya ke
domain frekuensi. Proses ini krusial untuk memastikan semua jenis audio dapat
diolah secara konsisten dan diubah menjadi representasi yang optimal untuk
dianalisis oleh model U-Net ANN.

Proses Utamanya adalah Konversi Format, Digitalisasi, STFT, dan Konversi ke
Log-Mel Spectrogram.

Pengaturan Parameter:

1. Konversi Format Audio

Untuk memastikan konsistensi pemrosesan, fungsi process audio file akan
mengkonversi berbagai format audio input seperti .m4a menjadi format .wav
standar. Hal ini dilakukan karena library librosa yang digunakan untuk analisis
sinyal bekerja paling optimal dengan format .wav.

2. Digitalisasi (SR=16000)

Seluruh sinyal audio didigitalisasi ulang ke sampling rate 16.000 Hz. Pengaturan
ini merupakan standar dalam pemrosesan ucapan, yang bertujuan untuk menangkap
seluruh rentang frekuensi vokal manusia secara akurat sekaligus menjaga efisiensi
komputasi.

3. Parameter STFT (n_fft=1024 & hop length=256)

Sinyal audio diubah ke domain frekuensi menggunakan Short-Time Fourier
Transform (STFT). Parameter n_fft diatur ke 1024 untuk memberikan resolusi
frekuensi yang baik guna mengidentifikasi struktur harmonik vokal. Sementara itu,
hop_length diatur ke 256 untuk memberikan resolusi waktu yang tinggi guna
menangkap perubahan cepat dalam sinyal, seperti pada konsonan.

4. Konversi ke Log-Mel Spectrogram (n_mels=128)

Hasil STFT kemudian dikonversi menjadi Log-Mel Spectrogram dengan 128 filter
Mel. Pengaturan ini bertujuan meniru persepsi pendengaran manusia yang lebih
sensitif pada frekuensi rendah, sehingga menghasilkan representasi fitur yang lebih
relevan dan optimal untuk dianalisis oleh model U-Net.

4.2.2. Fase 2 Inferensi Model dan Estimasi Masker Spektral

Sebagaimana diilustrasikan pada Tahap 2 dalam diagram di atas, fase
selanjutnya adalah inti dari proses reduksi kebisingan. Matriks magnitudo dari
spektogram bising dinormalisasi dan dimasukkan ke dalam model U-Net yang telah
dilatih. Model menjalankan proses inferensi untuk menganalisis "citra" spektogram
tersebut. Penting untuk dicatat bahwa model ini tidak menghasilkan spektogram
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bersih secara langsung. Sebaliknya, ia bertugas untuk mengestimasi sebuah masker
spektral, yaitu Ideal Ratio Mask (IRM).

IRM adalah sebuah matriks dengan dimensi yang sama seperti spektogram
input, di mana setiap elemennya memiliki nilai kontinu antara 0 dan 1. Nilai ini
merepresentasikan rasio ideal antara energi sinyal ucapan terhadap total energi
(ucapan + kebisingan) pada setiap titik frekuensi-waktu. Masker /RM yang telah
diestimasi ini kemudian diaplikasikan pada matriks magnitudo asli melalui operasi
perkalian element-wise, yang secara efektif menekan energi pada titik-titik yang
diidentifikasi sebagai kebisingan, sambil mempertahankan energi pada titik-titik
yang diidentifikasi sebagai ucapan. Hasil dari tahap ini adalah sebuah matriks
magnitudo yang telah dibersihkan (denoised magnitude).

Fase kedua merupakan inti dari proses reduksi kebisingan. Pada tahap ini,
model U-Net ANN yang telah dilatth menganalisis spektogram bising untuk
memisahkan komponen suara dari derau.

Proses utamanya adalah Inferensi Model U-Net, Prediksi Ideal Ratio Mask (IRM),
dan Aplikasi Masker.

Pengaturan Parameter:

1. Arsitektur U-Net ANN

Model menggunakan arsitektur Encoder-Decoder. Jalur encoder mengekstraksi
fitur-fitur abstrak, sementara jalur decoder merekonstruksi sinyal. Pengaturan kunci
pada arsitektur ini adalah penggunaan skip connections, yang memungkinkan
model untuk menggabungkan informasi spasial beresolusi tinggi dari encoder
dengan informasi kontekstual dari decoder, sehingga detail penting pada sinyal
tidak hilang.

2. Prediksi Ideal Ratio Mask (IRM)

Output dari model U-Net bukanlah spektogram bersih, melainkan sebuah Ideal
Ratio Mask (IRM). Masker ini adalah matriks bernilai antara 0 dan 1 yang
merepresentasikan rasio ideal antara energi sinyal ucapan terhadap total energi.
Nilai yang mendekati 'l' menandakan dominasi sinyal ucapan, sedangkan nilai yang
mendekati '0' menandakan dominasi derau.

3. noise reduction_strength

Parameter ini, yang diatur oleh pengguna melalui antarmuka, mengontrol tingkat
agresivitas aplikasi /RM pada magnitudo spektogram bising. Nilai yang diatur
menentukan seberapa kuat energi pada area yang diidentifikasi sebagai derau akan
ditekan berdasarkan masker yang telah diprediksi oleh model.

