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ABSTRAK 

Kebisingan dengan intensitas tinggi di lingkungan pabrik tekstil merupakan 

masalah serius yang tidak hanya berdampak pada kesehatan pendengaran pekerja 

tetapi juga secara signifikan menurunkan kejelasan komunikasi verbal, yang krusial 

untuk keselamatan dan efisiensi operasional. Penelitian ini bertujuan untuk 

mengembangkan dan mengevaluasi sistem reduksi kebisingan cerdas berbasis deep 

learning untuk mengatasi masalah tersebut. Metode yang diusulkan menggunakan 

arsitektur U-Net Convolutional Neural Network (U-Net CNN) untuk memisahkan 

sinyal ucapan dari kebisingan latar yang kompleks. Sinyal audio yang 

terkontaminasi oleh derau mesin diubah menjadi representasi spektogram 2D, yang 

kemudian diproses oleh model U-Net untuk mengestimasi sebuah Ideal Ratio Mask 

(IRM). Masker ini secara selektif menekan komponen kebisingan sambil 

mempertahankan karakteristik esensial dari sinyal ucapan. Hasil pengujian 

kuantitatif pada dataset uji menunjukkan bahwa sistem yang dikembangkan mampu 

mencapai peningkatan Signal-to-Noise Ratio (SNR) rata-rata sebesar 63.28 dB dan 

tingkat pemeliharaan spektral (spectral preservation) rata-rata 99.97%. Hasil ini 

membuktikan bahwa pendekatan berbasis U-Net CNN sangat efektif dalam 

mereduksi kebisingan industrial secara signifikan sambil menjaga kualitas dan 

kealamian suara asli, sehingga berpotensi besar untuk diimplementasikan sebagai 

alat bantu fungsional guna meningkatkan kejelasan komunikasi verbal di 

lingkungan pabrik. 

Kata Kunci: Reduksi Kebisingan Audio, U-Net CNN, Deep Learning, Kebisingan 

Industri, Spektogram. 
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ABSTRACT 

High-intensity noise in textile factory environments is a critical issue that 

not only impacts workers' auditory health but also significantly degrades the clarity 

of verbal communication, which is crucial for operational safety and efficiency. 

This research aims to develop and evaluate an intelligent deep learning-based noise 

reduction system to address this problem. The proposed method utilizes a U-Net 

Convolutional Neural Network (U-Net CNN) architecture to separate speech 

signals from complex background noise. Audio signals contaminated by machinery 

noise are transformed into 2D spectrogram representations, which are then 

processed by the U-Net model to estimate an Ideal Ratio Mask (IRM). This mask 

selectively suppresses noise components while preserving the essential 

characteristics of the speech signal. Quantitative evaluation on a dedicated test 

dataset demonstrates that the developed system achieves an average Signal-to-

Noise Ratio (SNR) improvement of 63.28 dB and an average spectral preservation 

rate of 99.97%. These results prove that the U-Net CNN-based approach is highly 

effective in significantly reducing industrial noise while maintaining the quality and 

naturalness of the original voice, thus showing great potential for implementation 

as a functional tool to enhance verbal communication clarity in factory 

environments. 

Keywords: Audio Noise Reduction, U-Net CNN, Deep Learning, Industrial Noise, 

Spectrogram. 
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BAB I 
PENDAHULUAN 

1.1. Latar Belakang 
Industri tekstil merupakan salah satu sektor manufaktur yang paling dinamis 

dan penting dalam perekonomian global. Peningkatan permintaan akan produk 

tekstil mengakibatkan peningkatan produksi pabrik tekstil. Volume kebisingan yang 

besar dihasilkan di pabrik-pabrik tekstil karena adanya mesin-mesin berkecepatan 

tinggi, seperti mesin berputar dan tenun, atau mesin pencelupan [1]. Bekerja di area 

pabrik ini dapat sulit akibat tingkat kebisingan yang tinggi, menimbulkan 

kekhawatiran tentang kesehatan dan keselamatan pekerja, serta komunikasi yang 

efektif di antara karyawan. 
Lingkungan kerja berisiko karena suara berlebih yang dapat menyebabkan 

gangguan pendengaran, peningkatan tingkat stres, kelelahan, dan kemungkinan 

lebih besar terjadinya masalah kardiovaskular [1]. Selain berdampak pada 

kesehatan, tingkat kebisingan yang tinggi juga menghambat interaksi verbal di 

antara karyawan. Demi keselamatan, efisiensi, dan produktivitas dalam lingkungan 

produksi, komunikasi yang jelas dan efektif sangat penting. Komunikasi yang tepat 

membantu mencegah sejumlah besar kesalahan operasional dan insiden di tempat 

kerja, yang dapat memengaruhi produktivitas dan efektivitas fungsi pabrik[2]. 
Peralatan yang ditujukan untuk keselamatan pribadi, seperti penutup telinga dan 

sumbat telinga, serta penggunaan dinding dan sekat peredam suara, adalah metode 

yang banyak diterapkan untuk mengurangi kebisingan di lingkungan manufaktur 

tekstil [3]. Namun, strategi ini seringkali menunjukkan fleksibilitas terbatas dan 

hanya menghasilkan sedikit pengurangan tingkat kebisingan. Selain itu, 

penggunaan alat pelindung diri dalam jangka panjang dapat menyebabkan 

ketidaknyamanan bagi pekerja, yang pada gilirannya dapat memengaruhi 

kemampuan kerja mereka. Di sisi lain, alat pelindung diri seperti sumbat telinga 

dan penutup telinga juga dapat mengisolasi pekerja dari lingkungan sekitar dan 

mempersulit komunikasi verbal. 
Dalam kasus di mana kapasitas pendengaran seseorang sangat berkurang, dapat 

dipahami bahwa pekerja mungkin akan mengalami kesulitan besar dalam 

memahami dan menafsirkan instruksi atau pesan penting dari rekan atau atasan 

mereka dengan efektif di dalam perusahaan. Hal ini dapat menyebabkan kerusakan 

komunikasi serius yang dapat membahayakan keselamatan dan kesejahteraan 

semua orang di lingkungan kerja[4]. Selain itu, sering kali dapat diamati bahwa 

hambatan suara dan perangkat untuk mengurangi kebisingan sering kali tidak 

memadai di berbagai bagian fasilitas, terutama di daerah yang membutuhkan 

mobilitas dan akses bebas yang substansial, sehingga meningkatkan kerumitan 

dalam melaksanakan strategi pengendalian kebisingan yang efektif di lingkungan 

aktif seperti pabrik tekstil [5]. 
Dengan kemajuan teknologi, munculnya kecerdasan buatan (AI), khususnya 

Jaringan Saraf Buatan (ANN), menyajikan cara baru dan inovatif untuk mengatasi 
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tantangan terkait kebisingan [4]. ANN berfungsi sebagai sistem komputasi yang 

dimodelkan berdasarkan jaringan saraf biologis, yang memungkinkannya untuk 

belajar dari pola data yang kompleks dan membuat penyesuaian adaptif [6]. Dalam 

hal mengurangi kebisingan, jaringan saraf buatan (ANN) dapat dilatih untuk 

mengenali pola kebisingan yang berbeda dan menghasilkan output yang membantu 

mengurangi suara yang tidak diinginkan secara instan. 
Menggunakan ANN untuk pengurangan kebisingan di manufaktur tekstil 

membawa beberapa manfaat. Pertama, ANN memiliki kemampuan untuk terus 

memproses dan mengevaluasi data kebisingan, memungkinkan sistem 

menyesuaikan diri sesuai dengan kondisi lingkungan yang berubah-ubah. 

Selanjutnya, ANN dapat dengan mudah diintegrasikan dengan teknologi 

pemrosesan sinyal yang ada untuk meningkatkan efektivitas pengurangan 

kebisingan secara keseluruhan [7]. Terakhir, karena kemampuannya untuk belajar, 

sistem berbasis jaringan saraf buatan (ANN) dapat terus meningkatkan dirinya 

sendiri dari waktu ke waktu, menghasilkan solusi yang lebih efektif dalam jangka 

panjang. 
Tujuan penelitian ini adalah untuk menciptakan model jaringan saraf buatan 

(ANN) yang efektif untuk meminimalkan polusi suara di lingkungan manufaktur 

tekstil, serta menilai dampaknya terhadap kejelasan komunikasi verbal di antara 

karyawan. Inisiatif ini tidak hanya bertujuan untuk memupuk lingkungan kerja yang 

lebih aman dan lebih menyenangkan, tetapi juga untuk meningkatkan interaksi di 

antara staf - sehingga meningkatkan produktivitas dan langkah-langkah 

keselamatan dalam lingkungan produksi tekstil. 
Selain itu, penelitian ini berupaya memberikan kontribusi signifikan pada 

diskusi akademis tentang penerapan ANN untuk pengurangan kebisingan, 

khususnya dalam sektor tekstil, sambil memperdalam pemahaman tentang 

bagaimana teknologi canggih dapat mengatasi tantangan akustik dan komunikasi 

yang dihadapi di lingkungan pabrik [8]. Dengan demikian, investigasi ini memiliki 

implikasi praktis yang melampaui pengetahuan teoretis dengan menawarkan 

kemajuan potensial dalam standar keselamatan, tingkat kenyamanan pekerja, dan 

efektivitas operasional di tengah masalah kebisingan yang sering dijumpai selama 

berbagai proses produksi tekstil. 

1.2. Rumusan Masalah 
Berdasarkan latar belakang yang telah diuraikan, rumusan masalah dalam 

penelitian ini adalah sebagai berikut: 
1. Bagaimana pengembangan model Artificial Neural Network (ANN) yang 

efektif dapat mendukung pengurangan kebisingan di lingkungan industri 

tekstil? 
2. Bagaimana pengaruh penerapan ANN terhadap peningkatan kejelasan 

komunikasi verbal, keselamatan, dan kenyamanan kerja di lingkungan bising? 
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1.3. Tujuan Penelitian 
Penelitian ini bertujuan untuk: 
1. Mengembangkan model Artificial Neural Network (ANN) yang efektif untuk 

mengurangi kebisingan di lingkungan industri tekstil. 
2. Mengevaluasi pengaruh penerapan ANN terhadap peningkatan kejelasan 

komunikasi verbal, keselamatan, dan kenyamanan kerja di lingkungan bising. 

1.4. Manfaat Penelitian 
Penelitian ini diharapkan dapat memberikan manfaat sebagai berikut: 
1. Manfaat Teoritis: Menambah wawasan dan literatur akademik mengenai 

penggunaan ANN untuk pengurangan kebisingan di industri tekstil, serta 

memperkaya pemahaman tentang penerapan teknologi canggih dalam 

mengatasi tantangan kebisingan industri. 
2. Manfaat Praktis: Memberikan solusi yang inovatif dan efektif untuk 

mengurangi kebisingan di pabrik tekstil, yang dapat meningkatkan 

keselamatan, kenyamanan kerja, dan produktivitas pekerja. 

1.5. Batasan Penelitian 
Agar penelitian ini lebih fokus dan terarah, maka ditetapkan beberapa batasan 

penelitian sebagai berikut: 
1. Penelitian ini hanya akan mengkaji pengurangan kebisingan di pabrik tekstil 

dengan menggunakan model ANN. 
2. Evaluasi dampak penerapan ANN akan difokuskan pada aspek kejelasan 

komunikasi verbal dan keselamatan kerja di lingkungan pabrik tekstil, melalui 

data rekaman suara. 
3. Data yang digunakan dalam penelitian ini akan diperoleh dari pabrik tekstil 

yang bersedia bekerja sama dalam penyediaan data kebisingan dan informasi 

terkait lainnya, yaitu PT. EMBEE PLUMBON TEKSTILE Unit 2. 

1.6. Keaslian Penelitian 
Pada penelitian yang dilakukan oleh Wang, dkk. [9], dikembangkan sebuah 

sistem diagnosis kerusakan mesin (EFD) yang menggabungkan analisis intensitas 

suara, Wavelet Packet Analysis (WPA), dan Artificial Neural Network (ANN). 

Penelitian ini menggunakan sinyal kebisingan dari mesin untuk mengekstrak fitur-

fitur kerusakan spesifik melalui WPA, yang efektif untuk memproses sinyal non-

stasioner. Fitur-fitur tersebut kemudian dimasukkan ke dalam model ANN yang 

telah dilatih untuk melakukan klasifikasi dan mengenali berbagai pola kerusakan 

mesin. Hasil penelitian menunjukkan bahwa model WPA-ANN yang diusulkan 

sangat efektif dan akurat dalam mendiagnosis kerusakan mesin berdasarkan suara, 

membuktikan bahwa kombinasi teknik pemrosesan sinyal canggih dengan metode 

pembelajaran mesin merupakan pendekatan yang kuat untuk diagnosis di bidang 

permesinan. 
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Dalam penelitian yang dilakukan P. Zannin [10], dibahas pemanfaatan Jaringan 

Syaraf Tiruan (ANN) dalam simulasi penghalang suara yang efektif untuk 

mengurangi kebisingan hasil rekonstruksi jalan raya. Koefisien absorpsi material 

penghalang terbukti memiliki pengaruh signifikan terhadap redaman suara, 

sementara tinggi penghalang berkorelasi dengan pembentukan area bayangan 

akustik. Hasil simulasi menunjukkan bahwa tingkat kebisingan dapat dikurangi 

hingga mencapai batas yang dapat diterima secara hukum, sehingga menegaskan 

pentingnya desain penghalang suara yang optimal dalam mitigasi dampak 

kebisingan di lingkungan perkotaan. 
Penelitian H. Zhang [11] mengkaji penerapan Deep Adaptive Noise 

Cancellation (Deep ANC), yang terbukti efektif dalam mengurangi kebisingan lebar 

pita serta mampu beradaptasi dengan baik terhadap kebisingan yang tidak terlatih. 

Metode ini mampu mempertahankan sinyal target dalam kondisi bising, seperti 

sinyal bicara, dan menunjukkan kinerja yang lebih baik dibandingkan metode ANC 

tradisional, terutama dalam situasi dengan distorsi nonlinier. 
Selain itu, penelitian oleh S. A. D. Prasetyowati dkk. [12] mengeksplorasi 

pembatalan kebisingan generator yang bersifat monoton menggunakan algoritma 

Least Mean Square (LMS) adaptif. Studi ini menganalisis karakteristik kebisingan 

melalui statistik, FFT/IFFT, dan distribusi frekuensi sisa kebisingan. Hasilnya 

menunjukkan bahwa pembatalan kebisingan dengan LMS adaptif dapat terwujud 

dengan baik, meskipun ada sisa kebisingan yang terdistribusi normal dan tidak 

mengganggu. 
Terinspirasi oleh penelitian-penelitian menjanjikan tersebut, penelitian ini 

berfokus pada pengembangan model ANN yang spesifik untuk industri tekstil. 

Berbeda dengan penelitian sebelumnya, penelitian ini membahas masalah 

kebisingan di pabrik tekstil dengan pendekatan baru. Fokusnya yang spesifik pada 

industri tekstil menjadi nilai unik yang membedakannya dari penelitian 

pengurangan kebisingan menggunakan ANN sebelumnya. 
Tujuan utama penelitian ini—yaitu meningkatkan kejelasan komunikasi verbal 

di antara pekerja—merupakan aspek penting yang belum banyak diteliti 

sebelumnya. Penggunaan supervised learning neural network dan pengembangan 

model ANN yang dirancang khusus untuk mengurangi kebisingan dan 

meningkatkan komunikasi verbal di pabrik tekstil menjadi kontribusi orisinal dari 

penelitian ini. Selain itu, penelitian ini akan diterapkan langsung di lingkungan 

pabrik tekstil yang nyata, memungkinkan evaluasi efektivitas model ANN dalam 

situasi sebenarnya. Pengembangan lebih lanjut dari penelitian ini dapat meliputi 

analisis jenis kebisingan spesifik di pabrik tekstil, evaluasi performa model ANN 

dengan berbagai metrik, serta pertimbangan implikasi etika dari penerapan model 

ANN tersebut. 
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1.7. Sistematika Penulisan 
Sistematika penulisan tesis ini adalah sebagai berikut: 
Bab 1 
Pendahuluan – Membahas latar belakang, rumusan masalah, tujuan penelitian, 

manfaat penelitian, batasan penelitian, dan sistematika penulisan. 
Bab 2 
Tinjauan Pustaka – Mengulas teori-teori yang relevan dengan penelitian ini, 

termasuk konsep dasar kebisingan, komunikasi verbal di lingkungan kerja, dan 

aplikasi ANN. 
Bab 3 
Metodologi Penelitian – Menjelaskan metode penelitian yang digunakan, termasuk 

desain penelitian, teknik pengumpulan data, dan metode analisis data. 
Bab 4 
Hasil dan Pembahasan – Menyajikan hasil penelitian dan analisis data, serta 

pembahasan mengenai temuan-temuan penelitian. 
Bab 5 
Kesimpulan dan Saran – Menyimpulkan hasil penelitian dan memberikan saran-

saran yang relevan berdasarkan temuan penelitian. 