4.2.3. Fase 3 Rekonstruksi Sinyal Audio

Fase terakhir, yang dirangkum dalam Tahap 3 pada diagram, adalah
mengembalikan representasi spektral yang telah bersih menjadi sinyal audio yang

53



dapat didengar. Matriks magnitudo yang telah dibersihkan dari fase sebelumnya
digabungkan kembali dengan matriks fasa asli yang telah disimpan. Penggabungan
ini merekonstruksi sebuah spektogram kompleks yang utuh dan bersih. Langkah
final adalah menerapkan algoritma Inverse Short-Time Fourier Transform (ISTFT)
menggunakan librosa.istft(). Proses matematis ini merupakan kebalikan dari STFT,
yang mentransformasikan kembali representasi sinyal dari domain frekuensi-waktu
ke domain waktu, sehingga menghasilkan sinyal audio akhir yang kebisingannya
telah direduksi secara signifikan.

Fase terakhir bertujuan untuk mengubah kembali data spektogram yang
telah dibersihkan menjadi sinyal audio yang dapat didengar. Proses Utama:nya
adalah Penggabungan Fasa dan Inverse STFT (ISTFT).

Pengaturan Parameter:

1. Penggunaan Fasa Asli

Langkah kritis pada tahap ini adalah menggabungkan kembali magnitudo yang
telah dibersihkan (hasil dari aplikasi /RM) dengan fasa dari sinyal asli yang telah
disimpan dari Tahap 1. Pengaturan ini esensial untuk menjaga kealamian dan
koherensi temporal suara, serta mencegah timbulnya distorsi pada hasil akhir.

2. Parameter ISTFT Simetris

Proses rekonstruksi menggunakan Inverse STFT dengan parameter (shop_length)
yang identik dan simetris dengan proses STFT di awal. Pengaturan ini menjamin
bahwa proses transformasi-balik dapat berjalan dengan akurat dan tidak
menimbulkan eror atau artefak tambahan.

4.3. Analisis Visual Komponen Sinyal Dataset

Fundamen dari keberhasilan sebuah model deep learning dalam tugas separasi
sinyal terletak pada kemampuannya untuk mempelajari dan membedakan fitur-fitur
diskriminatif dari data pelatihan. Sebelum mengevaluasi kinerja model, esensial
untuk terlebih dahulu melakukan analisis mendalam terhadap karakteristik
individual dari komponen-komponen sinyal yang membentuk dataset. Analisis ini
berfokus pada dua sinyal utama: sinyal suara manusia yang bersih (clean speech)
sebagai sinyal target, dan sinyal kebisingan murni (pure noise) dari lingkungan
pabrik sebagai sinyal derau yang akan direduksi.

Dengan memvisualisasikan kedua sinyal ini dalam domain waktu (waveform)
dan domain frekuensi-waktu (spektrogram), kita dapat mengidentifikasi fitur-fitur
akustik unik yang menjadi dasar bagi model U-Net untuk melakukan proses
pemisahan.
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Sinyal Suara Asli (Clean Speech)
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Gambar 4. 3. Representasi Waveform dan Spektogram Sinyal Suara Asli (Clean Speech)

Gambar di atas merepresentasikan sinyal ucapan dalam kondisi ideal tanpa adanya
interferensi derau. Analisis dari kedua plot menunjukkan karakteristik sebagai
berikut:

1. Analisis Waveform (Domain Waktu)

Grafik waveform (atas) secara visual menampilkan fluktuasi amplitudo yang
sangat dinamis. Terdapat variasi yang jelas antara segmen berenergi tinggi (saat
pengucapan vokal) dan segmen berenergi rendah atau hening (jeda antar kata). Pola
yang tidak seragam ini merupakan cerminan dari struktur periodik (dari getaran pita
suara) dan aperiodik (dari konsonan) yang kompleks dalam sinyal ucapan manusia.

2. Analisis Spektogram (Domain Frekuensi-Waktu)

Grafik spektogram (bawah) memberikan wawasan yang lebih kaya.
Karakteristik utama ucapan termanifestasi sebagai struktur harmonik dan formant
yang terdefinisi dengan baik. Garis-garis horizontal terang yang merepresentasikan
frekuensi fundamental (FO) dan formant vokal (F1, F2, dst.) menunjukkan pola
yang teratur namun terus bergerak secara dinamis seiring waktu. Struktur inilah
yang mengandung informasi linguistik dan menjadi petunjuk akustik paling vital
yang harus dipreservasi oleh model selama proses reduksi kebisingan.
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Sinyal Bising Asli (Factory Noise)
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Gambar 4.4. Representasi Waveform dan Spektogram Sinyal Bising Asli (Factory Noise)

Gambar di atas merepresentasikan sinyal bising atau derau dari lingkungan pabrik.
Analisis dari kedua plot menunjukkan karakteristik sebagai berikut:

1. Analisis Waveform (Domain Waktu)

Berbeda dengan sinyal ucapan, grafik waveform dari kebisingan pabrik
menunjukkan sinyal dengan densitas yang tinggi dan variasi amplitudo yang
cenderung lebih acak namun persisten. Tidak ada pola jeda yang jelas, menandakan
bahwa sumber derau beroperasi secara kontinu.

2. Analisis Spektogram (Domain Frekuensi-Waktu)

Analisis pada domain frekuensi-waktu mengonfirmasi bahwa sinyal ini
merupakan derau broadband (pita lebar). Hal ini ditandai dengan distribusi energi
spektral yang relatif merata di hampir seluruh rentang frekuensi, tanpa adanya
struktur harmonik yang jelas seperti pada sinyal ucapan. Energi yang tersebar luas
dan cenderung stasioner (pola spektralnya tidak banyak berubah seiring waktu)
inilah yang menjadi fitur pembeda utama. Kemampuan model U-Net untuk
mengenali pola visual yang tersebar dan stasioner ini sebagai "latar belakang" dan
memisahkannya dari pola dinamis dan terstruktur dari ucapan adalah kunci
keberhasilan dari penelitian ini.

4.4. Analisis Komparatif Sinyal Input dan Output Model

Sub-bab ini menyajikan inti dari bukti empiris penelitian, di mana efektivitas
model U-Net CNN dalam mereduksi kebisingan dievaluasi melalui analisis
komparatif secara visual. Dengan membandingkan representasi sinyal sebelum
(input) dan sesudah (output) pemrosesan, kita dapat secara kualitatif mengukur
kapabilitas model dalam memisahkan dan merekonstruksi komponen sinyal ucapan
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dari lingkungan akustik yang sangat terdegradasi oleh derau industrial. Analisis
komparatif ini memberikan bukti visual yang intuitif mengenai kapabilitas model
dalam merekonstruksi sinyal ucapan dari lingkungan akustik yang menantang.

4.4.1. Karakteristik Sinyal Input Model

Sinyal input yang digunakan untuk inferensi merupakan hasil superposisi dari
sinyal ucapan bersih dan sinyal bising pabrik, yang secara akurat merepresentasikan
kondisi audio di lingkungan penelitian.

Sinyal Input Model (Bising + Suara)
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Gambar 4.5 Representasi Waveform dan Spektogram Sinyal Input Model (Bising + Suara)

Gambar 4.5. Representasi Waveform dan Spektogram Sinyal Input Model
(Bising + Suara) di atas mengilustrasikan sinyal input yang realistis, yang
merupakan superposisi dari sinyal ucapan bersih dan kebisingan pabrik.

1. Analisis Waveform (Domain Waktu)

Grafik waveform dari sinyal input menunjukkan hilangnya rentang dinamis
yang menjadi ciri khas ucapan. Amplitudo sinyal secara konsisten berada pada level
yang tinggi dan rapat, di mana struktur silabik dan jeda antar kata dari sinyal ucapan
asli menjadi sepenuhnya tersamarkan oleh densitas energi dari derau yang persisten.
Secara visual, mustahil untuk membedakan segmen yang mengandung ucapan dari
segmen yang hanya berisi kebisingan.

2. Analisis Spektogram (Domain Frekuensi-Waktu)

Degradasi sinyal menjadi lebih jelas pada representasi spektogram. Fenomena
efek penopengan (masking effect) terjadi secara signifikan di seluruh spektrum.
Energi derau broadband yang tersebar luas (seperti yang dianalisis pada Gambar
4.4) secara efektif menaikkan ambang batas pendengaran di semua frekuensi,
menyebabkan struktur formant dan harmonik dari sinyal ucapan (dari Gambar 4.3)
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menjadi terdistorsi dan hampir tidak dapat diidentifikasi. Penopengan ini secara
langsung berkorelasi dengan penurunan drastis pada inteligibilitas atau kejelasan
komunikasi verbal, yang menjadi masalah utama yang ingin diatasi dalam
penelitian ini.

4.4.2. Karakteristik Sinyal Output Hasil Pemrosesan Model

Setelah sinyal input yang terdegradasi diproses oleh model U-Net CNN, sinyal
output menunjukkan restorasi yang fundamental pada karakteristik sinyal ucapan.

Sinyal Output Model (Hasil Proses)
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Gambar 4. 6. Representasi Waveform dan Spektogram Sinyal Output Model (Hasil Proses)
Analisis terhadap Gambar 4.6 memberikan bukti visual yang meyakinkan mengenai
keberhasilan model:

1. Analisis Waveform (Domain Waktu)

Grafik waveform sinyal output kini menampilkan kembali kontur amplitudo
dinamis yang khas dari ucapan manusia. Perbedaan antara segmen berenergi tinggi
(ucapan) dan segmen berenergi sangat rendah (jeda/hening) kini terlihat jelas.
Pemulihan rentang dinamis ini adalah indikasi pertama dari keberhasilan penekanan
komponen derau yang sebelumnya konstan.

2. Analisis Spektogram (Domain Frekuensi-Waktu):

Transformasi paling signifikan terlihat pada spektogram. Terjadi atenuasi
drastis pada noise floor, yaitu tingkat energi latar di seluruh spektrum frekuensi,
yang ditandai dengan perubahan warna latar dari kuning/jingga menjadi biru
tua/hitam. Konsekuensi langsung dari penekanan derau ini adalah pemulihan
struktur harmonik dan formant dari sinyal ucapan. Garis-garis horizontal yang
sebelumnya kabur kini menjadi tajam, jelas, dan menonjol. Kemampuan model
untuk secara selektif meredam energi derau sambil mempertahankan energi pada

58



frekuensi yang relevan dengan ucapan adalah demonstrasi dari efektivitas Ideal
Ratio Mask (IRM) yang diestimasi oleh jaringan. Bukti visual ini secara
meyakinkan mendukung hasil kuantitatif (Tabel 4.2) yang akan dibahas
selanjutnya, di mana tingginya nilai Peningkatan SNR dan Pemeliharaan Spektral
berakar dari fenomena restorasi sinyal yang ditampilkan di sini.