Dengan sistematika tersebut, diharapkan penelitian ini dapat tersusun secara 

sistematis dan memberikan kontribusi yang signifikan dalam bidang pengurangan 

kebisingan industri, khususnya di sektor tekstil. 
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BAB II 
TINJAUAN PUSTAKA DAN DASAR TEORI 

2.1. Tinjauan Pustaka 
Kebisingan merupakan salah satu masalah utama di industri tekstil yang dapat 

berdampak negatif pada kesehatan pekerja dan efektivitas komunikasi verbal. 

Menurut penelitian oleh Nada et al. (2014)[13], tingkat kebisingan di pabrik tekstil 

seringkali melebihi batas aman yang ditetapkan oleh organisasi kesehatan, yang 

dapat menyebabkan gangguan pendengaran dan stres bagi pekerja. Abraham et al. 

(2019)[14] menambahkan bahwa kebisingan tinggi juga menghambat komunikasi 

verbal yang efektif, yang penting untuk koordinasi dan keselamatan di lingkungan 

kerja. 

2.1.1. Metode Pengurangan Kebisingan 
Berbagai metode telah dikembangkan untuk mengurangi kebisingan di 

lingkungan industri. Setyaningrum et al. (2019)[15] membahas analisi isolasi 

penggunaan bahan penyerap suara sebagai solusi untuk meredam kebisingan. 

Namun, metode ini memiliki keterbatasan dalam hal biaya dan efektivitas. 

Penelitian oleh Subandrio et al. (2023)[16] menunjukkan bahwa penggunaan 

perangkat lunak pemrosesan sinyal digital dapat memberikan hasil yang lebih baik 

dalam mengurangi kebisingan dibandingkan dengan metode fisik tradisional. 

2.1.2. Artificial Neural Network dalam Pemrosesan Sinyal 
Artificial Neural Network (ANN) telah digunakan secara luas dalam berbagai 

aplikasi pemrosesan sinyal, termasuk pengurangan kebisingan. Syabila et al. 

(2023)[17] menunjukkan bahwa ANN dapat dilatih untuk mengenali sinyal audio, 

sehingga meningkatkan kejelasan sinyal yang diinginkan. Krisna et al. (2018)[18] 

mengembangkan model ANN yang dapat mengenali data suara yang mengalami 

noise dengan menggunakan jaringan Syaraf tiruan Hebb pada Tingkat pengenalan 

87,5%.  

2.1.3. Penerapan ANN untuk Pengurangan Kebisingan di Pabrik Tekstil 
Penerapan Artificial Neural Network (ANN) dalam pengurangan kebisingan di 

pabrik tekstil menunjukkan potensi besar, seperti yang ditunjukkan oleh penelitian 

Kwon et al. [19]. Penelitian tersebut mengimplementasikan Long Short-Term 

Memory (LSTM), jenis ANN, dalam algoritma kontrol kebisingan aktif (ANC) 

untuk memprediksi dan meminimalkan kebisingan mesin diesel secara efektif, 

bahkan lebih baik dari algoritma konvensional. LSTM juga menunjukkan respons 

cepat terhadap perubahan kebisingan tanpa memerlukan waktu adaptasi. Hal ini 

membuktikan bahwa teknologi LSTM, serupa dengan ANN, dapat meningkatkan 

kejelasan komunikasi di lingkungan pabrik tekstil dengan memisahkan suara 

manusia dari kebisingan mesin, sehingga meningkatkan kenyamanan dan 

produktivitas. 
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Pemilihan algoritma supervised learning neural network sangat tepat untuk 

pengurangan kebisingan di pabrik tekstil karena beberapa alasan utama: 
1. Pembelajaran dari Data Berlabel: 
Jaringan saraf memerlukan dataset yang telah dilabeli (input dengan output yang 

diketahui). Dalam pengurangan kebisingan, model belajar membedakan antara 

kebisingan dan suara yang relevan dari rekaman suara bising dan suara yang 

diinginkan. 

2. Kemampuan Generalisasi 
Setelah dilatih, model dapat mengenali pola kebisingan dalam situasi baru dan 

diterapkan pada kondisi operasional pabrik yang bervariasi. 

3. Pengolahan Data Non-Linear 
Jaringan saraf mampu menangani hubungan non-linear yang kompleks dan tidak 

teratur pada karakteristik kebisingan pabrik, memberikan solusi yang lebih efektif 

daripada metode linear tradisional. 

4. Adaptasi terhadap Perubahan 
Algoritma dapat diperbarui dengan data baru secara berkala, memungkinkan model 

beradaptasi dengan perubahan kondisi kebisingan pabrik dan tetap efektif. 

5. Prediksi Real-Time 
Jaringan saraf dapat diimplementasikan untuk respons real-time dalam 

mengidentifikasi dan mengurangi kebisingan yang muncul, menciptakan 

lingkungan kerja yang lebih nyaman. 

6. Fleksibilitas Arsitektur 
Supervised learning neural network fleksibel dalam desain arsitektur, 

memungkinkan penggunaan Convolutional Neural Networks (CNN) untuk analisis 

spektrum frekuensi atau Recurrent Neural Networks (RNN) untuk data urutan 

waktu, disesuaikan dengan kebutuhan spesifik pengurangan kebisingan. 
Dengan mempertimbangkan semua karakteristik ini, algoritma supervised learning 

neural network menjadi pilihan yang sangat efektif untuk mengatasi masalah 

kebisingan di pabrik tekstil, memberikan solusi berbasis data yang adaptif terhadap 

kondisi yang berubah. 

2.2. Dasar Teori 
Pekerja di sektor tekstil jauh lebih rentan terhadap paparan kebisingan, risiko 

umum yang terkait dengan bidang ini [20]. Sumber utama kebisingan selama 

pemintalan benang berasal dari peralatan yang digunakan dalam produksi, termasuk 

mesin pemintalan (TFO, atau two-for-one twist) dan mesin lain yang beroperasi 

terus-menerus [21]. Jika dibandingkan dengan industri lain, individu yang bekerja 

di tekstil sering kali menghadapi tingkat kebisingan yang lebih tinggi yang berasal 

dari karakteristik metode produksi mereka dan ketergantungan yang besar pada 

mesin[22]. Paparan kebisingan tingkat tinggi yang berkepanjangan dapat 
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berdampak buruk pada kesehatan pekerja, yang mengakibatkan peningkatan tingkat 

stres, p otensi kehilangan pendengaran, dan penurunan efisiensi [23]. 

2.2.1. Definisi Kebisingan 
Kebisingan adalah suara yang tidak diinginkan dan mengganggu yang dapat 

menyebabkan berbagai efek buruk pada kesehatan manusia dan mengganggu 

aktivitas sehari-hari [22]. Kebisingan diukur dalam desibel (dB), dengan tingkat 

kebisingan yang melebihi 85 dB dianggap berbahaya jika terpapar terus-menerus. 

Di sektor tekstil, tingkat kebisingan yang tinggi dapat mengakibatkan stres kronis 

di antara pekerja, mengganggu konsentrasi, dan menurunkan produktivitas secara 

keseluruhan [24]. Lebih jauh lagi, paparan kebisingan yang berkepanjangan juga 

dapat memicu masalah emosional seperti mudah tersinggung dan depresi. 

Organisasi Kesehatan Dunia (WHO) menyatakan bahwa paparan kebisingan yang 

berlebihan dalam jangka panjang dapat menyebabkan gangguan pendengaran 

bersama dengan masalah kesehatan lainnya seperti stres, gangguan tidur, dan 

masalah kardiovaskular. 

2.2.2. Sumber Kebisingan di Pabrik Tekstil 
Di pabrik tekstil yang mengkhususkan diri dalam pemintalan benang katun, 

kebisingan merupakan masalah utama yang dihasilkan oleh berbagai peralatan 

dengan karakteristik pengoperasian yang berbeda. Sumber-sumber utama 

kebisingan berasal dari mesin-mesin berkecepatan tinggi seperti  
Twisting Mill (TFO) dan Mesin Pemintal Cincin, yang menghasilkan suara kontinu 

berintensitas tinggi[21]. Mesin lain seperti Carding Machine dan Mesin Sisir juga 

berkontribusi pada tingkat kebisingan keseluruhan melalui gerakan cepat dan 

operasional yang berat, meskipun karakteristik frekuensinya mungkin berbeda. 

Sementara itu, peralatan seperti  
Mesin Penarik, Mesin Roving, dan Winder juga menambahkan kebisingan 

signifikan ke lingkungan pabrik. Secara keseluruhan, aktivitas mekanis yang intens 

dari berbagai mesin ini menciptakan lingkungan yang sangat bising, yang 

memerlukan strategi pengendalian komprehensif, termasuk penerapan teknologi 

pengurangan kebisingan canggih.  
Karena aktivitas mekanis yang intens, pabrik tekstile menghasilkan banyak 

kebisingan selama pengoperasian. Secara keseluruhan, pengendalian kebisingan di 

pabrik benang katun memerlukan strategi menyeluruh, termasuk memilih mesin 

yang lebih senyap, mengatur ulang tata letak pabrik, dan memastikan bahwa 

karyawan mengenakan alat pelindung diri[22]. Penelitian dan pengembangan lebih 

lanjut tentang perangkat pengurangan kebisingan yang lebih canggih juga 

diperlukan untuk membuat tempat kerja lebih aman dan nyaman. 
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2.2.3. Dampak Kebisingan pada Pekerja 
Paparan kebisingan tinggi di lingkungan pabrik tekstil dapat menyebabkan 

berbagai dampak negatif pada kesehatan fisik, mental, dan kesejahteraan umum 

pekerja. Dampak-dampak ini meliputi: 
1. Kehilangan Pendengaran 
Paparan kebisingan berkepanjangan dapat merusak sel-sel rambut di telinga bagian 

dalam, menyebabkan kehilangan pendengaran permanen dan tinitus (suara 

berdengung di telinga), yang berdampak pada kualitas hidup dan komunikasi efektif 

[25].  

2. Stres Mental 
Kebisingan berlebihan menyebabkan stres psikologis parah, mengurangi 

konsentrasi, produktivitas, dan meningkatkan kemungkinan kesalahan di tempat 

kerja, serta memicu kelelahan mental berlebihan [26]. 

3. Kelelahan Fisik 
Kebisingan konstan memaksa tubuh beradaptasi secara biologis, menguras energi 

dan menyebabkan kelelahan kronis [26]. 

4. Dampak pada Kesehatan Mental 
Stres akibat kebisingan dapat menimbulkan gejala seperti kecemasan, kesedihan, 

dan insomnia [26].  

5. Masalah Kardiovaskular 
Kebisingan keras dapat meningkatkan tekanan darah (melalui pelepasan hormon 

stres seperti kortisol) dan risiko penyakit jantung koroner, serangan jantung, serta 

aritmia jantung [27]. Komunikasi Lisan di Lingkungan Kerja  

2.2.3.1. Pentingnya komunikasi verbal  
Komunikasi verbal yang efektif sangat penting untuk koordinasi tim yang baik, 

terutama dalam situasi yang membutuhkan reaksi cepat dan kerja sama tim yang 

kuat. Komunikasi yang jelas dan akurat dapat mencegah kesalahan operasional 

serta menjamin keselamatan dan efisiensi tempat kerja. Hal ini esensial untuk: 
1. Koordinasi Tim 
Memastikan semua pekerja di industri tekstil memahami peran dan tanggung jawab 

mereka, menghindari kesalahpahaman yang mengganggu alur kerja. 

2. Petunjuk dan Perintah 
Memungkinkan pemberian instruksi yang akurat dan mudah dipahami, mengurangi 

risiko kesalahan operasional yang memengaruhi kualitas dan efisiensi produksi. 

3. Peringatan Keselamatan 
Memastikan peringatan bahaya atau darurat dikomunikasikan dan dipahami secara 

efektif oleh semua pekerja untuk melindungi diri mereka. 
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2.2.3.2.Tantangan Komunikasi di Lingkungan Bising  
Tingkat kebisingan tinggi di pabrik tekstil menghambat komunikasi verbal, 

menyebabkan kesalahpahaman, kecelakaan, dan mengurangi efisiensi operasional. 

Karyawan kesulitan memahami instruksi dan peringatan penting, yang 

meningkatkan risiko keselamatan dan berdampak pada koordinasi tim. Tantangan 

komunikasi meliputi: 
1. Gangguan Akustik 
Kebisingan tinggi menyebabkan suara lisan sulit didengar, berpotensi 

mengakibatkan kesalahan operasional dan kecelakaan, terutama saat respons cepat 

diperlukan. 

2. Penggunaan Alat Pelindung Diri (APD) 
APD efektif melindungi pendengaran, namun menghalangi instruksi dan peringatan 

penting, mempersulit komunikasi verbal dan meningkatkan risiko keselamatan. 

3. Risiko Keselamatan 
Kegagalan mendengar instruksi dan peringatan keselamatan meningkatkan risiko 

kecelakaan kerja, seperti tidak menanggapi kerusakan mesin atau bahaya bahan. 

4. Efisiensi Operasional 
Miskomunikasi mengganggu alur kerja, menyebabkan penundaan, dan mengurangi 

efisiensi. Solusi seperti interkom atau headset peredam bising diperlukan untuk 

komunikasi efektif di lingkungan bising, yang pada akhirnya meningkatkan 

keselamatan dan efisiensi. 

2.2.4. Pendekatan Tradisional terhadap Pengurangan Kebisingan  
Pendekatan tradisional untuk pengurangan kebisingan di pabrik tekstil 

melibatkan penggunaan alat pelindung diri (APD) dan insulasi suara. Tujuannya 

adalah melindungi pekerja dari dampak negatif kebisingan. 
1. Alat Pelindung Diri (APD)  
Penggunaan penyumbat telinga dan penutup telinga umum dilakukan untuk 

membatasi tingkat suara yang mencapai telinga, sehingga melindungi pendengaran 

pekerja dari kerusakan. APD secara signifikan mengurangi tingkat kebisingan dan 

sangat penting di lingkungan kerja yang bising untuk mencegah gangguan 

pendengaran permanen. Penggunaan jangka panjang dapat menyebabkan 

ketidaknyamanan (misalnya, iritasi kulit). APD juga dapat mengisolasi pekerja dari 

suara penting seperti alarm atau peringatan darurat, meningkatkan risiko 

kecelakaan, dan mempersulit komunikasi verbal, yang memengaruhi koordinasi. 

2. Kedap Suara dan Insulasi  
Metode ini menggunakan dinding dan insulasi suara untuk mengurangi penyebaran 

suara dan menciptakan lingkungan kerja yang lebih tenang. Insulasi suara bekerja 

dengan menyerap dan memblokir gelombang suara, efektif terutama di area pabrik 

dengan konsentrasi kebisingan tinggi seperti dekat mesin besar. 
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Solusi ini tidak selalu praktis atau efektif di semua area. Pemasangan penghalang 

kebisingan tidak cocok untuk area yang memerlukan mobilitas tinggi dan akses 

terbuka. Biaya pemasangan dan pemeliharaan juga bisa mahal, dan hambatan 

kebisingan dapat menghambat alur kerja serta mengurangi fleksibilitas tata letak 

pabrik. 

2.2.5. Pendekatan inovatif dalam pengurangan kebisingan  
Selain metode tradisional, pendekatan inovatif dalam pengurangan kebisingan 

di pabrik tekstil meliputi teknologi peredam kebisingan aktif dan penggunaan 

material baru. Teknologi Peredam Kebisingan Aktif (Active Noise Cancellation - 

ANC), memanfaatkan mikrofon dan speaker untuk mendeteksi dan membatalkan 

kebisingan dengan menghasilkan gelombang suara yang saling berlawanan. 

Teknologi ini dapat diterapkan di berbagai area pabrik tanpa perubahan signifikan 

pada struktur fisik. Namun, penerapannya masih dalam tahap pengembangan dan 

memerlukan investasi awal yang signifikan. 
Bahan Inovatif untuk Pengurangan Kebisingan Penggunaan material inovatif 

dengan kapasitas penyerapan kebisingan tinggi menawarkan solusi yang layak. 

Bahan seperti busa akustik, papan serat, dan komposit dapat digunakan di dinding 

dan langit-langit pabrik untuk mengurangi pantulan suara dan menurunkan tingkat 

kebisingan. Material yang mudah dipasang dan dilepas juga memungkinkan 

perencanaan peralatan yang fleksibel. Dengan mengadopsi metode yang sudah 

mapan dan baru, pabrik tekstil dapat mempertahankan efisiensi operasional tinggi 

serta meningkatkan keselamatan dan kenyamanan tenaga kerjanya. 

2.2.6. Arsitektur Convolutional Neural Network sebagai Fondasi Model 
Penelitian ini secara spesifik mengadopsi arsitektur Convolutional Neural 

Network (CNN), sebuah kelas khusus dari Jaringan Saraf Tiruan (ANN) yang 

fundamentalnya merupakan kerangka komputasi yang meniru cara kerja jaringan 

saraf biologis di otak manusia [28]. Berbeda dengan ANN konvensional, CNN 

dirancang secara khusus untuk memproses data yang memiliki topologi seperti grid, 

misalnya citra. Dalam konteks penelitian ini, sinyal audio yang telah 

ditransformasikan menjadi representasi spektogram diperlakukan sebagai 'citra' 2D. 