4.5. Studi Kasus: Simulasi Skenario Komunikasi Verbal

Untuk memvalidasi efektivitas praktis model di luar data uji generik, sub-bab
ini menyajikan sebuah studi kasus yang dirancang khusus untuk menyimulasikan
skenario komunikasi verbal di lingkungan pabrik tekstil. Sesuai dengan tujuan
utama penelitian untuk "meningkatkan kejelasan komunikasi verbal", sebuah dialog
spesifik antara dua teknisi (Supervisor dan Operator) direkam dalam kondisi bersih.

Dialog ini kemudian dicampur secara sintetis (augmentasi data) dengan
kebisingan pabrik murni yang telah direkam untuk menciptakan sinyal input yang
realistis dan menantang. Akhirnya, sinyal bising ini diproses menggunakan model
U-Net CNN untuk mengevaluasi kemampuannya dalam merestorasi kejelasan
vokal dalam konteks yang relevan.

Skenario Dialog yang Digunakan:

Teknisi 1 (A): "Halo, ada masalah apa nih? Kemarin kan sudah dicek, kok bisa
rusak lagi?"

Teknisi 2 (B): "lya, aku juga gak tau. Mesin spinning ini kan baru seminggu yang
lalu sudah diperbaiki. Aku cek lagi deh."

A: "Coba cek kabel powernya, jangan-jangan ada yang putus."

B: "Oke, aku cek dulu. (setelah beberapa saat) Hmm, kabel powernya aman, tapi
aku lihat ada masalah di panel kontrol."

A: "Panel kontrol? Bisa jadi itu masalahnya. Coba reset dulu, kalau gak bisa kita
ganti komponennya."

B: "Oke, aku coba reset dulu. (setelah beberapa saat) Wah, berhasil! Mesinnya
sudah hidup lagi."

A: "Bagus, sekarang kita pantau dulu ya, biar gak rusak lagi."

B: "lya, setuju. Aku catat ini di logbook, biar besok kita cek lagi."

Analisis visual dari ketiga tahap skenario ini (bersih, bising, dan hasil proses)
disajikan di bawabh ini.
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4.5.1. Analisis Skenario Komunikasi Bersih (Target)

Sinyal Suara Asli (Clean Speech)
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Gambar 4.7. Komunikasi Bersih Target

Gambar 4.7 di atas berfungsi sebagai sinyal referensi (ground truth) untuk
dialog skenario. Representasi waveform (domain waktu) menampilkan kontur
amplitudo yang sangat dinamis, sesuai dengan pola ucapan manusia. Jeda antar kata
dan frasa sangat jelas terlihat sebagai segmen berenergi rendah, yang esensial untuk
inteligibilitas (kejelasan).

Representasi spektogram (domain frekuensi-waktu) menunjukkan struktur
harmonik dan formant yang terdefinisi dengan baik. Garis-garis horizontal terang
ini merepresentasikan komponen vokal yang membawa informasi linguistik dari
dialog.

4.5.2. Analisis Skenario Komunikasi Bising (Input Model)

Sinyal Input Model (Bising + Suara)
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Gambar 4.8. Komunikasi didalam area pabrik
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Gambar 4.8 merepresentasikan sinyal yang diterima oleh model. Ini adalah
sinyal percakapan yang direkam didalam area pabrik. Terjadi kehilangan rentang
dinamis secara total pada sinyal Waveform. Sinyal kebisingan yang padat dan
persisten sepenuhnya menyamarkan jeda antar kata, mengisi setiap celah dengan
energi derau . Secara visual, struktur dialog asli terganggu oleh derau.

Efek penopengan (masking effect) terlihat sangat jelas. Energi derau
broadband yang tersebar di seluruh spektrum (terlihat sebagai latar kuning/jingga
yang solid) secara efektif menutupi struktur formant dan harmonik dari sinyal
ucapan. Inilah kondisi yang secara langsung menurunkan kejelasan komunikasi
verbal di lingkungan pabrik.

4.5.3. Analisis Skenario Komunikasi Hasil Proses (Qutput Model)

Processed Waveform
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Gambar 4.9. Output setelah proses

Gambar 4.9 adalah output dari model U-Net CNN setelah memproses sinyal
bising dari skenario di Gambar 4.8. Pemulihan rentang dinamis terlihat secara
signifikan. Model berhasil menekan komponen derau yang konstan, sehingga jeda
antar kata dalam dialog (segmen berenergi sangat rendah) kini terlihat jelas
kembali. Kontur amplitudo dari ucapan kini mendominasi sinyal.

Transformasi paling impresif terjadi di sini. Latar kebisingan (noise floor)
telah berhasil diredam secara drastis, ditandai dengan kembalinya warna latar
menjadi biru tua/hitam. Konsekuensi terpentingnya adalah restorasi struktur
harmonik dan formant dari sinyal ucapan. Garis-garis horizontal terang yang
membawa informasi dialog kini kembali tajam dan menonjol, membuktikan bahwa
model mampu secara cerdas memisahkan komponen ucapan dari derau industrial.
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Rangkaian analisis visual dalam studi kasus ini (dari Gambar 4.7 hingga 4.9)
secara kualitatif membuktikan kapabilitas model U-Net CNN. Model ini terbukti
tidak hanya efektif dalam pengujian kuantitatif, tetapi juga mampu merestorasi
kejelasan vokal dalam skenario komunikasi praktis yang relevan dengan
lingkungan pabrik tekstil. Kemampuan untuk memulihkan struktur sinyal ucapan
yang tertutupi oleh kebisingan padat secara langsung mendukung tujuan penelitian
ini.

4.6. Fungsionalitas Aplikasi dan Skenario Pengujian

Aplikasi voice denoising ini dibangun menggunakan Streamlit, dan memiliki
antarmuka yang intuitif serta mudah dioperasikan oleh pengguna umum. Gambar
4.7 berikut menampilkan tampilan awal aplikasi ketika pengguna pertama kali
membuka halaman:

Audio Noise Reduction Tool

Upload an audio file to remove background noise and improve clarity.

Choose an audio file

@ Drag and drop file here

Browse files
Limit 200MB per file « WAV, MP3, M4A, OGG

Noise Reduction Strength

0.10

& Show before/after comparison plots

About this app

Gambar 4.10. Tampilan Antar Muka Aplikasi

Pengguna cukup mengunggah file audio dalam format .wav, .mp3, .m4a, atau
.0gg, kemudian mengatur kekuatan pengurangan noise melalui slider yang
disediakan. Nilai slider dapat diatur mulai dari 0.1 hingga 1.0 untuk menyesuaikan
tingkat penghilangan noise. Antarmuka hasil akhir ini menyediakan beberapa
bentuk umpan balik (feedback) yang saling melengkapi:

1. Umpan Balik Auditori

Melalui pemutar audio "Original Audio" dan "Processed Audio", pengguna

dapat melakukan perbandingan dengar secara langsung. Evaluasi perseptual dan

subjektif ini adalah validasi paling penting untuk mengukur peningkatan
kejelasan vokal.

2. Umpan Balik Visual
Plot "Before/After Comparison" menyajikan bukti analitis dari apa yang
didengar. Pengguna dapat secara visual mengonfirmasi penekanan pada noise
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floor di spektogram, yang menjadi dasar teknis mengapa audio yang diproses
terdengar lebih jernih.

3. Fungsionalitas Praktis
Adanya tombol "Download Processed Audio" mengubah sistem ini dari sekadar
alat analisis menjadi sebuah perkakas fungsional yang menghasilkan artefak
(file audio bersih) yang dapat digunakan lebih lanjut.
Keberadaan parameter noise reduction strength sebagai kontrol pengguna
memberikan fleksibilitas, sementara umpan balik auditori dan visual
memungkinkan validasi hasil secara menyeluruh. Dengan demikian, aplikasi yang
dikembangkan ini berhasil menjadi sebuah bukti konsep (proof-of-concept) yang
sukses, yang memenuhi tujuan utama penelitian untuk menciptakan alat bantu
fungsional demi meningkatkan kejelasan komunikasi verbal di lingkungan bising.

4.7. Proses Pengolahan Audio

Alur kerja pengolahan dimulai segera setelah pengguna mengunggah file audio
yang valid. Sistem secara otomatis mengekstraksi dan menampilkan metadata dasar
dari file tersebut, seperti nama, ukuran, dan tipe formatnya. Proses denoising dapat
diinisiasi dengan menekan tombol "Proses".

Inti dari fungsionalitas aplikasi ini adalah penerapan model deep learning dengan
arsitektur U-Net CNN. Cara kerjanya adalah sebagai berikut:
1. Analisis Spektral

Sinyal audio diubah dari domain waktu ke domain frekuensi menggunakan

Short-Time Fourier Transform (STFT). Hasilnya adalah spektogram, yang

secara visual merepresentasikan audio sebagai sebuah "citra" dan menjadi input

bagi model CNN.

2. Pemrosesan oleh U-Net CNN
Model U-Net yang telah dilatih menganalisis "citra" spektogram bising
tersebut. Melalui arsitektur Encoder-Decoder dengan skip connections, model
belajar untuk memisahkan fitur-fitur kompleks dari suara manusia dan
kebisingan latar.

3. Prediksi Masker Spektral
Alih-alih menggunakan ambang batas (threshold) sederhana, U-Net
memprediksi sebuah masker spektral (spectral mask) yang canggih. Masker ini
secara cerdas menentukan komponen mana yang harus dipertahankan (suara)
dan mana yang harus ditekan (noise) di seluruh spektrum frekuensi.

4. Rekonstruksi Sinyal
Spektogram yang telah bersih (setelah dikalikan dengan masker) kemudian
dikembalikan ke domain waktu menggunakan Inverse Short-Time Fourier
Transform (ISTFT) untuk menghasilkan file audio akhir.
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Proses ini memungkinkan sistem untuk menekan kebisingan yang kompleks dan
non-stasioner secara jauh lebih efektif daripada metode tradisional, sambil tetap
menjaga kejernihan dan kealamian komponen utama dari suara (misalnya, ucapan
manusia).