Pendekatan ini memungkinkan model untuk mengeksploitasi keunggulan utama 

CNN, yaitu kemampuannya untuk mengenali pola-pola spasial hierarkis—seperti 

struktur harmonik dan formant pada spektogram—yang sulit dideteksi oleh metode 

analisis sinyal tradisional. 
Kemampuan CNN untuk belajar dan membuat keputusan berakar pada 

prinsip ANN, di mana jaringan belajar mengenali pola dari data input yang 

kompleks, berkembang berdasarkan pengalaman, dan membuat prediksi [29]. 

Arsitektur CNN yang mendalam biasanya terdiri dari tiga jenis lapisan utama: 

lapisan input, lapisan tersembunyi (hidden layers), dan lapisan output [30]. Lapisan 

tersembunyi pada CNN didominasi oleh lapisan konvolusional yang menerapkan 

serangkaian filter untuk mengekstraksi fitur, dan lapisan pooling yang mereduksi 
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dimensi spasial untuk efisiensi komputasi [31]. Melalui serangkaian lapisan ini, 

CNN mampu membangun representasi fitur dari level rendah (misalnya, tepi atau 

tekstur pada spektogram) hingga level tinggi (misalnya, pola vokal yang kompleks). 

Proses pembelajaran ini dimungkinkan melalui mekanisme penyempurnaan bobot 

filter secara iteratif berdasarkan kesalahan prediksi, yang umumnya menggunakan 

algoritma backpropagation [28]. 

2.2.6.1. Prinsip Supervised Learning pada CNN 
Supervised learning merupakan paradigma pembelajaran mesin yang 

digunakan dalam penelitian ini. Pendekatan ini melibatkan pelatihan model 

menggunakan dataset yang telah dilabeli, di mana setiap data input (spektogram 

bising) memiliki pasangan output target yang diketahui (spektogram bersih) [32]. 

Dengan memberikan pasangan data ini, model CNN secara iteratif belajar untuk 

memetakan input ke output yang diinginkan. Dalam konteks reduksi kebisingan, 

model dilatih untuk mengestimasi sebuah masker spektral yang, ketika 

diaplikasikan pada spektogram bising, akan menghasilkan spektogram yang 

semirip mungkin dengan spektogram bersih target. Proses pelatihan dan prediksi 

ini didasari oleh prinsip matematis yang kuat untuk meminimalkan fungsi 

kesalahan (loss function) antara prediksi dan target [33]. 

2.2.6.2. Rumus-Rumus dalam Supervised Learning pada ANN 

1. ReLU (Rectified Linear Unit) 
ReLU populer karena kemampuannya untuk menghindari masalah vanishing 

gradient dan sering digunakan di hidden layer. 

𝑓(𝑥) = {
𝑥 𝑗𝑖𝑘𝑎 𝑥 > 0
0  𝑗𝑖𝑘𝑎 𝑥 ≤ 0

 (2.1) 

Penjelasan: 

a. ReLU hanya mengembalikan nilai input jika positif, dan nol jika negatif. 
b. Sangat populer karena komputasi cepat dan kemampuan untuk menghindari 

masalah vanishing gradient dibandingkan sigmoid dan tanh. 
c. Umumnya digunakan di hidden layer jaringan dalam pemrosesan audio, 

termasuk pengurangan kebisingan. 
d. Dalam penelitian ini, ReLU bisa digunakan untuk menangkap pola frekuensi 

yang relevan dari sinyal suara. 

2. Tanh (Hyperbolic Tangent) 
Tanh mirip dengan sigmoid, tetapi menghasilkan nilai antara -1 hingga 1, 

membantu dalam normalisasi data internal jaringan. 

f (x) = tanh (x) = 
𝑒𝑥− 𝑒−𝑥

𝑒𝑥+ 𝑒−𝑥
 

 
(2.2) 

Penjelasan: 
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a. Mirip dengan sigmoid, tapi menghasilkan nilai antara -1 hingga 1 , sehingga 

lebih baik untuk normalisasi data internal. 
b. Digunakan ketika kita ingin neuron dapat merepresentasikan polaritas 

(misalnya: frekuensi tinggi vs rendah). 
c. Dalam konteks penelitian ini, tanh bisa digunakan untuk membedakan 

komponen frekuensi yang dominan dalam kebisingan mesin tekstil . 

3. Perhitungan Output Neuron 
Output dari suatu neuron dihitung sebagai: 

𝑦𝑗 = 𝑓 ∑ 𝑤𝑖𝑗𝑥𝑖 + 𝑏𝑗

𝑛

𝑖=1

 (2.3) 

Penjelasan: 

a. 𝑦𝑗  = output dari neuron ke-j, 

b. 𝑤𝑖𝑗 =  bobot koneksi antara neuron input i dan neuron j, 

c. xi = nilai input dari neuron i, 
d. bj =  bias pada neuron j, 
e. f = fungsi aktivasi. 
f. Setiap neuron menerima beberapa input (𝑥𝑖), yang masing-masing dikalikan 

dengan bobot (𝑤𝑖𝑗). 

g. Hasilnya dijumlahkan lalu ditambah bias (j ), dan hasil akhirnya dilewatkan 

ke fungsi aktivasi . 
h. Ini adalah proses dasar bagaimana neuron memproses informasi dan 

menghasilkan prediksi. 
i. Dalam penelitian ini, setiap neuron memproses fitur audio frekuensi dan 

amplitudo dari rekaman suara. 

4. Fungsi Loss (Error Function) 
Untuk mengukur kesalahan prediksi selama pelatihan, digunakan fungsi loss seperti 

Mean Squared Error (MSE): 

𝐸 =  
1

𝑚
∑(𝑡𝑘 − 𝑦𝑘)2

𝑚

𝑘=1

 

 

(2.4) 

Penjelasan: 
a. E: error total, 
b. 𝑡𝑘: target aktual (suara verbal bersih), 
c. 𝑦𝑘: output prediksi (suara hasil pengolahan ANN), 
d. m: jumlah data pelatihan. 
e. MSE mengukur rata-rata kuadrat selisih antara prediksi model (𝑦𝑘) dan nilai 

sebenarnya (𝑡𝑘). 
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f. Semakin kecil nilai MSE, semakin baik model ANN dalam memprediksi 

sinyal verbal yang bersih dari kebisingan. 
Penggunaan Mean Squared Error (MSE) sebagai fungsi loss sangat relevan dalam 

tugas ini karena tujuan utama model adalah meregresi atau mengestimasi nilai 

magnitudo dari spektogram ucapan yang bersih. Dengan meminimalkan rata-rata 

kuadrat selisih antara magnitudo spektogram yang diprediksi oleh model (𝑦𝑘) dan 

magnitudo spektogram target (𝑡𝑘), proses pelatihan secara langsung mendorong 

bobot jaringan untuk menghasilkan sebuah output yang secara struktural dan 

numerik semirip mungkin dengan representasi spektral dari sinyal ucapan yang 

ideal. 

5. Backpropagation dan Update Bobot 
Backpropagation adalah mekanisme pembelajaran paling penting dalam 

ANN, yaitu cara sistem "belajar dari kesalahan" dan menyesuaikan diri. Bayangkan 

ketika sedang melatih sebuah sistem untuk mengenali pola suara. Pertama, sistem 

mencoba memprediksi (melalui Forward Propagation). Kemudian, ia menghitung 

seberapa besar kesalahannya (menggunakan Fungsi Loss seperti MSE). Setelah itu, 

Backpropagation mengambil kesalahan ini dan "menyebarkannya" kembali ke 

seluruh jaringan, dari lapisan output hingga lapisan input. Tujuannya adalah untuk 

mencari tahu "bobot" mana di setiap koneksi yang paling berkontribusi terhadap 

kesalahan tersebut. 
Selama proses ini, bobot diperbarui menggunakan algoritma backpropagation. 

Perubahan bobot dihitung dengan: 
A. Turunan Parsial Bobot 

∆𝑤𝑖𝑗 = −𝜂.
𝜕𝐸

𝜕𝑤𝑖𝑗
 

 

(2.5) 

Penjelasan: 

1. η   =  Learning rate menentukan seberapa besar perubahan bobot dalam satu 

iterasi pelatihan. Ini adalah faktor penting yang mengontrol seberapa 

"agresif" model dalam mengubah bobotnya. Learning rate yang terlalu 

besar bisa membuat model "melompat" melewati solusi terbaik, sementara 

yang terlalu kecil bisa membuat proses belajar sangat lambat. 

2. 
𝝏𝑬

𝝏𝒘𝒊𝒋
 = Turunan parsial dari error terhadap bobot menunjukkan kontribusi 

tiap bobot terhadap kesalahan. Nilai ini memberi tahu arah dan besaran 

perubahan yang ideal untuk bobot tertentu agar error berkurang.  

3. 𝒘𝒊𝒋
𝒃𝒂𝒓𝒖 = Bobot baru setelah diperbarui. Ini adalah nilai bobot yang telah 

disesuaikan berdasarkan perhitungan error dan learning rate, siap 

digunakan untuk iterasi pelatihan berikutnya. 
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4. 𝒘𝒊𝒋
𝒍𝒂𝒎𝒂 = Bobot sebelum diperbarui. Ini adalah nilai bobot dari iterasi 

pelatihan sebelumnya. 

Untuk menghitung 
𝜕𝐸

𝜕𝑤𝑖𝑗
 (yaitu, seberapa besar perubahan bobot 𝑤𝑖𝑗 harus dilakukan 

agar error E berkurang), kita perlu tahu bagaimana perubahan kecil pada bobot itu 

memengaruhi output neuron, yang pada gilirannya memengaruhi output lapisan 

berikutnya, dan akhirnya memengaruhi error total. Karena efek ini berantai (seperti 

efek domino), kita menggunakan aturan matematika yang disebut "Chain Rule". 

Aturan ini memungkinkan kita menghitung turunan (tingkat perubahan) sebuah 

fungsi yang tersusun dari beberapa fungsi lainnya, satu per satu dari belakang ke 

depan. Jadi, kita mulai menghitung turunan error terhadap output terakhir, lalu 

output terakhir terhadap input sebelumnya, dan seterusnya, sampai ke bobot yang 

ingin kita perbarui. Ini memastikan bahwa penyesuaian bobot dilakukan secara 

akurat, berdasarkan kontribusi spesifiknya terhadap kesalahan total jaringan. 

B. Update Bobot  

𝑤𝑖𝑗
𝑏𝑎𝑟𝑢 =  𝑤𝑖𝑗

𝑙𝑎𝑚𝑎 + ∆𝑤𝑖𝑗 (2.6) 

Proses Update Bobot (Integrasi): Formula (2.7) adalah intinya. Bobot lama 

(𝑤𝑖𝑗
𝑙𝑎𝑚𝑎) ditambahkan dengan nilai perubahan bobot (∆𝑤𝑖𝑗) yang dihitung 

berdasarkan turunan error dan learning rate. Dengan kata lain, model mengambil 

bobot yang ada, menghitung seberapa banyak dan ke arah mana bobot itu harus 

berubah untuk mengurangi kesalahan, dan kemudian menerapkan perubahan 

tersebut untuk mendapatkan bobot baru. Proses ini dilakukan berulang kali selama 

pelatihan, secara bertahap "mengukir" bobot jaringan agar semakin akurat dalam 

memprediksi sinyal ucapan yang bersih dari kebisingan. Dalam konteks penelitian 

ini, backpropagation digunakan untuk menyesuaikan bobot neuron agar ANN lebih 

tepat dalam memisahkan suara bising dari suara manusia. 

2.2.6.3. Proses Pelatihan Supervised Learning pada (ANN) 
Proses pelatihan Supervised Learning dalam pengenalan suara bising 

melibatkan beberapa tahapan penting yang berlangsung secara berurutan dan 

berulang[34]. Dimulai dari pra-pemrosesan data, dilanjutkan dengan forward 

propagation, perhitungan error, hingga proses backpropagation untuk memperbaiki 

bobot, seluruh langkah ini bertujuan untuk melatih model agar semakin akurat 

dalam menghasilkan prediksi hingga mencapai konvergensi atau batas maksimum 

epoch. Tahapan-tahapan tersebut dapat dilihat secara lebih jelas pada Gambar 2.1, 

yang menggambarkan alur proses pelatihan model Supervised Learning dari awal 

hingga akhir. 
Untuk memperoleh pemahaman yang lebih jelas mengenai tahapan-tahapan 

proses pelatihan Supervised Learning pada Artificial Neural Network, silakan 

merujuk pada Gambar 2.1.  
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Alur Proses Pelatihan model yang mengilustrasikan urutan langkah-langkah yang 

akan dijelaskan secara terperinci. Bayangkan proses ini seperti melatih seorang 

siswa untuk membedakan antara suara musik dan suara kebisingan. 
Gambar 2.1 mengilustrasikan alur kerja fundamental dari supervised 

learning yang digunakan untuk melatih model ANN. Berikut adalah penjelasan 

rinci untuk setiap tahapan kunci dalam konteks penelitian reduksi kebisingan ini: 
 

 

 

 

 

 

 

 

1. Mulai (Start) 
Ini adalah titik awal proses pelatihan model  Supervised Learning. Model siap untuk 

menerima data dan memulai pembelajarannya. 

2. Input Suara Bising (Input) 
Pada tahap ini, model menerima data suara yang masih mengandung kebisingan. 

Bayangkan ini seperti rekaman suara di pabrik yang penuh dengan suara mesin dan 

suara orang berbicara. Ini adalah "tugas" atau "soal" yang diberikan kepada siswa. 

3. Normalisasi (Pra-pemrosesan) 
Normalisasi adalah langkah pra-pemrosesan data yang krusial sebelum data 

dimasukkan ke dalam model deep learning. Dalam pemrosesan sinyal audio, tujuan 

utamanya ada dua: 
a. Stabilitas Pelatihan, Sinyal audio mentah memiliki rentang amplitudo yang 

dapat berbeda secara signifikan antar sampel. Perbedaan ini dapat 

menyebabkan satu sinyal dengan amplitudo tinggi mendominasi proses 

pembelajaran, sehingga pembaruan bobot menjadi tidak stabil. Dengan 

melakukan normalisasi, rentang nilai amplitudo diseragamkan sehingga 

model dapat mempelajari pola secara lebih konsisten. 
b. Efisiensi Konvergensi, Normalisasi yang mengubah data ke rentang 

tertentu, seperti [−1,1], memastikan bahwa nilai input berada dalam rentang 

kerja optimal dari fungsi aktivasi, misalnya Sigmoid atau Tanh. Kondisi ini 

membantu mencegah permasalahan seperti vanishing gradient dan 

exploding gradient, sehingga proses pembelajaran dapat berlangsung lebih 

efisien dan model mencapai konvergensi lebih cepat. 

Gambar 2.1. Alur Proses Pelatihan model 
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Dalam penelitian ini, normalisasi dilakukan pada sinyal audio berbentuk 

waveform (sinyal satu dimensi) setelah melalui tahap resampling. Proses ini 

mencakup penskalaan amplitudo setiap sinyal sehingga nilai puncaknya 

mencapai 1.0 (peak normalization), atau menggunakan fungsi 

librosa.util.normalize yang melakukan penyesuaian berdasarkan nilai root mean 

square (RMS) dari sinyal. Langkah ini bertujuan untuk memastikan bahwa 

seluruh sampel audio memiliki tingkat amplitudo yang setara, sehingga tidak 

ada sinyal yang secara tidak proporsional lebih kuat dan berpotensi 

memengaruhi proses pembelajaran jaringan secara bias. 

4. Ekstraksi Fitur (Ekstrasi Fitur) 
Setelah dinormalisasi, sinyal suara diolah untuk "mengekstrak" fitur-fitur penting 

darinya. Ini seperti mengambil ciri-ciri khas dari suara tersebut (misalnya pola 

frekuensi dan amplitudo dari waktu ke waktu) , yang kemudian akan menjadi 

"gambar" atau representasi visual (seperti spektogram) yang bisa dimengerti oleh 

jaringan saraf. 

5. Forward Propagation 
Fitur-fitur yang sudah diekstrak ini kemudian "dimasukkan" ke dalam jaringan 

saraf. Ini adalah proses di mana informasi bergerak maju melalui setiap lapisan 

neuron dalam jaringan, dari lapisan input, melalui lapisan tersembunyi, hingga 

mencapai lapisan output. Di sini, jaringan saraf membuat "prediksi suara" , yaitu 

mencoba menghasilkan suara yang menurutnya bersih dari kebisingan. 