4.8. Analisis Kinerja Berdasarkan Slider Strength

Kekuatan reduksi noise yang diatur melalui sl/ider memiliki dampak langsung
terhadap kualitas output audio. Tabel berikut menyajikan analisis kualitatif dari
hasil pemrosesan pada beberapa nilai strength yang berbeda.

Tabel 4. 1. Slider Strength

Strenght Keterangan Kualitas Output
03 Reduksi rendah, noise latar masih | Suara utama terdengar sangat
cukup terdengar. natural dan tidak terdistorsi.
05 Reduksi sedang, sebagian besar | Suara utama terdengar jauh lebih
' noise berhasil dihilangkan. jelas dan bersih.
08 Reduksi tinggi, noise latar hampir | Terdengar sedikit distorsi atau efek
' hilang sepenuhnya. "robotik" pada suara utama.

Berdasarkan hasil pengujian, nilai strength optimal berada pada rentang 0.5
hingga 0.6. Pada rentang ini, aplikasi mampu mencapai keseimbangan terbaik
antara menekan noise secara signifikan dan menjaga kealamian suara asli.

4.9. Hasil Pengujian Kuantitatif

Perhitungan untuk metrik kinerja utama yang disajikan dalam Tabel 4.2,
khususnya kolom 'Peningkatan SNR (dB)', didasarkan pada metodologi yang
didefinisikan dalam Bab II, Sub-bab 2.2.9 (Metrik Evaluasi Kinerja).Penting untuk
dicatat bahwa nilai yang dilaporkan (rata-rata $63.28$ dB) bukan nilai SNR absolut,
melainkan Peningkatan SNR (SNR Improvement). Ini adalah metrik yang
mengukur daya guna atau nilai tambah dari model yang dikembangkan.
Perhitungan ini secara spesifik berasal dari Rumus (2.9) SNR Improvement, yang
secara konseptual dihitung sebagai berikut:

SNR improvement = SNRprocessed = SNRoriginal
Dimana:
1. SNRorigin (SNR Asli): Pertama, SNR dihitung untuk file audio input yang
bising (dari Test Set). Ini membandingkan daya sinyal ucapan bersih
(referensi/$ground truth$) terhadap daya sinyal kebisingan asli.

2. SNRprocessed (SNR Proses): Kedua, SNR dihitung untuk file audio output yang
telah dibersihkan oleh model U-Net. Ini membandingkan daya sinyal ucapan
bersih (referensi/$ground truth$) terhadap daya sisa kebisingan (yaitu,
perbedaan antara output model dan sinyal bersih referensi).
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Validasi kinerja model secara kuantitatif dilakukan dengan melakukan evaluasi
pada dataset uji (test set) yang secara ketat dipisahkan dari data pelatithan dan
validasi. Dataset ini terdiri dari 9 sampel audio, di mana setiap sampel memiliki
pasangan sinyal bising sebagai input dan sinyal bersih sebagai referensi (ground
truth). Pendekatan ini memastikan bahwa metrik yang dihasilkan merupakan
cerminan objektif dari kemampuan generalisasi model terhadap data yang belum
pernah ditemui sebelumnya. Seluruh pengujian dijalankan dengan parameter
noise reduction_strength yang diatur pada nilai 0.6.

Tabel 4. 2. Hasil Evaluasi Metrik Kinerja

No Nama File Peningkatan | Pemeliharaan | Kecepatan Proses
SNR (dB) Spektral (%) (x- real time)
1. | BR Cleanig 66.26 dB 99.93 % 51.56x real-time
SP2.m4a
2. | BR SP1.m4a 60.90 dB 99.93 % 43.29x real-time
3. | BR-Card sp2.m4a 61.69 dB 99.94 % 49.42x real-time
4, DMI SMX 61.55dB 99.99 % 45.67x real-time
SP2.m4a
5. | DMI SP2.m4a 65.54 dB 99.99 % 51.04x real-time
6. | RSF 10 SP1.m4a 55.51 dB 99.99 % 49.04x real-time
7. | RSF 7 Daily.m4a 65.61 dB 99.99 % 51.28x real-time
8. | RSF Prob.m4a 63.83 dB 99.99 % 53.92x real-time
9. | BIR SP2.m4a 68.61 dB 99.98 % 33.58x real-time
Hasil rata-rata evaluasi 63.28 dB 99.97 % 47.64x real-time

Dari Tabel 4.2 di atas, dapat dilihat bahwa sistem secara konsisten memberikan
peningkatan SNR yang sangat tinggi di semua file uji, dengan rata-rata peningkatan
sebesar 63.28 dB. Tingkat pemeliharaan spektral juga sangat baik, dengan rata-rata
99.97%, yang menunjukkan kualitas suara asli tidak banyak berubah. Kecepatan
pemrosesan rata-rata adalah 47.64x real-time, membuktikan bahwa aplikasi ini
sangat efisien.

4.10. Pembahasan

Hasil implementasi dan pengujian menunjukkan bahwa aplikasi voice denoising
yang dikembangkan telah berhasil mencapai tujuannya secara fungsional.
Kombinasi antara algoritma model U-Net CNN untuk pemrosesan inti dan
framework Streamlit untuk antarmuka pengguna terbukti menjadi sebuah solusi
yang tidak hanya efektif dalam mereduksi noise, tetapi juga sangat ramah pengguna
(user-friendly). Kemampuan pengguna untuk secara interaktif mengatur parameter
strength memberikan tingkat kontrol yang esensial, memungkinkan aplikasi ini
beradaptasi untuk menangani berbagai jenis dan intensitas noise latar.