6. Hitung Error? (Dengan MSE) 
Tahap “Hitung Error” merupakan bagian inti dari supervised learning. Setelah 

model menghasilkan prediksi melalui forward propagation, langkah ini digunakan 

untuk mengukur selisih antara hasil prediksi dan ground truth. Nilai selisih tersebut 

menjadi indikator seberapa besar kesalahan model dan menentukan arah 

pembelajaran selanjutnya. 
Dalam penelitian ini digunakan Mean Squared Error (MSE) sebagaimana 

dirumuskan pada Rumus (2.4). Metrik ini menghitung rata-rata selisih kuadrat 

antara nilai target dan nilai prediksi. 
Konteks dalam Penelitian Ini 
Pada pemrosesan spektrogram: 
a. 𝑡𝑘       : merepresentasikan magnitudo spektrogram dari sinyal ucapan bersih. 
b. 𝑦𝑘      : merupakan magnitudo spektrogram hasil prediksi model U-Net. 
c. MSE  : menghitung perbedaan tersebut pada setiap elemen frekuensi-waktu, 

kemudian merata-ratakannya untuk mendapatkan satu nilai error keseluruhan. 
Semakin kecil nilai MSE, semakin baik kemampuan model dalam merekonstruksi 

sinyal yang mendekati sinyal bersih. 
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7. Backpropagation (Update Bobot) 
Backpropagation digunakan untuk memperbaiki kesalahan yang diukur oleh MSE 

dengan menyesuaikan bobot-bobot jaringan agar error dapat berkurang pada iterasi 

berikutnya. 
Backpropagation berlangsung melalui langkah-langkah berikut: 

a. Propagasi Mundur 
Nilai error dari langkah sebelumnya disebarkan kembali melalui seluruh 

lapisan jaringan, dari lapisan output menuju lapisan sebelumnya. 
b. Perhitungan Gradien 

Kontribusi setiap bobot terhadap error dihitung melalui turunan parsial 

sebagaimana dijelaskan pada Rumus (2.5). Nilai gradien ini menunjukkan 

arah perubahan bobot yang diperlukan untuk menurunkan error. 
c. Pembaruan Bobot 

Setelah gradien diperoleh, pembaruan bobot dilakukan mengikuti aturan 

pada Rumus (2.6), yang memanfaatkan learning rate untuk menentukan 

besar perubahan bobot. 
8. Ulangi (Loop) 
Rangkaian forward propagation → hitung error → backpropagation diulang 

selama sejumlah epoch hingga nilai error (MSE) mencapai tingkat yang stabil dan 

model dianggap konvergen. 

9. Model Konvergen(Evaluasi Konvergensi) 
Selama pengulangan ini, sistem akan terus mengecek apakah model sudah 

"konvergen". Ini berarti apakah model sudah belajar dengan cukup baik dan 

kesalahannya sudah sangat kecil atau tidak ada lagi perbaikan yang signifikan. 
a. Tidak: Jika model belum konvergen (masih ada kesalahan yang signifikan), 

proses akan terus berulang (loop "Tidak" kembali ke Backpropagation dan 

Forward Propagation). 
b. Ya: Jika model sudah konvergen (sudah pintar dan akurat), maka proses 

pelatihan akan berhenti. 
10. Model Siap (Output) 
Setelah model dianggap konvergen, itu berarti model sudah "Siap" untuk 

digunakan. Model ini telah dilatih secara efektif untuk memisahkan suara bicara 

dari kebisingan. 

11. Selesai (End) 
Ini adalah akhir dari seluruh proses pelatihan Supervised Learning. Model yang 

telah terlatih kini dapat digunakan untuk mengurangi kebisingan pada rekaman 

suara baru. Secara keseluruhan, supervised learning ini seperti melatih seorang 

anak dengan memberinya banyak contoh soal dan jawabannya, lalu mengoreksi 

kesalahannya berulang kali sampai dia benar-benar mengerti bagaimana cara 

menyelesaikan soal serupa di masa depan.  
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2.2.6.4. Keunggulan ANN dalam Pengolahan Sinyal 
Jaringan Saraf Tiruan (ANN) sangat efektif dalam pemrosesan sinyal berkat 

beberapa keunggulan utamanya. ANN memiliki kemampuan adaptasi yang hebat 

[30], memungkinkannya belajar dan beradaptasi dengan berbagai pola kebisingan, 

termasuk kondisi yang berubah-ubah [35]. Ini memungkinkan ANN melakukan 

penyesuaian real-time untuk mengurangi kebisingan dan mengoptimalkan kualitas 

suara di lingkungan akustik yang dinamis. Selain itu, ANN mampu memproses data 

dalam jumlah besar secara parallel [36], sangat meningkatkan kecepatan dan 

efisiensi pemrosesan sinyal. Struktur paralel ini memungkinkan ANN memberikan 

respons cepat dan akurat, ideal untuk aplikasi seperti sistem komunikasi suara dan 

teknologi pengenalan suara. ANN juga memiliki kemampuan generalisasi tinggi, 

memungkinkannya mendeteksi dan menangani pola kebisingan tak terduga 

berdasarkan pengalaman sebelumnya, bahkan dalam situasi yang belum pernah 

ditemui selama pelatihan. Kemampuan ini menjadikan ANN andal dan fleksibel 

dalam berbagai situasi nyata. 

2.2.6.5. Aplikasi ANN dalam Pengurangan Kebisingan 
Jaringan Saraf Tiruan (ANN), terutama Convolutional Neural Network (CNN) 

seperti U-Net yang akan digunakan dalam penelitian ini, telah menunjukkan 

penerapan yang sangat efektif dalam bidang pengurangan kebisingan (noise 

reduction). Kemampuannya untuk belajar dari pola data yang kompleks, 

beradaptasi dengan kondisi dinamis, dan melakukan generalisasi menjadikannya 

alat yang sangat kuat untuk memisahkan sinyal yang diinginkan dari gangguan. 

Berikut adalah beberapa aplikasi utama ANN dalam pengurangan kebisingan yang 

relevan dengan pemrosesan sinyal: 
1. Pembatalan Kebisingan Aktif (ANC) 
ANN digunakan untuk memodelkan dan memprediksi pola kebisingan (mekanis, 

lalu lintas, latar belakang) dan menghasilkan sinyal "anti-noise" yang berlawanan 

untuk menekan kebisingan secara efektif [37]. Kemampuan adaptifnya 

memungkinkan penyesuaian parameter filter real-time untuk kinerja optimal dalam 

kondisi akustik dinamis.Pengenalan dan Peningkatan Kualitas Suara (Speech 

Enhancement). 

2. Pengenalan dan Peningkatan Kualitas Suara (Speech Enhancement) 
ANN berperan penting dalam meningkatkan kualitas suara yang terdistorsi oleh 

kebisingan latar belakang [38]. Dengan dilatih pada data suara dan kebisingan, 

ANN memisahkan komponen suara yang relevan dari kebisingan, menghasilkan 

suara yang lebih jernih dan mudah dikenali.Pemrosesan Sinyal Audio di Perangkat 

Seluler. 
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3. Pemrosesan Sinyal Audio di Perangkat Seluler 
ANN meningkatkan kualitas suara di lingkungan bising pada perangkat seluler dan 

headset dengan mengidentifikasi kebisingan latar belakang dan menyesuaikan 

pengaturan audio secara adaptif [39].  

4. Pengurangan Kebisingan dalam Sistem Komunikasi 
ANN digunakan dalam sistem komunikasi (suara atau data nirkabel) untuk 

mengidentifikasi dan mengurangi kebisingan pada sinyal yang diterima, 

memastikan transmisi informasi lebih bersih [40]. 
5. Pemrosesan Gambar untuk Pengurangan Noise (Image Denoising) 
ANN, khususnya CNN, efektif dalam mendeteksi dan mengurangi noise pada 

gambar digital yang disebabkan oleh gangguan perekaman [41]. Jaringan dilatih 

untuk memisahkan pola noise dari detail visual, menghasilkan gambar yang lebih 

bersih dan tajam. 
Secara keseluruhan, kemampuan adaptif, paralelisme, dan generalisasi 

ANN menjadikannya alat yang sangat efektif dan serbaguna dalam berbagai 

aplikasi pengurangan kebisingan, baik pada sinyal audio, gambar, maupun 

komunikasi, membuka peluang untuk inovasi lebih lanjut. 

2.2.7. Dari Sinyal Audio ke Rekonstruksi Ucapan Menggunakan U-Net CNN 
Pengurangan kebisingan di lingkungan yang kompleks seperti pabrik tekstil 

menggunakan deep learning bukanlah sekadar aplikasi jaringan saraf biasa. Proses 

ini memerlukan serangkaian transformasi data yang canggih dan arsitektur jaringan 

yang dirancang khusus untuk tugas separasi sinyal. Alur kerja lengkapnya dapat 

dipahami melalui empat tahap utama yang saling terkait erat: (1) Representasi 

Sinyal, (2) Ekstraksi Fitur Kontekstual, (3) Rekonstruksi Sinyal Presisi, dan (4) 

Generasi Output dan Konversi Kembali ke Audio. 

2.2.7.1. Transformasi Audio menjadi Citra melalui STFT dan Spektogram 

Secara alami, manusia dapat membedakan berbagai jenis suara dengan 

mudah. Namun, bagi komputer, sinyal audio direpresentasikan sebagai deretan nilai 

satu dimensi berupa amplitudo terhadap waktu. Agar model deep learning berbasis 

visi seperti Convolutional Neural Network (CNN) dapat mengolah dan memahami 

pola-pola pada sinyal suara, diperlukan transformasi dari sinyal 1D menjadi 

representasi 2D yang lebih informatif, yaitu spektrogram. 

1. STFT : Analisis Frekuensi yang Berubah terhadap Waktu 
STFT adalah teknik fundamental untuk menganalisis bagaimana konten frekuensi 

dari sebuah sinyal berubah seiring waktu. Karena sinyal seperti ucapan dan 

kebisingan bersifat non-stasioner (karakteristiknya berubah), STFT memecahnya 

menjadi segmen-segmen kecil di mana sinyal dapat diasumsikan stasioner untuk 

sementara. Prosesnya adalah sebagai berikut: 
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a. Segmentasi 
Sinyal audio x[n] dibagi menjadi segmen-segmen pendek yang saling tumpang 

tindih (overlapping). Segmentasi ini diperlukan agar analisis frekuensi dapat 

mengikuti dinamika perubahan sinyal. 

b. Windowing 
Setiap segmen dikalikan dengan fungsi jendela w[n] (misalnya jendela Hann). 

Fungsi jendela digunakan untuk mereduksi amplitudo pada bagian tepi segmen 

sehingga mengurangi spectral leakage, yaitu penyebaran energi frekuensi ke bin 

tetangga dalam domain frekuensi. 

c. Transformasi Fourier 
Fast Fourier Transform (FFT) diterapkan pada setiap segmen yang telah diberi 

jendela untuk memperoleh representasi spektral dari segmen tersebut. 

Secara matematis, STFT dari sinyal diskrit x[n] didefinisikan sebagai: 

𝑆[𝑚, 𝑘] =  ∑ 𝑥[𝑛]. 𝑤[𝑛 − 𝑚𝐻]. 𝑒−𝑗2𝜋𝑘𝑛/𝑁

𝑁−1

𝑛=0

 (2.7) 

Penjelasan komponen rumus (2.7) adalah sebagai berikut: 
a. S[m,k] adalah nilai STFT pada frame waktu ke-mmm dan bin frekuensi ke-k. 
b. x[n] adalah sinyal input dalam domain waktu. 
c. w[n−mH] adalah fungsi jendela yang digeser berdasarkan hop length. 
d. N adalah ukuran FFT. 
e. H adalah hop length, yaitu jumlah pergeseran antara dua jendela berturut-turut. 

 
2. Spektogram: "Citra" dari Suara 

Meskipun STFT menghasilkan nilai kompleks, untuk input ke CNN 

umumnya hanya digunakan magnitudo-nya. Spektogram magnitudo diperoleh 

dengan mengambil nilai absolut dari setiap elemen dalam spektogram kompleks, 

∣X(m,ω)∣. Untuk meningkatkan kualitas representasi, penelitian ini secara spesifik 

menggunakan Log-Mel Spektrogram dengan dimensi input 128 x N. 
a. Skala Mel 
Sumbu frekuensi pada spektrogram dikonversi ke skala Mel, yaitu skala frekuensi 

yang lebih mendekati sensitivitas pendengaran manusia. Skala ini memberikan 

resolusi lebih tinggi pada frekuensi rendah, tempat banyak informasi penting dari 

sinyal ucapan berada. 

b. Skala Logaritmik 
Nilai amplitudo dikonversi ke skala logaritmik untuk mengompresi rentang dinamis 

sinyal suara. Transformasi ini membuat variasi energi yang kecil tetap terlihat, 

sambil mengurangi dominasi komponen berenergi tinggi. 
Hasil akhirnya berupa representasi visual menyerupai citra dua dimensi, di 

mana pola akustik dapat dianalisis. Struktur harmonik pada sinyal ucapan biasanya 
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terlihat sebagai garis-garis horizontal, sedangkan kebisingan mesin yang bersifat 

konstan dapat tampak sebagai pita energi yang berkelanjutan pada spektrogram. 
 

3. Fungsi Aktivasi Sigmoid (untuk Masking) 
Pada tahap akhir pemrosesan, model U-Net menghasilkan nilai untuk setiap 

elemen pada spektrogram guna menentukan apakah bagian tersebut merupakan 

komponen sinyal ucapan atau kebisingan. Untuk mengubah keluaran jaringan 

menjadi nilai yang dapat digunakan sebagai masking, fungsi aktivasi Sigmoid 

digunakan karena mampu memetakan setiap nilai input ke rentang [0,1], sehingga 

dapat ditafsirkan sebagai derajat atau probabilitas. 
Rumusnya:  

f (x) = 
1

1+𝑒−𝑥
 (2.8) 

Penjelasan komponen rumus (2.8) adalah sebagai berikut: 

1. x : Input ke Neuron Terakhir Ini  
Merupakan nilai sebelum aktivasi (pre-activation) yang dihasilkan jaringan. 

Nilai ini dapat positif, negatif, atau nol dan mencerminkan tingkat keyakinan awal 

model terhadap suatu elemen spektrogram. 

2. e−x : Bagian Eksponensial 
Komponen ini menentukan bentuk kurva Sigmoid. 

a. Jika x bernilai positif besar, e⁻ˣ menjadi sangat kecil sehingga keluaran 

Sigmoid mendekati 1. 
b. Jika x bernilai negatif besar, e⁻ˣ menjadi sangat besar sehingga keluaran 

Sigmoid mendekati 0. 
c. Jika x ≈ 0, maka e⁻ˣ = 1, menghasilkan keluaran di sekitar 0,5. 

3. Hasil Akhir f(x) : Nilai Masker (antara 0 dan 1) 
Nilai Sigmoid f(x)berada pada rentang [0,1] dan berfungsi sebagai nilai masking: 

a. Mendekati 1 = bagian spektrogram cenderung dianggap sebagai sinyal 

ucapan. 
b. Mendekati 0 = bagian tersebut lebih terkait dengan kebisingan. 
c. Nilai di tengah (±0,5) = menunjukkan ketidakpastian, sehingga bagian 

tersebut dipertahankan sebagian. 
Penggunaan fungsi Sigmoid memungkinkan model menghasilkan masker dengan 

nilai kontinu, bukan keputusan biner, sehingga proses pemisahan antara komponen 

ucapan dan kebisingan dapat dilakukan secara lebih halus dan adaptif. 

2.2.7.2. Ekstraksi Fitur Kontekstual: Jalur Encoder pada U-Net 
Setelah audio diubah menjadi spektogram, arsitektur U-Net—seperti yang 

dirinci pada Gambar 3.3 dalam penelitian ini—mulai bekerja. Bagian pertama 

adalah Jalur Encoder, yang bertujuan untuk "memahami" konten atau konteks dari 

citra spektogram melalui ekstraksi fitur hierarkis. 
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a. Operasi Konvolusi dan Aktivasi 
Setiap blok encoder menerapkan serangkaian filter 2D (kernel) pada peta fitur 

inputnya. Sebagai contoh, Encoder Block 1 menggunakan lapisan konvolusi dengan 

32 filter. Filter-filter ini belajar mengenali pola-pola lokal. Setelah konvolusi, fungsi 

aktivasi non-linear seperti ReLU (Rectified Linear Unit) diterapkan untuk 

memungkinkan model mempelajari hubungan yang kompleks. 

b. Normalisasi dan Downsampling 
Batch Normalization digunakan di setiap blok untuk menstabilkan dan 

mempercepat proses pelatihan. Setelah itu, MaxPooling mengurangi ukuran peta 

fitur (misalnya, dari 128xN menjadi 64x(N/2)), yang bertujuan mengurangi beban 

komputasi dan memperluas "bidang reseptif" (receptive field). Ini memungkinkan 

neuron di lapisan berikutnya untuk memahami konteks global dari suara. 
c. Representasi Abstrak 
Proses ini diulang dengan jumlah filter yang meningkat (32, 64, 128) seiring data 

bergerak lebih dalam di sepanjang jalur encoder. Di lapisan Bottleneck , yang 

menggunakan 256 filter, jaringan memiliki pemahaman yang paling terkonsentrasi 

dan abstrak tentang "apa" yang ada di dalam sinyal, tetapi informasi spasial "di 

mana" (lokasi waktu dan frekuensi yang tepat) sebagian besar telah hilang. 

2.2.7.3. Rekonstruksi Sinyal: Jalur Decoder dan Kekuatan Skip Connections  
Tujuan utama dari pengurangan kebisingan adalah merekonstruksi sinyal ucapan 

dengan fidelitas tinggi. Ini memerlukan informasi lokasi yang presisi, yang hilang 

selama encoding. Di sinilah kejeniusan Jalur Decoder dan Skip Connections pada 

U-Net bersinar. 

1. Operasi Upsampling (Transposed Convolution) 
Jalur decoder bekerja secara terbalik dari encoder. Ia mengambil peta fitur yang 

abstrak dan terkompresi, lalu secara bertahap memperbesar ukurannya 

(upsampling) menggunakan transposed convolutions untuk merekonstruksi citra 

spektogram kembali ke resolusi aslinya. 

2. Kekuatan Skip Connections 
Operasi upsampling sendiri akan menghasilkan output yang kabur. Skip 

Connections mengatasi masalah ini dengan menghubungkan peta fitur dari jalur 

encoder langsung ke lapisan yang sesuai di jalur decoder. Proses ini secara krusial 

"menyuntikkan" kembali informasi spasial beresolusi tinggi yang mengandung 

detail lokasi yang presisi. Lapisan konvolusi di decoder kemudian menggunakan 

informasi gabungan ini (konteks abstrak dari upsampling dan detail presisi dari skip 

connection) untuk merekonstruksi sinyal dengan jauh lebih akurat. Mekanisme ini 

memungkinkan U-Net untuk menjawab pertanyaan "di mana" harus menempatkan 

fitur "apa" yang telah dipelajarinya. 
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2.2.7.4. Generasi Output dan Konversi Kembali ke Audio 
Lapisan terakhir dari U-Net menghasilkan spektogram yang telah diproses. 

Dalam penelitian ini, strategi yang digunakan adalah masking, yang didukung oleh 

penggunaan fungsi aktivasi Sigmoid pada lapisan output. 

1. Masking 
Jaringan tidak langsung mengeluarkan spektrogram bersih; ia hanya memproduksi 

sebuah masker berupa matriks yang setiap elemennya berada di antara 0 dan 1. Agar 

nilai tetap dalam rentang tersebut, lapisan output dipasang fungsi aktivasi sigmoid: 

f (x) = 
1

1+𝑒−𝑥
, Masker ini kemudian disapukan ke spektrogram bising dengan cara 

mengalikan kedua matriks secara elemen-demi-elemen (perkalian Hadamard, 

dilambangkan seperti perkalian biasa tetapi diberi catatan “elemen-demi-elemen”): 

Spectrogramclean=Spectrogramnoisy x Mpredicted 

Dimana “x” bukan perkalian matriks penuh, melainkan setiap elemen seletak 

dikalikan langsung). Nilai 1 pada masker berarti “pertahankan frekuensi-waktu ini” 

(dianggap ucapan), nilai 0 berarti “redam sepenuhnya” (dianggap noise). Masker 

yang dipelajari berbentuk Ideal Ratio Mask (IRM). IRM bukan masker biner, 

melainkan memberikan bobot kontinu 0–1 yang menyatakan rasio energi ucapan 

terhadap total energi (ucapan + noise) pada setiap titik. Dengan IRM, komponen 

yang sedikit tercampur noise hanya dilemahkan sedikit, sedangkan komponen yang 

kuat noise-nya dilemahkan besar, sehingga hasil audio mengalami distorsi lebih 

rendah dan terdengar lebih natural. 

2. Fungsi Loss dan Pelatihan 
Model dilatih dengan meminimalkan kesalahan antara output yang dihasilkan 

(setelah masking) dan target sebenarnya (spektogram ucapan bersih). Fungsi 

kesalahan seperti Mean Squared Error (MSE) digunakan untuk mengukur 

perbedaan ini dan memperbarui bobot jaringan melalui proses backpropagation. 

3. Konversi Kembali ke Audio 
Setelah spektogram bersih diperoleh, langkah terakhir adalah mengubahnya 

kembali menjadi sinyal audio 1D yang dapat didengar menggunakan algoritma 

Inverse Short-Time Fourier Transform (ISTFT). Proses ini juga memerlukan 

estimasi fasa dari sinyal untuk merekonstruksi gelombang suara secara utuh. 
Secara keseluruhan, arsitektur U-Net yang diterapkan pada spektogram 

menyediakan kerangka kerja end-to-end yang sangat kuat dan sesuai dengan 

rancangan penelitian, mampu belajar memisahkan pola ucapan yang kompleks dari 

kebisingan industri yang menantang dengan mempertahankan detail dan kejernihan 

sinyal yang diinginkan. 
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2.2.8. Keuntungan dan Tantangan 
Penerapan ANN untuk pengurangan kebisingan menawarkan serangkaian 

keuntungan signifikan yang didasari oleh kemampuannya untuk belajar dan 

beradaptasi. Keunggulan utamanya adalah kemampuan adaptasi terhadap pola data 

yang kompleks, yang memungkinkan sistem untuk menyesuaikan diri secara  real-

time dengan kondisi lingkungan akustik yang bervariasi. Hal ini didukung oleh 

kemampuan pemrosesan paralel yang dapat mengolah data dalam jumlah besar 

secara efisien, sehingga sistem mampu memberikan respons yang cepat dan akurat. 

Selain itu, ANN memiliki daya generalisasi yang tinggi untuk mengenali pola-pola 

baru yang tidak terduga berdasarkan pengalaman sebelumnya, yang pada akhirnya 

meningkatkan kualitas suara dengan memisahkan sinyal relevan dari kebisingan 

dan membuka peluang untuk solusi inovatif di berbagai bidang seperti manufaktur 

dan komunikasi.  
Meskipun demikian, implementasi ANN juga dihadapkan pada sejumlah 

tantangan yang perlu diatasi. Tantangan mendasar adalah kebutuhan akan data 

pelatihan yang besar dan beragam, di mana proses pengumpulan dan 

pengolahannya bisa menjadi sangat kompleks, terutama di lingkungan industri. 

Pembangunan model yang efektif juga memerlukan pemahaman mendalam tentang 

arsitektur jaringan dan parameter pelatihan, yang sering kali menuntut keterampilan 

khusus serta sumber daya yang signifikan. Selama pelatihan, terdapat pula risiko  
overfitting, di mana model gagal melakukan generalisasi pada data baru di dunia 

nyata. Dari sisi praktis, tantangan lainnya meliputi biaya implementasi yang dapat 

menjadi penghalang bagi perusahaan kecil, kesulitan integrasi dengan sistem 

industri yang sudah ada, serta ketergantungan yang tinggi pada teknologi yang 

menuntut adanya rencana pemeliharaan dan cadangan yang baik.  
Pada akhirnya, meskipun terdapat berbagai tantangan, keuntungan yang 

ditawarkan oleh ANN dalam pengurangan kebisingan sangatlah signifikan. Dengan 

kemampuan adaptasi, pemrosesan paralel, dan generalisasi yang baik, ANN dapat 

memberikan solusi inovatif untuk masalah kebisingan di berbagai sektor, termasuk 

industri tekstil. Namun, perhatian penuh harus diberikan pada tantangan-tantangan 

yang ada untuk memastikan implementasi dapat berjalan dengan efektif dan efisien.  

2.2.9. Metrik Evaluasi Kinerja 
Untuk mengukur efektivitas dan performa dari sistem pengurangan kebisingan 

yang dikembangkan, serangkaian metrik kuantitatif dan kualitatif digunakan. 

Metrik-metrik ini diadopsi dari dokumentasi teknis proyek untuk memastikan 

penilaian yang komprehensif terhadap kualitas audio dan karakteristik sistem. 

1. SNR Improvement (Peningkatan SNR) 
Signal-to-Noise Ratio (SNR) adalah metrik fundamental yang mengukur rasio 

antara daya sinyal yang diinginkan (ucapan bersih) dengan daya sisa kebisingan 

(residual noise) setelah diproses. Peningkatan SNR, yang diukur dalam desibel 
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(dB), menjadi indikator utama keberhasilan sistem dalam meningkatkan kejelasan 

audio. Peningkatan sebesar 6-15 dB menandakan reduksi noise yang sangat efektif. 
Rumus: SNR dihitung menggunakan rumus berikut: 

SNR = 10 log10 (
∑ 𝑠(𝑛)2𝑁−1

𝑛=0

∑ 𝑒𝑁−1
𝑛=0 (𝑛)2

) (2.9) 

Di mana: 

a. s(n) adalah sampel dari sinyal ucapan bersih (target). 

b. e(n) adalah sampel dari sinyal error atau sisa kebisingan (hasil proses - 

sinyal bersih). 

c. N adalah jumlah total sampel. 

Peningkatan SNR (SNR Improvement) dihitung sebagai selisih antara SNR 

sinyal hasil pemrosesan dan SNR sinyal asli sebelum proses reduksi kebisingan. 

Peningkatan antara 6–15 dB umumnya menunjukkan reduksi kebisingan yang 

efektif. 

2. Spectral Preservation (Pemeliharaan Spektral) 
Metrik ini bertujuan untuk mengukur seberapa baik sistem mempertahankan 

konten frekuensi dari sinyal ucapan asli setelah proses denoising. Target 

pemeliharaan di atas 95% menunjukkan bahwa sistem mampu menghilangkan 

noise tanpa merusak atau menghilangkan detail penting dari suara asli, sehingga 

menjaga kealamian dan karakter vokal. 
Rumus untuk Pemeliharaan spektral dapat dikuantifikasi menggunakan Spectral 

Preservation Index (SPI) yang secara konseptual membandingkan magnitudo 

spektogram bersih dengan hasil proses: 

SP1 = 1 =

(
∑𝑘,𝑚 | 𝑆𝑐𝑙𝑒𝑎𝑛(𝑘,𝑚)− 𝑆𝑝𝑟𝑜𝑐 (𝑘,𝑚)|

∑𝑘,𝑚 | 𝑆𝑐𝑙𝑒𝑎𝑛(𝑘,𝑚)|

) x 100% 
(2.10) 

Di mana:  

a. Sclean(k,m) adalah magnitudo pada bin frekuensi k dan frame waktu m dari 

spektogram ucapan bersih. 
b. Sproc(k,m) adalah magnitudo pada bin frekuensi k dan frame waktu m dari 

spektogram hasil proses. 
Nilai SPI di atas 95% mengindikasikan bahwa sistem berhasil menjaga 

karakteristik spektral sinyal ucapan sambil tetap menekan kebisingan. 

3. Artifact Minimization (Minimisasi Artefak) 
Metrik ini bersifat kualitatif untuk mengevaluasi munculnya distorsi suara yang 

tidak diinginkan sebagai efek samping dari pemrosesan, seperti musical noise 

(artefak nada pendek acak) atau efek "robotik". Sistem yang baik harus mampu 
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meminimalkan artefak ini, yang dalam proyek ini dicapai melalui teknik 

penghalusan masker (mask smoothing) untuk memastikan transisi yang mulus. 

4. Processing Speed (Kecepatan Pemrosesan) 
Processing Speed atau Kecepatan Pemrosesan adalah metrik yang mengukur 

seberapa cepat dan efisien program Anda dalam menyelesaikan tugas reduksi noise 

pada sebuah file audio. Metrik ini dinyatakan sebagai rasio perbandingan, yang 

menunjukkan berapa kali lebih cepat program Anda dibandingkan durasi asli audio 

tersebut (real-time). 
Rumus untuk menghitung kecepatan pemrosesan sangat sederhana: 

Kecepatan Pemrosesan = 
Waktu Pemrosesan (detik)

Durasi Audio Asli (detik)
 (2.11) 

a. Durasi Audio Asli 
Panjang total file audio yang Anda proses, dalam satuan detik. 

b. Waktu Pemrosesan 
Waktu yang dibutuhkan oleh program Anda untuk menjalankan seluruh 

algoritma dari awal hingga akhir, dalam satuan detik. 

Nilai rasio yang lebih besar menunjukkan kinerja pemrosesan yang lebih cepat. 
Sebagai contoh apabila memiliki sebuah file audio dengan detail berikut: 
• Durasi Audio Asli: 60 detik (1 menit) 
• Program membutuhkan waktu 12 detik untuk membersihkan noise dari file 

tersebut. 

Maka, perhitungannya adalah:  Kecepatan Pemrosesan = 
60 (detik)

12 (detik)
 = 5 

Hasil 5 ini berarti kecepatan pemrosesan program adalah 5x lebih cepat dari real-

time. Dengan kata lain, untuk setiap satu detik audio, program hanya butuh 0.2 detik 

untuk memprosesnya. 
Nilai ini sangat penting untuk menunjukkan bahwa aplikasi tidak hanya efektif 

dalam mengurangi noise, tetapi juga praktis dan tidak membuat pengguna 

menunggu terlalu lama.  

2.2.10. Skenario Pengujian 
Untuk mengukur performa sistem secara kuantitatif, serangkaian pengujian 

dilakukan dengan menjalankan skrip evaluate_model.py pada dataset uji. Dataset 

ini terdiri dari pasangan file audio: versi asli yang bising (noisy) dan versi bersih 

sebagai ground truth. Skrip akan memproses file bising dan membandingkan 

hasilnya dengan file bersih untuk menghitung metrik performa. 
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BAB III 
METODOLOGI PENELITIAN 

3.1. Desain Penelitian 
Penelitian ini merupakan penelitian terapan dengan pendekatan simulasi 

dan rekayasa model. Tujuannya adalah membangun sistem pengurangan 
kebisingan berbasis deep learning menggunakan arsitektur U-Net Convolutional 
Neural Network (CNN). Sistem akan dilatih untuk membedakan sinyal bicara dari 
kebisingan pabrik tekstil. 
Desain penelitian mencakup: 
1) Pengumpulan data audio (clean speech dan noisy speech). 
2) Praproses data menjadi bentuk spectrogram. 
3) Pelatihan model menggunakan dataset tersebut. 
4) Evaluasi hasil menggunakan metrik kinerja seperti SNR Improvement, Spectral 

Preservation, dan Artifact Minimization. 

3.2. Lokasi dan Waktu Penelitian 

Penelitian dilaksanakan di PT. Embee Plumbon Tekstile, Unit 2, yang memiliki 

tingkat kebisingan tinggi di area produksi. Lokasi ini dipilih karena menyediakan 

data nyata untuk melatih dan menguji model ANN. Waktu penelitian direncanakan 

berlangsung dari Januari hingga Juli 2025, mencakup tahap pengumpulan data, 

pelatihan model, dan evaluasi hasil. 

3.3. Populasi dan Sampel 

Populasi dalam penelitian ini adalah seluruh area produksi di PT. Embee 

Plumbon Tekstile yang menghasilkan kebisingan akibat operasional mesin. Dari 

populasi tersebut, sampel dipilih menggunakan metode purposive sampling, yang 

mencakup lima area produksi utama dengan tingkat kebisingan tertinggi. Di setiap 

area sampel, dilakukan perekaman suara selama 1-20 menit untuk mengumpulkan 

data kebisingan dan komunikasi verbal secara representatif. 
Dari lima area produksi yang dijadikan lokasi penelitian, dilakukan proses 

perekaman audio untuk mengumpulkan data sampel. Secara total, berhasil 

dikumpulkan 9 sampel rekaman suara bersih (clean speech) dan 9 sampel rekaman 

kebisingan pabrik murni (factory noise). Sampel-sampel inilah yang menjadi 

fondasi untuk proses augmentasi data, di mana keduanya digabungkan secara 

sintetis dalam berbagai rasio untuk menciptakan dataset pelatihan yang bervariasi 

dan robust. 

3.4.Variabel Penelitian 

Untuk memastikan objektivitas dan kejelasan, penelitian ini mendefinisikan 

variabel secara spesifik untuk menganalisis hubungan sebab-akibat. Variabel bebas 

(independent variable) dalam penelitian ini adalah Model Artificial Neural Network 

(ANN) berbasis U-Net CNN yang dikembangkan, yang bertindak sebagai 
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intervensi untuk mengurangi kebisingan. Efek dari intervensi ini diukur melalui 

variabel terikat (dependent variables), yaitu tingkat kebisingan yang berhasil 

direduksi, yang dianalisis secara kuantitatif dalam desibel (dB). Guna memastikan 

bahwa perubahan yang diamati disebabkan oleh variabel bebas, beberapa variabel 

kendali (control variables) turut diperhatikan, seperti parameter mesin produksi dan 

kondisi lingkungan pabrik saat pengambilan data. 

3.5. Instrumen Penelitian 
Penelitian ini menggunakan beberapa instrumen utama untuk mendukung 

proses pengumpulan dan analisis data. Instrumen tersebut meliputi mikrofon 

kondensor untuk merekam data suara dari area produksi , perangkat lunak 

pengolahan suara berbasis Python untuk melakukan preprocessing data , serta 

platform TensorFlow dan Python untuk pengembangan dan pelatihan model ANN. 

Selain itu, sebuah aplikasi decibel meter yang diukur melalui handphone digunakan 

untuk mengukur tingkat kebisingan sebelum dan sesudah penerapan sistem ANN. 