Analisis Keunggulan Sistem

Beberapa keunggulan utama dari sistem yang dibangun dapat diuraikan sebagai
berikut:

1. Antarmuka yang Sederhana dan Aksesibel
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Keunggulan paling signifikan dari aplikasi ini adalah desain antarmukanya yang
intuitif. Dengan meminimalisir kompleksitas dan fokus pada fungsionalitas inti
(unggah, atur, proses), aplikasi ini berhasil menurunkan hambatan teknis.

. Proses Cepat dan Umpan Balik Instan

Waktu pemrosesan yang relatif cepat memungkinkan pengguna mendapatkan
umpan balik secara langsung. Kemampuan untuk mendengarkan,
membandingkan, dan mengunduh hasil sesaat setelah proses selesai
menciptakan alur kerja yang efisien.

. Visualisasi sebagai Alat Analisis Intuitif

Penyertaan grafik waveform dan spectrogram bukan hanya sekadar pelengkap
visual, melainkan berfungsi sebagai alat analisis yang kuat. Visualisasi ini
memberikan bukti empiris dari efektivitas proses denoising. Pengguna tidak
hanya mengandalkan persepsi pendengaran subjektif, tetapi juga dapat secara
objektif mengamati pengurangan fluktuasi noise pada waveform dan hilangnya
artefak frekuensi pada spectrogram, yang memperkuat validitas hasil.
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BAB YV
KESIMPULAN DAN SARAN

Bab terakhir ini menyajikan rangkuman dari keseluruhan hasil penelitian dan

pembahasan yang telah diuraikan pada bab-bab sebelumnya. Bagian ini mencakup
kesimpulan utama yang ditarik dari hasil analisis, serta saran-saran konstruktif yang
teridentifikasi selama penelitian untuk pengembangan di masa depan.

5.1. Kesimpulan

Berdasarkan hasil penelitian dan pembahasan yang telah dilakukan untuk

mengatasi permasalahan tingginya tingkat kebisingan di lingkungan pabrik tekstil
yang mengganggu kejelasan komunikasi verbal, maka dapat ditarik kesimpulan
sebagai berikut:

1.

Aplikasi peredam bising berbasis web telah berhasil diimplementasikan
menggunakan arsitektur Convolutional Neural Network (CNN). Secara teknis,
sistem ini mengubah sinyal audio menjadi representasi spektogram yang
kemudian diproses oleh model untuk memisahkan pola kebisingan dari suara
manusia, sehingga mampu menghasilkan audio dengan tingkat kejernihan yang
sangat signifikan, dibuktikan dengan peningkatan Signal-fo-Noise Ratio (SNR)
rata-rata sebesar 63.28 dB.

Selain mampu menekan kebisingan secara efektif, model CNN yang
dikembangkan juga terbukti dapat menjaga kualitas dan kealamian suara asli
dengan sangat baik. Hal ini ditunjukkan oleh hasil pengujian kuantitatif yang
mencapai tingkat pemeliharaan spektral (spectral preservation) rata-rata
sebesar 99.97%.

. Parameter noise reduction_strength yang diintegrasikan pada antarmuka

aplikasi Streamlit memberikan kontrol yang efektif bagi pengguna untuk
menyeimbangkan antara tingkat reduksi kebisingan dan potensi timbulnya
artefak audio.
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5.2. Saran

Untuk pengembangan penelitian ini di masa mendatang, beberapa hal yang dapat
dilakukan adalah sebagai berikut:

1. Optimalisasi Model untuk Efisiensi

Untuk aplikasi di dunia nyata, model yang telah dilatih dapat dioptimalkan lebih
lanjut untuk mempercepat waktu inferensi. Teknik-teknik seperti Quantization
(mengurangi presisi bobot) dan Pruning (menghilangkan koneksi yang tidak
signifikan) dapat dieksplorasi untuk menciptakan model yang lebih ringan dan
efisien tanpa penurunan kinerja yang drastis.

2. Implementasi Real-Time

Saran berikutnya adalah mengembangkan sistem ini menjadi aplikasi
pemrosesan real-time. Ini dapat dicapai dengan mengimplementasikan streaming
pipeline, di mana audio dari mikrofon diolah dalam segmen-segmen kecil (buffer)
secara kontinu, memungkinkan penggunaan sebagai alat bantu komunikasi
langsung di lingkungan pabrik.