3.6. Teknik Pengumpulan Data 
Teknik pengumpulan data diawali dengan perekaman suara langsung di lokasi 

produksi menggunakan handphone dengan metode perekaman bergerak untuk 

menangkap variasi suara dari berbagai sudut, yang mencakup suara mesin dan 

komunikasi verbal pekerja. Data mentah ini kemudian diperbanyak melalui proses 

augmentasi data, di mana variasi noise ditambahkan untuk melatih ANN agar lebih 

adaptif terhadap berbagai kondisi kebisingan. Tahap terakhir adalah preprocessing, 

di mana data suara diolah melalui normalisasi, penghapusan noise yang tidak 

relevan, dan ekstraksi fitur-fitur penting seperti frekuensi dan amplitudo. 

3.7. Teknik Analisis Data 
Pengumpulan data dilakukan dengan merekam suara langsung di lima area 

produksi PT. Embee Plumbon Tekstile Unit 2 menggunakan mikrofon kondensor 

via handphone, mencakup suara mesin dan komunikasi verbal. Data kemudian 

diaugmentasi, yaitu diperbanyak dengan menambahkan variasi kebisingan ke 

rekaman suara bicara yang bersih agar model ANN lebih adaptif. Selanjutnya, data 

dipraproses melalui normalisasi, pemisahan sinyal, dan ekstraksi fitur spektral 

(misalnya Log-Mel Spectrogram) agar siap menjadi input model. 

3.8. Prosedur Penelitian 
Prosedur penelitian ini dilaksanakan melalui tiga tahap utama: persiapan, 

pelaksanaan, dan evaluasi. Tahap persiapan meliputi identifikasi lokasi dan alat, 

pengumpulan data suara, serta penyusunan data pelatihan untuk ANN. Selanjutnya, 

pada tahap pelaksanaan, model ANN dilatih dengan data yang telah di- preprocess 

dan diimplementasikan di lokasi uji coba. Proses evaluasi kemudian dilakukan 

dengan mengukur tingkat kebisingan menggunakan  decibel meter, mengumpulkan 

tanggapan pekerja mengenai kejelasan komunikasi, dan membandingkan hasil 

dengan kondisi awal.  
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Seluruh penelitian ini dijalankan dengan mematuhi pedoman etika, yang 

mencakup perolehan persetujuan tertulis dari manajemen pabrik, menjaga 

anonimitas data suara, dan membatasi penggunaan data hanya untuk keperluan 

akademis. Aspek validitas penelitian dipastikan melalui pengukuran kebisingan 

berulang, sementara reliabilitas diuji dengan mengevaluasi model pada dataset yang 

berbeda untuk memastikan konsistensi dan kemampuan generalisasi. Meskipun 

demikian, penelitian ini memiliki beberapa keterbatasan, antara lain ketergantungan 

pada kualitas rekaman suara, kompleksitas desain ANN yang memerlukan waktu 

pelatihan lama, dan tidak mencakup analisis dampak jangka panjang terhadap 

produktivitas kerja. 
3.9. Etika Penelitian 

Penelitian ini dilaksanakan dengan mengikuti pedoman etika penelitian yang 

ketat. Prinsip utama yang dipegang adalah mendapatkan persetujuan tertulis dari 

pihak manajemen pabrik sebelum proses pengumpulan data dimulai. Selain itu, 

anonimitas data dijaga dengan memastikan bahwa data suara yang direkam tidak 

mengidentifikasi individu tertentu. Data yang terkumpul juga hanya digunakan 

untuk keperluan akademis dan tidak akan dibagikan kepada pihak ketiga tanpa izin 

resmi.  

3.10. Validitas dan Reliabilitas 
Untuk memastikan kualitas hasil penelitian, aspek validitas dan reliabilitas 

menjadi perhatian utama. Validitas data diuji untuk memastikan representasi yang 

akurat dari kondisi lapangan, yang dilakukan melalui pengukuran kebisingan secara 

berulang. Sementara itu, reliabilitas model ANN diuji dengan mengaplikasikannya 

pada dataset yang berbeda untuk memastikan konsistensi hasil serta kemampuan 

generalisasi model terhadap data baru.  

3.11. Keterbatasan Penelitian 
Dalam pelaksanaannya, penelitian ini menghadapi beberapa keterbatasan yang 

perlu diakui. Keterbatasan tersebut antara lain adalah ketergantungan pada kualitas 

data rekaman suara, di mana suara yang tidak jelas atau terdistorsi berpotensi 

memengaruhi efektivitas pelatihan model. Selain itu, terdapat tantangan dalam 

kompleksitas desain ANN yang membutuhkan waktu pelatihan yang relatif lama. 

Keterbatasan lainnya adalah cakupan penelitian yang tidak mencakup analisis 

jangka panjang mengenai dampak penerapan sistem ANN terhadap produktivitas 

kerja. 
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3.12. Diagram Alir Perancangan 
Dalam pengembangan sistem pemrosesan suara yang efektif, diperlukan sebuah 

alur kerja yang sistematis dan terstruktur. Untuk memberikan gambaran yang jelas 

mengenai tahapan yang dilakukan, keseluruhan proses pengolahan data suara mulai 

dari augmentasi hingga evaluasi model dirangkum dalam diagram alir pada Gambar 

3.1. Setiap kotak dan panah dalam diagram ini merepresentasikan langkah atau 

keputusan spesifik yang dirancang untuk memastikan kualitas hasil yang optimal. 
Untuk memperoleh pemahaman yang lebih jelas mengenai tahapan-tahapan 

proses pengembangan model dalam proyek ini, silakan merujuk pada Gambar 3.1. 

Diagram alir alur kerja pengolahan data suara yang akan dijelaskan secara terperinci 

sebagai berikut: 

1. Persiapan Dataset (Data Acquisition & Augmentation)  
Gambar 3.1 mengilustrasikan alur kerja komprehensif pengolahan data suara 

yang dimulai dari tahap Persiapan Dataset. Pada tahap ini, data sumber diperoleh 

melalui perekaman langsung di lingkungan PT. Embee Plumbon Tekstile Unit 2. 

Sesuai dengan metodologi yang dijelaskan dalam Sub-bab 3.3 (Populasi dan 

Sampel), data dikumpulkan secara terpisah dalam dua kategori utama: 
a. Sinyal Ucapan Bersih (Clean Speech) 

Direkam dalam kondisi akustik terkendali, berisi percakapan instruksional yang 

akan menjadi target output sistem. 
b. Sinyal Kebisingan Pabrik (Factory Noise) 
c. Direkam dari operasional mesin tekstil (TFO, Carding, dll.) tanpa kontaminasi 

sinyal ucapan. 
Pendekatan rekaman terpisah ini dipilih untuk memberikan fleksibilitas dalam 

sintesis data dan kontrol yang ketat terhadap variabel tingkat kebisingan selama 

proses augmentasi. 

2. Pemisahan Data (Data Separation for Supervised Learning)  
Tahap Augmentasi Data merupakan proses kritis dalam penelitian ini. 

Mengingat keterbatasan memperoleh data percakapan dalam kondisi bersih dan 

bising secara simultan di lingkungan industri, diterapkan teknik pencampuran 

sintetis (synthetic mixing) untuk menghasilkan dataset pelatihan yang 

komprehensif. 

Secara teknis, proses augmentasi dilakukan dengan: 
a. Mengambil sampel sinyal ucapan bersih s(t). 
b. Mencampurkannya dengan sampel kebisingan pabrik n(t). 
c. Menggunakan variasi Signal-to-Noise Ratio (SNR) yang berbeda 
d. Menghasilkan sinyal input: x(t) = s(t) + n(t) 

Hasil proses ini menghasilkan pasangan data pelatihan yang terdiri dari: 
a. Input: Sinyal "Suara Bising + Bicara" 
b. Target: Sinyal "Suara Tanpa Bising" asli 
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Proses ini diulang secara sistematis dengan berbagai kombinasi segmen suara 

dan kebisingan untuk menciptakan dataset yang robust dan beragam, yang essential 

untuk melatih model U-Net agar mampu beradaptasi dengan berbagai kondisi 

akustik. 

3. Pra-pemrosesan (Preprocessing)  
Secara teknis, tahap prapemrosesan ini diawali dengan Resampling seluruh file 

audio ke frekuensi sampel standar 16.000 Hz untuk memastikan konsistensi. 

Selanjutnya, dilakukan  Normalisasi amplitudo untuk mencegah variasi volume 

yang ekstrem. Normalisasi merupakan tahap krusial dalam prapemrosesan data 

audio sebelum dimasukkan ke dalam model jaringan saraf. Tujuan utama dari 

normalisasi adalah untuk menyeragamkan skala nilai amplitudo dari seluruh sinyal 

audio ke rentang yang konsisten, biasanya antara -1 dan 1. Proses ini, yang dalam 

penelitian ini dilakukan menggunakan fungsi librosa.util.normalize, sangat penting 

karena beberapa alasan.  
Pertama, ia mencegah sampel audio dengan volume yang sangat tinggi 

mendominasi proses pembelajaran secara tidak proporsional. Kedua, normalisasi 

memastikan bahwa model menerima input dengan distribusi yang lebih stabil, yang 

dapat mempercepat proses konvergensi selama pelatihan dan meningkatkan kinerja 

generalisasi model secara keseluruhan. Tanpa normalisasi, model mungkin akan 

kesulitan untuk belajar secara efektif karena harus beradaptasi dengan rentang data 

input yang sangat bervariasi. 
Proses augmentasi data (Noise Addition) kemudian dilakukan untuk 

menciptakan dataset pelatihan yang robust. Untuk ekstraksi fitur, setelah melalui 

proses STFT, representasi akhir yang menjadi input bagi model adalah Log-Mel 

Spectrogram yang dikonversi menggunakan 128 filter Mel (n_mels) untuk meniru 

persepsi pendengaran manusia. 

4. Pembagian Data untuk Pelatihan (Dataset Splitting)  
Setelah melalui proses augmentasi, dataset yang terbentuk kemudian dibagi 

secara proporsional menjadi tiga subset yang tidak saling tumpang-tindih (non-

overlapping datasets): 
a. Training Set (70-80%) 
b. Validation Set (10-15%), Digunakan untuk memantau proses pelatihan dan 

mencegah overfitting 
c. Test Set (10-15%), Digunakan untuk evaluasi final kinerja model 

Pembagian ini memastikan bahwa model dapat dievaluasi secara objektif pada 

data yang belum pernah dilihat selama proses pelatihan, sebagaimana tercermin 

dalam hasil kinerja yang dilaporkan pada Tabel 4.2 di Bab IV. 
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Gambar  3.1. Diagram alir alur kerja pengolahan data suara 
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5. Pelatihan Model (Model Training)  
Ini adalah inti dari pengembangan proyek, di mana model ANN benar-benar 

"belajar". Model dengan arsitektur U-Net CNN dilatih menggunakan data dari  train 

set. Selama pelatihan, model akan memprediksi suara bersih dari input bising dan 

terus-menerus menyesuaikan pengaturan internalnya (bobot) untuk meminimalkan 

kesalahan prediksi, sebuah proses yang berulang hingga model mencapai tingkat 

keahlian yang diinginkan.  

6. Evaluasi Model (Model Evaluation)  
Proses evaluasi kinerja model dilaksanakan secara kuantitatif dan sistematis 

untuk mengukur efektivitas sistem dari berbagai aspek. Mengacu pada prosedur 

yang diilustrasikan pada Lampiran 2, pengujian ini dijalankan menggunakan skrip 

evaluate_model.py pada dataset uji yang telah dipisahkan secara khusus .  
Dataset ini diorganisir ke dalam struktur direktori yang terdiri dari folder clean 

untuk data referensi (ground truth) dan noisy untuk data masukan . Skrip evaluasi 

secara otomatis memproses setiap file audio dari folder noisy, menyimpan hasilnya 

ke folder processed_output, dan kemudian membandingkan hasil tersebut dengan 

data referensi yang bersesuaian untuk menghitung serangkaian metrik kinerja 

secara objektif, yang meliputi Peningkatan SNR, Pemeliharaan Spektral, dan 

Kecepatan Proses. 

7. Siklus Iteratif & Pengambilan Keputusan 
Tahap ini menunjukkan sifat iteratif dari pengembangan model melalui sebuah 

siklus pengambilan keputusan. Setelah evaluasi, ditentukan apakah performa model 

telah mencapai kinerja yang diinginkan. Jika ya, model dianggap siap dan proses 

berlanjut ke tahap akhir. Namun, jika performa belum memuaskan, ada dua jalur 

perbaikan yang dapat ditempuh: melakukan tuning parameter (seperti learning rate 

atau epoch) dan melatih kembali model, atau jika data diduga kurang, maka alur 

akan kembali ke tahap augmentasi untuk menambah variasi data sebelum seluruh 

proses diulang. Setelah semua siklus perbaikan selesai dan performa model 

dianggap memuaskan serta konvergen, model dinyatakan siap.  

8. Akhir (End)  
Tahap ini adalah titik akhir dari seluruh proses pengembangan model. Model 

yang telah terlatih kini dapat digunakan untuk aplikasi sebenarnya dalam 

mengurangi kebisingan, yang sekaligus menandai selesainya proyek.  

3.13. Digitalisasi Suara (Analog ke Digital) 
Proses awal yang fundamental dan esensial dalam setiap sistem pengolahan 

suara digital adalah digitalisasi suara, yaitu konversi sinyal audio analog menjadi 

representasi digital. Sinyal audio analog, seperti gelombang suara kontinu yang 

ditangkap oleh Mikrofon Kondensor (yang berfungsi sebagai sensor input dalam 

penelitian ini ), secara alami bervariasi secara terus-menerus dalam amplitudo dan 

waktu. Agar sinyal ini dapat diproses, dianalisis, dan dimanipulasi oleh komputer 
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serta jaringan saraf tiruan (seperti CNN), ia harus diubah menjadi serangkaian nilai 

numerik diskrit. 
Konversi ini secara fisik dilakukan oleh perangkat keras yang disebut Analog-

to-Digital Converter (ADC). Proses digitalisasi ini melibatkan dua parameter kunci 

yang sangat memengaruhi kualitas dan akurasi representasi digital: 
1. Frekuensi Sampling (Sampling Rate) 
Ini menentukan berapa kali per detik sinyal analog diukur atau "disampel" untuk 

diubah menjadi sampel digital. Menurut teorema Nyquist-Shannon, frekuensi 

sampling harus setidaknya dua kali lipat dari frekuensi tertinggi yang ingin 

direproduksi. Semakin tinggi frekuensi sampling, semakin akurat representasi 

komponen frekuensi tinggi dari sinyal analog asli, yang krusial untuk menjaga 

fidelitas audio. 
2. Kedalaman Bit (Bit Depth/Quantization) 
Parameter ini mengacu pada jumlah bit yang digunakan untuk merepresentasikan 

amplitudo setiap sampel digital. Kedalaman bit menentukan jumlah kemungkinan 

nilai diskrit yang dapat digunakan untuk menyimpan setiap sampel. Semakin tinggi 

kedalaman bit (misalnya, 16-bit, 24-bit), semakin besar rentang dinamis (perbedaan 

antara suara paling keras dan paling lembut) dan resolusi amplitudo sinyal yang 

dapat direproduksi, sehingga mengurangi quantization noise dan meningkatkan 

fidelitas suara secara keseluruhan. 
Sinyal digital yang dihasilkan dari proses ini, yang terdiri dari serangkaian sampel 

diskrit dengan nilai amplitudo tertentu, inilah yang kemudian menjadi input yang 

valid dan dapat diolah lebih lanjut oleh tahapan berikutnya dalam alur pemrosesan, 

khususnya transformasi ke spektogram. 

3.14. Blok Diagram Sistem 

Penelitian ini mengadopsi pendekatan terapan dengan fokus pada simulasi dan 

rekayasa model untuk mengatasi tantangan kebisingan di pabrik tekstil. Inti dari 

sistem yang dikembangkan adalah arsitektur U-Net Convolutional Neural Network 

(CNN), sebuah model deep learning yang dirancang khusus untuk membedakan 

sinyal bicara dari kebisingan latar belakang yang kompleks. Desain penelitian 

secara holistik mencakup pengumpulan data audio, pra-pemrosesan data menjadi 

representasi spektral, pelatihan model CNN dengan dataset yang disiapkan, dan 

evaluasi hasil menggunakan metrik objektif SNR. Untuk pemahaman alur kerja 

yang lebih detail, mari kita tinjau diagram alir perancangan dan blok diagram sistem 

yang menjadi fondasi implementasi ini. 
Proses pengurangan kebisingan dirancang untuk mengubah sinyal audio mentah 

yang terkontaminasi kebisingan menjadi output suara yang lebih jernih. Alur ini 

mencakup serangkaian tahapan yang saling terkait, dimulai dari akuisisi suara 

hingga rekonstruksi akhir, dengan fokus pada pemrosesan cerdas di domain 

frekuensi untuk isolasi dan eliminasi kebisingan, seperti yang diilustrasikan pada 

Gambar 3.2 di bawah ini. 
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Untuk memperoleh pemahaman yang lebih mendalam mengenai arsitektur dan 

alur kerja Audio Noise Reduction Tool secara visual, kita dapat merujuk pada 

Gambar 3.2. Blok Diagram Sistem. Diagram ini secara jelas mengilustrasikan setiap 

tahapan kunci dan interaksi antar komponen, yang akan kita bahas lebih lanjut 

sebagai berikut: 
1. Akuisisi Suara Mentah (Microphone - Suara Raw) 
Sebagai titik awal dalam rantai pemrosesan, tahap Microphone (Suara Raw) 

bertanggung jawab atas akuisisi sinyal audio awal dari lingkungan sekitar. Pada fase 

ini, suara asli, yang merupakan campuran dari sinyal yang diinginkan (misalnya, 

ucapan manusia) dan berbagai jenis kebisingan latar belakang (seperti suara kipas, 

lalu lintas, atau desisan elektronik), ditangkap oleh mikrofon. Hasilnya adalah data 

audio mentah yang belum diproses, yang kemudian akan menjadi input bagi 

algoritma pengurangan kebisingan selanjutnya. Kualitas input pada tahap ini sangat 

memengaruhi kinerja keseluruhan sistem. 

 

 

 

 

 

 

 

 

 

 

 

2. Transformasi ke Spektogram (Encoder) 
Setelah sinyal audio berhasil didigitalisasi, tahap selanjutnya yang krusial adalah 

Transformasi Suara Digital ke Representasi Citra (Encoder). Dalam konteks 

arsitektur internal alat ini, fungsi ini secara spesifik diimplementasikan oleh  
Spectral Analysis Engine yang memanfaatkan teknik Short-Time Fourier 

Transform (STFT). STFT adalah metode fundamental dalam pemrosesan sinyal 

yang memecah sinyal audio digital yang bervariasi seiring waktu menjadi segmen-

segmen pendek yang tumpang tindih. Pada setiap segmen tersebut, dilakukan 

Transformasi Fourier untuk menganalisis konten frekuensinya, menghasilkan 

spektrum frekuensi lokal. Hasil dari STFT adalah spektogram, sebuah representasi 

visual dua dimensi yang kaya informasi. Pada spektogram, sumbu horizontal secara 

Gambar  3.2. Blok Diagram Sistem 
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tipikal merepresentasikan waktu, sumbu vertikal merepresentasikan frekuensi, dan 

intensitas warna (atau kecerahan piksel) pada setiap titik menunjukkan amplitudo 

atau energi suara pada frekuensi spesifik di titik waktu yang bersangkutan. 

Representasi visual ini secara efektif mengonversi sinyal audio yang kompleks dan 

berbasis waktu menjadi format "citra" yang terstruktur dan berbasis frekuensi. 
Lebih lanjut, dalam banyak aplikasi deep learning untuk audio, termasuk 

penelitian ini, spektogram ini sering kali dikonversi menjadi Log-Mel Spectrogram. 

Konversi ke skala Mel melibatkan pemetaan frekuensi linier ke skala non-linier 

yang lebih mirip dengan cara telinga manusia memproses frekuensi, sehingga 

menekankan area frekuensi yang paling relevan untuk persepsi suara manusia. 

Sementara itu, penerapan skala logaritmik membantu menekan rentang dinamis 

data, menjadikannya lebih stabil dan cocok sebagai input untuk jaringan saraf. 

Representasi  
Log-Mel Spectrogram inilah yang secara efektif bertindak sebagai "citra" 

2D dari sinyal audio. Ia berfungsi sebagai "encoder" karena secara efektif 

mengonversi representasi audio yang kompleks menjadi format visual yang dapat 

diolah langsung oleh jaringan saraf konvolusional (CNN) untuk mengekstraksi fitur 

spasial dan temporal layaknya pada sebuah citra, sehingga memungkinkan analisis 

dan manipulasi kebisingan yang lebih presisi. 

3. Pemrosesan Pengurangan Kebisingan (Proses CNN - Noise Reduction) 
Inti dari kapabilitas pengurangan kebisingan pada aplikasi ini terletak pada 

implementasi model deep learning dengan arsitektur Convolutional Neural 

Network (CNN) U-Net. Model ini telah dilatih secara khusus pada dataset pasangan 

audio bising dan bersih untuk mempelajari cara memisahkan suara manusia dari 

kebisingan latar secara cerdas. 
Prosesnya memperlakukan spektogram audio sebagai sebuah "citra". Model U-Net 

menganalisis citra spektogram yang bising ini dan belajar untuk merekonstruksi 

versi bersihnya melalui beberapa tahapan inti: 

A. Encoder Path (Ekstraksi Fitur)  
Tahap pertama adalah menganalisis spektogram bising. Menggunakan serangkaian 

lapisan konvolusional (convolutional layers) dan pooling, Encoder Path secara 

bertahap mengurangi dimensi "citra" spektogram sambil mengekstrak fitur-fitur 

abstrak yang esensial. Proses ini memungkinkan model untuk memahami konteks 

dan membedakan antara karakteristik pola suara manusia dengan pola kebisingan 

pabrik yang kompleks. 

B. Decoder Path (Rekonstruksi Spektogram)  
Setelah fitur diekstraksi, Decoder Path bertugas untuk membangun kembali 

spektogram menjadi versi yang bersih. Ini dilakukan melalui lapisan upsampling 

atau transposed convolution. Keunggulan utama arsitektur U-Net terletak pada 

penggunaan skip connections, yang menghubungkan langsung lapisan dari Encoder 
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ke Decoder. Fitur ini memungkinkan detail-detail penting dari sinyal asli yang 

mungkin hilang selama kompresi untuk dipulihkan, sehingga hasil audio menjadi 

jernih tanpa terdengar terdistorsi atau "mendem". 

C. Prediksi Masker Spektral dan Aplikasi  
Pada lapisan akhirnya, U-Net tidak melakukan gating sederhana, melainkan 

memprediksi sebuah masker spektral (spectral mask) yang canggih. Masker ini 

adalah sebuah matriks bernilai antara 0 dan 1 yang kemudian dikalikan dengan 

spektogram bising asli. Nilai yang mendekati 1 akan mempertahankan komponen 

sinyal (suara), sementara nilai yang mendekati 0 akan menekan komponen sinyal 

(noise). Kemampuan untuk menghasilkan masker yang bernilai gradien ini (bukan 

hanya 0 atau 1) memungkinkan proses penyaringan yang jauh lebih halus dan alami, 

serta secara efektif meminimalkan artefak seperti musical noise. 

D. Rekonstruksi Sinyal Audio (ISTFT)  
Tahap terakhir adalah mengambil magnitudo spektogram yang telah dibersihkan 

(setelah aplikasi masker) dan menggabungkannya kembali dengan informasi fase 

dari sinyal asli. Hasilnya kemudian diubah kembali dari domain frekuensi ke 

domain waktu menggunakan Inverse Short-Time Fourier Transform (ISTFT) untuk 

menghasilkan file audio akhir yang jernih. 

4. Rekonstruksi Sinyal Audio (Decoder) 
Setelah spektogram berhasil "dibersihkan" dari kebisingan melalui proses 

filtering oleh CNN, tahap selanjutnya yang krusial adalah Pengubah Spektogram 

Menjadi Suara (Decoder), atau yang lebih dikenal sebagai rekonstruksi sinyal 

audio. Fungsi vital ini diemban oleh komponen Signal Reconstruction dalam inti 

algoritma. Pada dasarnya, tahap ini melakukan operasi invers dari Short-Time 

Fourier Transform (STFT) yaitu, ia mengubah representasi data dari domain 

frekuensi (spektogram yang telah dimodifikasi dan difilter) kembali ke domain 

waktu. 
Penting untuk dicatat bahwa informasi fase asli dari sinyal yang diperoleh 

dari STFT awal tetap dipertahankan dan digabungkan kembali selama proses 

rekonstruksi ini untuk memastikan akurasi dan koherensi sinyal audio yang 

dihasilkan. Tanpa informasi fase yang tepat, suara yang direkonstruksi akan 

terdengar tidak alami atau terdistorsi, meskipun konten frekuensinya sudah benar. 

Hasil dari tahap ini adalah file audio yang telah dikurangi kebisingannya secara 

signifikan dan siap untuk didengar. Proses ini secara efektif bertindak sebagai 

"decoder", menerjemahkan kembali "citra" visual dan termanipulasi (spektogram 

bersih) menjadi bentuk audio yang dapat dipersepsi oleh telinga manusia. Ini adalah 

langkah terakhir dalam mengembalikan data dari representasi visual yang diolah 

oleh CNN ke bentuk suara yang dapat digunakan. 

5. Output Audio Akhir (Speaker) 
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Sebagai tahap final dalam pipeline pemrosesan, Speaker (Output) 

merepresentasikan titik di mana sinyal audio yang telah dimurnikan disalurkan ke 

pengguna. Pada fase ini, suara yang telah melewati seluruh proses pengurangan 

kebisingan dan rekonstruksi dapat diputar melalui perangkat speaker untuk 

didengarkan secara langsung, atau disimpan sebagai file audio digital yang telah 

diproses dan bersih. Ini menandai penyelesaian siklus penuh pengurangan 

kebisingan, menyajikan hasil akhir berupa audio yang ditingkatkan dengan 

kejernihan yang jauh lebih baik dan pengurangan kebisingan yang signifikan 

dibandingkan dengan input mentahnya. 

3.15. Rancangan Jaringan Saraf Tiruan (ANN) 
Model Artificial Neural Network (ANN) yang dirancang untuk penelitian ini 

adalah U-Net Convolutional Neural Network (CNN). Arsitektur ini dipilih karena 

performanya yang sangat baik dalam tugas pemrosesan audio seperti pengurangan 

kebisingan, di mana ia mampu mempertahankan detail penting dari sinyal asli 

(suara verbal) sambil secara efektif menghilangkan komponen kebisingan yang 

kompleks. Arsitektur dari model U-Net ini, yang terdiri dari Input Layer, Hidden 

Layers (mencakup Encoder Path, Bottleneck, dan Decoder Path dengan Skip 

Connections), serta Output Layer, diilustrasikan secara visual pada Gambar 3.3. 

memproses data input berupa Log-Mel Spectrogram untuk menghasilkan output 

berupa spektrogram yang telah dikurangi kebisingannya atau segmentasi fitur 

tertentu. Berikut adalah penjelasan untuk setiap komponen utama dalam arsitektur 

tersebut: 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
 

                                                             

                                

                        

           

                

                      

               

                       

                   

    

               

                  

                       

    

               

                       

                   

    

               

          

                 

    

               

           

                

    

               

          

                        

    

          

               

       

             

            

                          

                           

                             

               

               

               

           

           

           

              

              

              

                                                

                           

                                                       

                                                 
                                                       

                                 
                                                   

                               

Gambar  3.3. Blok Diagram Jaringan Saraf Tiruan (ANN) Model U-Net 

Output: 
 Spektogram Bersih / 

Masker Spektral 
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1. INPUT LAYER 
Lapisan ini menerima input berupa matriks Log-Mel Spectrogram dengan dimensi 

128 x N (di mana N adalah jumlah frame waktu) dan dalam format Gray Scale 

Segmentatio. Data ini kemudian diteruskan ke Encoder Path. 

2. HIDDEN LAYERS (Arsitektur U-Net) 
Bagian ini merupakan inti dari arsitektur model yang digunakan, terdiri dari 

serangkaian lapisan tersembunyi yang membentuk struktur U-Net. Komponen-

komponen ini bekerja secara sinergis untuk memproses dan memfilter spektogram, 

yang dapat dibagi menjadi tiga bagian fungsional utama: Jalur Pengekstraksi Fitur 

(Encoder Path), Leher Botol (Bottleneck), dan Jalur Rekonstruksi (Decoder Path). 

A. Jalur Pengekstraksi Fitur (Encoder Path) 
Jalur encoder berfungsi sebagai ekstraktor fitur (feature extractor) dalam 

arsitektur CNN. Tujuannya adalah untuk mengekstraksi representasi fitur yang 
semakin kaya dan abstrak dari spektogram input. Proses ini dicapai melalui 
serangkaian blok konvolusi yang secara progresif mengurangi resolusi spasial dari 
peta fitur melalui operasi downsampling (Pooling). Setiap blok dalam jalur ini 
mulai dari Encoder Block 1 hingga 3 menerapkan operasi konvolusi untuk 
mendeteksi pola-pola lokal, diikuti oleh Batch Normalization untuk menstabilkan 
pelatihan, dan fungsi aktivasi ReLU untuk memperkenalkan non-linearitas. 

Proses ekstraksi fitur hierarkis ini dimulai pada Encoder Block 1, yang 
menerima input langsung dari Input Layer dan menerapkan 32 filter konvolusi. 
Outputnya kemudian diteruskan ke Encoder Block 2 yang menggunakan 64 filter, 
dan selanjutnya ke Encoder Block 3 dengan 128 filter. Peningkatan jumlah filter 
pada setiap blok memungkinkan model untuk mempelajari fitur yang lebih 
kompleks pada setiap level abstraksi. Di akhir setiap blok, operasi MaxPooling 
mengurangi dimensi spasial peta fitur, yang berfungsi untuk meningkatkan bidang 
reseptif (receptive field). Hal ini memungkinkan neuron pada lapisan yang lebih 
dalam untuk "melihat" konteks yang lebih luas dari spektogram, yang krusial untuk 
membedakan antara pola kebisingan yang tersebar dan pola ucapan yang 
terstruktur. 

B. Leher Botol (Bottleneck) 
Lapisan bottleneck merupakan titik transisi krusial dalam arsitektur U-Net, 

berfungsi sebagai jembatan yang menghubungkan akhir dari jalur encoder dengan 

awal dari jalur decoder. Pada level ini, peta fitur telah mencapai dimensi spasial 

terkecil namun dengan kedalaman fitur (jumlah channel) terbesar, yaitu 256 filter. 

Lapisan ini mengkonsolidasikan informasi kontekstual paling abstrak yang telah 

diekstraksi dari keseluruhan spektogram. 
Dalam model yang diusulkan, sebuah pendekatan unik diterapkan dengan 

mengintegrasikan lapisan Fully Connected. Setelah peta fitur 2D dikonversi 

menjadi vektor 1D melalui lapisan Flatten, ia diproses oleh lapisan Fully 
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Connected. Desain ini memungkinkan model untuk menangkap dependensi global 

antara semua fitur yang telah diekstraksi, melampaui hubungan lokal yang 

ditangkap oleh lapisan konvolusional. Lapisan ini bertindak sebagai konsolidator 

informasi tingkat tinggi sebelum sinyal direkonstruksi oleh decoder. Untuk 

mencegah overfitting pada representasi fitur yang sangat terkonsentrasi ini, 

mekanisme regularisasi Dropout juga diterapkan. 

C. Jalur Rekonstruksi (Decoder Path) 
Jalur decoder bertugas sebagai bagian generatif dari arsitektur, yang 

bertujuan untuk merekonstruksi spektogram bersih secara bertahap kembali ke 

resolusi spasial aslinya. Proses ini dilakukan melalui operasi upsampling, yang 

dalam implementasi ini menggunakan lapisan Conv2DTranspose. Lapisan ini 

memperbesar dimensi peta fitur sambil mempelajari bobot konvolusional untuk 

mengisi detail. 
Fitur kunci dari arsitektur U-Net terletak pada penggunaan skip connections. 

Pada setiap blok decoder, peta fitur yang telah di-upsample digabungkan (melalui 

operasi Concatenate) dengan peta fitur beresolusi tinggi yang bersesuaian dari jalur 

encoder. Mekanisme ini secara fundamental memungkinkan model untuk 

mengkombinasikan informasi semantik abstrak dari bottleneck ("apa" yang ada di 

dalam sinyal) dengan informasi spasial presisi dari encoder ("di mana" lokasi fitur 

tersebut). Penggabungan ini secara signifikan meningkatkan akurasi rekonstruksi, 

mencegah hasil yang kabur, dan memastikan detail penting dari sinyal ucapan tetap 

terjaga. Proses rekonstruksi ini berlanjut secara simetris, di mana Decoder Block 3 

menggunakan 128 filter, Decoder Block 2 menggunakan 64 filter, dan Decoder 

Block 1 menggunakan 32 filter. 

D. Mekanisme Skip Connection 
Skip connection merupakan inovasi arsitektural yang menjadi kunci utama 

dari keunggulan U-Net, yang secara visual direpresentasikan oleh panah 

penghubung antara jalur encoder dan decoder pada Gambar 3.3. Mekanisme ini 

secara fundamental mengatasi tantangan hilangnya informasi spasial yang umum 

terjadi pada arsitektur encoder-decoder standar. Fungsinya adalah untuk 

mengambil peta fitur dari setiap level di jalur encoder dan menggabungkannya 

secara langsung (melalui operasi Concatenate) dengan peta fitur yang relevan di 

jalur decoder. 
Koneksi langsung ini memberikan tiga manfaat krusial: 
1. Preservasi Detail Spasial 
Informasi spasial beresolusi tinggi, seperti detail tepi dan tekstur halus pada 

spektogram yang ditangkap oleh lapisan awal encoder, akan hilang selama proses 

downsampling. Skip connection memastikan detail-detail penting ini tidak hilang 

dan "disuntikkan" kembali selama proses rekonstruksi, sehingga output yang 

dihasilkan lebih tajam dan akurat. 



42 
 

2. Mitigasi Masalah Gradien 
Pada jaringan yang sangat dalam, gradien bisa menjadi sangat kecil saat melalui 

proses backpropagation dari akhir ke awal jaringan (vanishing gradient problem). 