3. Ekspansi Metrik Evaluasi

Untuk validasi yang lebih komprehensif di masa depan, pengujian dapat
diperluas dengan menggunakan metrik kualitas audio standar industri lainnya
seperti PESQ (Perceptual Evaluation of Speech Quality) dan STOI (Short-Time
Objective Intelligibility). Metrik-metrik ini memberikan ukuran yang lebih dekat
dengan persepsi pendengaran manusia dibandingkan SNR saja.
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Lampiran 1

Proses memulai aplikasi

1. Buka folder file yang sudah di siapkan di Visual Studio Code

VOICE DENOIZING

OUTLINE

2. Buka Aplikasi Docker Desktop yang sudah di install sebelumnya
@ docker.desktop Qsearch [cwbk] @ A ©§ & i

%A
sk Gordon Ask Gordon
2] Containers

3 Images
Volumes

Builds

Models

* MCP Toolkit

Docker Hub

& Docker Scout

Extensions

Sign in to use Ask Gordon

3. Kembali ke visual Studio code, buka terminal dan masuk ke folder voice-
denoizing

PRO 5 OUTPU DEB LE TERMINAL PORTS

PS D:\52\TESIS\Voice Denoizing> cd voice-denoizing
PS D:\S2\TESIS\Voice Denoizing\voice-denoizing> I
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4. Jalankan[ docker compose up -d —build | di terminal, untuk membuat
container di docker dan untuk sekaligus menjalankan aplikasi

E OUTPUT S TERM

PS D:\S2\TESIS\Voice Denoizing\voice-denoizing\voice-denoizing> docker compose up

j#a [internal] load .dockerignore
j#4 transferring context: 2B done
f#4 DONE 0.0s

45 [internal] load build context
[#5 DONE ©.0s

jte [1/9] FRoM docker.io/library/python:3.12-s1im-bookworm@sha2s6:3ad2a947749a3eb74acdoe
6 resolve docker.io/library/python:3.12-slim-bookworm@sha256:3ad2a947749a3eb74acdoee
6 DONE 9.0s

j#7 [3/9] ADD https://astral.sh/uv/install.sh /uv-installer.sh
[#7 DONE 1.1s

[internal] load build context
transferring context: 3538 done
DONE 0.0s

48 [8/9] RUN mkdir -p data/raw data/results
[#8 CACHED

[2/9] RUN apt-get update && apt-get install -y --no-install-recommends curl ca-certificates

dofaafffe253e40ae2fels
aafff6253e404e2fel5 @.0s done

gec

build-essential

el libportaudio2 libportaudiocppe portaudio19-dev &% apt-get clean & rm -rf /var/lib/apt/lists/*

[#9 CACHED

110 [6/9] COPY pyproject.toml .
110 CACHED

[#11 [5/9] WORKDIR /app
111 CACHED

j#12 [3/9] ADD https://astral.sh/uv/install.sh fuv-installer.sh
412 CACHED

ffmpeg

5. Buka browser dan ketikkan[ http://localhost:8501/ ], aplikasi siap digunakan
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http://localhost:8501/

Lampiran 2

Proses memulai Program evaluasi

1. Buka terminal dan masuk ke folder kemudian masukkan [ python
evaluate model.py ]

TERMINAL  PORTS python -

PS D:\S2\TESIS\Voice Denoizing> cd voice-denoizing

--- Mengevaluasi File: BIR SP2.mda ---
File berhasil diproses dalam 4.76 detik.
D:\S2\TESIS\Voice Denoizing\voice-denoizing\voice-denoizing\src\utils.py:176: UserWarning: PySoundrFile failed. Trying audioread instead.
original signal, sr = librosa.load(original audio path, sr=None)
C: \Users\shini\AppData\Local\Programs\Python\Python313\Lib\site-packages\librosa\core\audio.py:184: FutureWarning: librosa.core.audio. _audioread load
Deprecated as of librosa version .10.
It will be removed in librosa version 1..
y, sr native = _audioread load(path, offset, duration, dtype)
D:\S2\TESTS \Voice izing\voice-denoizing\voice-denoizing\src\utils.py:2e5: FutureWarning: PySoundrile failed. Trying audioread instead.
Audiore rt is deprecated in librosa ©.10.@ and will be removed in version 1.e.
osa.get duration(path-original audio path)
.61 dB
- Pemeliharaan Spektral: 99 %
- Kecepatan Proses: 32.76x real-time

--- Mengevaluasi File: BR Cleanig SP2.m4a ---
File berhasil diproses dalam 2.27 detik.

- Peningkatan SNR: 66.26 dB

- Pemeliharaan Spektral: 99.97 %

- Kecepatan Proses: 46.12x real-time

--- Mengevaluasi File: BR SP1.mda ---
File berhasil diproses dalam 7.87 detik.
- Peningkatan SNR: 66.90 dB
- Pemeliharaan Spektral: 99 %
- Kecepatan Proses: 44.69x real-time

-- Mengevaluasi File: BR-Card sp2.mda ---

2. Berikut adalah format folder dalam program evaluasi :

A. data/test/ (root folder) Isi Folder utama yang menampung ketiga folder di
atas. Berfungsi menjadi dataset uji (test set) untuk menjalankan evaluasi
model.

B. noissy, berisi File audio yang sudah bising (noisy). Berfungsi sebagai input
untuk model. Setiap file di sini akan diproses untuk "dibersihkan".

C. Clean, berisi File audio bersih (tanpa noise) yang menjadi ground truth.
Berfungsi untuk evaluasi. Program membandingkan hasil denoising
(processed_output) dengan file ini untuk menghitung metrik seperti:
[Peningkatan SNR, Kualitas spectral]. Nama file di clean harus sama
persis dengan nama file di noisy.

D. processed_output, berisi file audio hasil denoising dari model. Disimpan
setelah file noisy diproses. Nama file akan berakhiran processed.wav
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