Skip connection menyediakan jalur pintas yang memungkinkan gradien mengalir 

lebih mudah ke lapisan-lapisan awal, sehingga proses pelatihan menjadi lebih stabil 

dan efektif. 

3. Peningkatan Akurasi Rekonstruksi 
Dengan mengkombinasikan informasi semantik yang abstrak dari decoder (konteks 

"apa" yang ada di dalam sinyal) dengan informasi lokasional yang presisi dari 

encoder (konteks "di mana" posisi fitur tersebut), skip connection secara signifikan 

meningkatkan akurasi dan fidelitas sinyal yang direkonstruksi. 

E. Lapisan Output (Output Layer) 
Lapisan terakhir dari jaringan ini menerima output dari Decoder Block 1 dan 

bertanggung jawab untuk menghasilkan luaran akhir model. Lapisan ini terdiri dari 

satu lapisan konvolusi (Conv2D) dengan satu filter dan fungsi aktivasi Sigmoid. 

Penggunaan aktivasi Sigmoid sangat krusial karena ia memetakan semua nilai 

output ke rentang antara 0 dan 1. Hasilnya bukanlah spektogram bersih secara 

langsung, melainkan sebuah masker spektral (spectral mask) yang canggih. Masker 

ini nantinya akan dikalikan dengan spektogram bising asli untuk menekan 

komponen derau dan mempertahankan komponen ucapan, sehingga menghasilkan 

spektogram bersih sebagai output akhir dari keseluruhan sistem. 
Model Artificial Neural Network (ANN) yang dirancang untuk penelitian ini 

adalah U-Net Convolutional Neural Network (CNN). Arsitektur ini dipilih karena 

performanya yang sangat baik dalam tugas pemrosesan audio seperti pengurangan 

kebisingan, di mana ia mampu mempertahankan detail penting dari sinyal asli 

(suara verbal) sambil secara efektif menghilangkan komponen kebisingan yang 

kompleks. Struktur fundamental dari model U-Net ini, yang mencakup Input Layer, 

Hidden Layers dengan jalur encoder-decoder dan Skip Connections, serta Output 

Layer, diilustrasikan secara visual pada Gambar 3.3. 
Setelah memahami gambaran umum arsitektur dan komponen-komponen 

utama U-Net melalui Gambar 3.3, pemahaman yang lebih mendalam mengenai 

mekanisme kerja internalnya menjadi krusial.  
Untuk itu, Gambar 3.4 menyajikan sebuah diagram alir yang komprehensif. 

Diagram ini dirancang untuk memfasilitasi pemahaman yang lebih detail, tidak 

hanya dengan merinci setiap langkah sekuensial dalam pemrosesan data, tetapi juga 

dengan memvisualisasikan bagaimana fitur-fitur diekstraksi, ditransformasi, dan 

direkonstruksi, serta bagaimana berbagai titik keputusan logis—seperti evaluasi 

kualitas, signifikansi fitur, dan ambang batas performa—secara aktif mengatur dan 

mengoptimalkan aliran informasi melalui beragam tahapan yang kompleks di 

dalam keseluruhan jaringan U-Net.  
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Gambar 3.4. Diagram Alir Jaringan Syaraf Tiruan (ANN) Model U-Net CNN 

Arsitektur Jaringan Saraf Tiruan (ANN) yang dirancang, seperti yang diilustrasikan 

pada Gambar 3.4, adalah sebuah model U-Net Convolutional Neural Network 

(CNN). Model ini secara sistematis memproses data audio, yang telah dikonversi 

menjadi spektogram, untuk secara cerdas memisahkan sinyal suara verbal dari 

kebisingan latar belakang yang kompleks. Diagram alir ini merinci setiap tahapan 

fungsional, menunjukkan bagaimana fitur-fitur diekstraksi melalui konvolusi, 

ditransformasi, direkonstruksi, serta bagaimana berbagai titik keputusan logis dan 

mekanisme umpan balik mengatur aliran informasi untuk mengoptimalkan kinerja 

keseluruhan jaringan CNN. 

1. Tahap Inisiasi dan Pemrosesan Input Awal 
Alur operasional model dimulai pada titik "Start", menandakan kesiapan sistem 

untuk menerima dan memproses data input. Data yang menjadi masukan utama 

adalah "Input Layer: 128 x N log-mel Spectrogram", sebuah representasi visual dua 

dimensi dari sinyal audio yang akan diolah lebih lanjut. Input mentah ("Raw input") 

ini kemudian segera diteruskan ke Encoder Block 1.  
Di dalam blok ini, dilakukan transformasi awal melalui penerapan dua lapisan 

konvolusi 2D dengan masing-masing 32 filter ("Apply 2x Conv2D 32 filters"), yang 

bertujuan untuk mengekstraksi fitur-fitur dasar dan pola-pola level rendah dari 

spektrogram input. Setelah proses konvolusi, hasil peta fitur dievaluasi melalui 

sebuah titik keputusan "Activation Threshold?".  
Jika kualitas peta fitur dianggap lemah ("Feature Map Weak"), sistem akan 

mengaktifkan mekanisme penyempurnaan fitur potensial ("Potential feature 

Refinement") untuk meningkatkan representasi fitur. Sebaliknya, jika peta fitur 

dinilai kuat ("Feature Map Strong"), alur proses dapat melanjutkan ke tahap 

berikutnya tanpa intervensi tambahan. Output dari keseluruhan tahap Encoder 

Block 1 ini kemudian mengalami operasi MaxPooling, sebuah proses 

downsampling yang penting untuk mereduksi dimensi spasial dari peta fitur sambil 

berupaya mempertahankan informasi yang paling signifikan atau dominan. 

2. Proses Encoding Lanjutan, Seleksi Fitur, dan Pembentukan Representasi 

Terkonsentrasi 
Setelah operasi MaxPooling pertama, model melakukan evaluasi terhadap 

signifikansi fitur-fitur yang telah diekstraksi ("Feature Signification"). Titik 

keputusan ini mengarahkan alur data berdasarkan tingkat kepentingan fitur: fitur 

dengan signifikansi tinggi ("High Significance") akan diarahkan ke tahap 

pemrosesan yang lebih lanjut dan mendalam, yaitu "Advanced Encoding" yang 

menuju ke Encoder Block 3.  
Sementara itu, fitur dengan signifikansi rendah ("Low Significance") dapat 

mengambil jalur alternatif ("Alternative Path") menuju Encoder Block 2, yang 

merupakan tahap encoding berikutnya namun mungkin dengan perlakuan yang 

berbeda atau untuk fitur yang kurang dominan.  
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Encoder Block 3 dirancang untuk menangani fitur-fitur yang lebih signifikan, 

melakukan pemrosesan dengan strategi retensi fitur parsial ("Partial Feature 

Retention") untuk menjaga informasi penting, dan supresi fitur ("Feature 

Suppression") untuk menghilangkan kontribusi dari fitur yang dianggap tidak 

relevan atau noise.  Selanjutnya, diterapkan dua lapisan konvolusi 2D dengan 128 

filter ("Apply 2x Conv2D, 128 Filters") guna menghasilkan fitur-fitur yang lebih 

kompleks dan abstrak ("Complex Features"), yang memiliki daya representasi lebih 

tinggi. Output dari Encoder Block 3 ini kemudian juga diakhiri dengan operasi 

MaxPooling untuk reduksi dimensi lebih lanjut.  
Secara paralel, Encoder Block 2 memproses fitur dari jalur alternatif dan juga 

diakhiri dengan operasi MaxPooling. Sebelum masuk ke lapisan Bottleneck, 

dilakukan evaluasi kompleksitas fitur ("Feature Compelkity") terhadap output dari 

Encoder Block 2. Fitur yang telah disederhanakan ("Simplified Features") dari 

tahap ini kemudian digabungkan atau diintegrasikan dengan fitur kompleks yang 

berasal dari Encoder Block 3 (setelah MaxPooling) untuk membentuk sebuah 

representasi fitur yang terkonsentrasi dan kaya informasi ("Concentrated 

Representation"). 

3. Lapisan Bottleneck dan Inisiasi Jalur Ekspansi (Decoding) 
Representasi fitur yang terkonsentrasi dari jalur encoding tersebut kemudian 

menjadi input bagi lapisan Bottleneck. Pada lapisan ini, diterapkan satu lapisan 

konvolusi 2D dengan 256 filter ("1x Conv2D 256 Filters"). Tujuan utama 

Bottleneck adalah untuk mengurangi kompleksitas lebih lanjut ("Reduce 

Complexity") dan mengkonsolidasikan fitur-fitur ("Feature Consolidation") 

menjadi sebuah vektor fitur yang paling esensial, padat informasi, dan memiliki 

dimensi yang lebih rendah dibandingkan inputnya.  
Lapisan ini berfungsi sebagai jembatan kritis antara jalur kompresi (encoder) 

dan jalur ekspansi (decoder). Setelah pemrosesan di Bottleneck, proses berbalik 

arah menuju ekspansi atau rekonstruksi sinyal ("Expansion Begin"), yang dimulai 

dengan mengalirkan output Bottleneck ke Decoder Block 3. 

4. Jalur Dekoding (Decoder Path) dengan Pemanfaatan Skip Connections 
Jalur dekoding bertugas untuk merekonstruksi sinyal atau peta fitur secara 

bertahap ke resolusi spasial aslinya, sambil memanfaatkan informasi detail yang 

ditangkap oleh jalur encoding melalui mekanisme skip connections. Proses dimulai 

pada Decoder Block 3, yang menerima fitur dari Bottleneck (setelah Feature 

Consolidation) dan fitur yang telah disederhanakan dari tahap encoding 

sebelumnya.  
Di sini, operasi Conv2D Transpose (upsampling) dilakukan untuk memperbesar 

dimensi fitur. Langkah krusial berikutnya adalah konkatenasi (penggabungan) 

dengan peta fitur yang relevan dari Encoder Block 3 melalui skip connection 

("Concatenate with Encoder Block 3"). Penggabungan ini memungkinkan 

informasi spasial detail dari tahap encoding untuk diintegrasikan kembali.  
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DIAGRAM ALIR RANCANGAN JARINGAN SARAF TIRUAN (ANN) 

  

Gambar  3.4. Diagram Alir Jaringan Syaraf Tiruan (ANN) Model U-Net CNN 
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Setelah penggabungan, diterapkan dua lapisan konvolusi 2D dengan 128 filter 

("Apply 2x Conv2D 128 Filters") untuk memproses fitur gabungan dan memulai 

rekonstruksi pada resolusi yang lebih tinggi. Alur serupa berlanjut ke Decoder 

Block 2, yang menerima output dari Decoder Block 3. Dilakukan operasi Conv2D 

Transpose, kemudian konkatenasi dengan fitur dari Encoder Block 2 (melalui skip 

connection), diikuti oleh dua lapisan konvolusi 2D dengan 64 filter ("Apply 2x 

Conv2D 64 Filters").  
Hasil dari Decoder Block 2 ini kemudian dievaluasi kualitas rekonstruksinya 

melalui titik keputusan "Successful Reconstruction?". Jika rekonstruksi dianggap 

belum optimal atau hanya parsial ("Partial Reconstruction"), sistem akan 

mengaktifkan mekanisme kompensasi fitur ("Feature Compensation") untuk 

memperbaiki kekurangan tersebut. Tahap terakhir pada jalur dekoding dilakukan 

oleh Decoder Block 1.  
Blok ini menerima output dari Decoder Block 2, dengan kemungkinan adanya 

koreksi adaptif ("Adaptive Correction") jika pada evaluasi sebelumnya terdeteksi 

masalah kualitas ("Quality Issues") pada spektogram. Operasi yang dilakukan 

meliputi Conv2D Transpose, kemudian konkatenasi dengan fitur dari Encoder 

Block 1 (melalui skip connection), dan diakhiri dengan dua lapisan konvolusi 2D 

dengan 32 filter ("Apply 2x Conv2D 32 Filters"). 

5. Penyempurnaan Output, Validasi, dan Keputusan Akhir 
Output yang dihasilkan dari Decoder Block 1 selanjutnya dievaluasi kualitas 

spektogramnya secara keseluruhan pada titik keputusan "Spectrogram Quality". 

Jika kualitasnya dinilai tinggi ("High Quality"), proses dapat melanjutkan ke tahap 

akhir. Namun, apabila teridentifikasi adanya masalah kualitas ("Quality issues"), 

data akan diarahkan ke sebuah lapisan penyempurnaan ("Refinement Layer") yang 

melibatkan mekanisme koreksi ("Correction Mechanism") dan kemungkinan 

operasi Conv2D Transpose tambahan untuk perbaikan.  
Model ini juga menyertakan mekanisme untuk penanganan kegagalan validasi. 

Jika hasil validasi pada tahap tertentu gagal ("Fail Validation"), sistem dapat 

dirancang untuk melakukan penyempurnaan secara iteratif ("Iterative Refinement") 

atau bahkan mengulang sebagian proses ("Retry") melalui jalur "Recursive 

Improvement" guna mengoptimalkan hasil. Setelah melalui berbagai tahap 

penyempurnaan potensial, dilakukan validasi akhir ("Final Validation") terhadap 

output yang dihasilkan. Jika hasil validasi ini lolos ("Pass Validation"), data 

dianggap siap dan diteruskan ke Output Layer.  
Langkah terakhir sebelum finalisasi adalah evaluasi terhadap ambang batas 

performa yang telah ditetapkan ("Performance Threshold"). Jika performa output 

masih berada di bawah ambang batas ("Below Threshold"), akan dipertimbangkan 

untuk dilakukan pemrosesan tambahan ("Additional Processing"). Jika semua 

kriteria performa telah terpenuhi ("Meets Criteria"), maka spektogram jernih final 
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("Final Cleared Spectrogram") dianggap telah berhasil dihasilkan dengan kualitas 

yang diinginkan. 

6. Generasi Output Akhir oleh Output Layer dan Terminasi Proses 
Lapisan Output Layer bertugas untuk menghasilkan output final dari model. 

Lapisan ini menerapkan satu lapisan konvolusi 2D dengan 1 filter dan fungsi 

aktivasi Sigmoid ("Output Layer Conv2D 1 filters Sigmoid Activation").  
Fungsi aktivasi Sigmoid memastikan bahwa output berada dalam rentang 

tertentu (biasanya antara 0 dan 1), yang sangat sesuai untuk tugas-tugas seperti 

pembuatan masker biner dalam segmentasi atau estimasi probabilitas, sehingga 

menghasilkan "Final Cleared Spectrogram". Setelah output akhir ini berhasil 

dihasilkan, alur operasional model kemudian berakhir pada titik "End". 

3.16. Proses dan Konfigurasi Pelatihan Model 
Proses pelatihan model dilakukan dengan konfigurasi spesifik untuk mencapai 

konvergensi yang optimal dan mencegah overfitting. Model dikompilasi 

menggunakan optimizer Adam dengan learning rate awal sebesar 0.001. Fungsi 

loss yang dipilih untuk mengukur kesalahan antara prediksi model dan target 

sebenarnya adalah 'mean_squared_error' (MSE), yang efektif untuk tugas regresi 

seperti merekonstruksi spektogram. Untuk mengelola proses pelatihan secara 

otomatis dan efisien, serangkaian callbacks dari TensorFlow diimplementasikan: 
1. EarlyStopping 
Memantau val_loss (kesalahan pada data validasi) dan akan menghentikan 

pelatihan jika tidak ada perbaikan setelah 5 epoch (patience=5), serta 

mengembalikan bobot model terbaik. 

2. ModelCheckpoint 
Menyimpan bobot model (best_model.h5) hanya pada saat val_loss mencapai nilai 

terendah yang baru. 

3. ReduceLROnPlateau 
Mengurangi learning rate sebesar 50% (factor=0.5) jika val_loss tidak 

menunjukkan perbaikan selama 2 epoch (patience=2), untuk membantu model 

keluar dari local minima. 
Model dilatih dengan ukuran batch (batch_size) sebanyak 32 sampel per iterasi. 
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BAB IV 
HASIL DAN PEMBAHASAN 

Sistem yang dikembangkan merupakan sebuah aplikasi web berbasis Streamlit 

yang dirancang untuk menghilangkan noise (kebisingan) dari file audio. Aplikasi 

ini memungkinkan pengguna mengunggah file audio, mengatur kekuatan reduksi 

noise, serta melihat dan mengunduh hasil pembersihan suara dengan tampilan 

visualisasi yang interaktif berupa waveform dan spectrogram. Proses utama 

melibatkan konversi format audio, analisis spektral, serta penerapan model deep 

learning berbasis arsitektur U-Net CNN. 

4.1. Arsitektur Proyek dan Fondasi Lingkungan Penelitian yang Reproducible 

Dalam penelitian yang mengandalkan metode komputasi, penyajian hasil tidak 

dapat dipisahkan dari arsitektur perangkat lunak dan lingkungan di mana hasil 

tersebut diperoleh. Oleh karena itu, sub-bab ini secara rinci menguraikan arsitektur 

direktori proyek dan justifikasi teknologi yang digunakan, yang berfungsi sebagai 

fondasi untuk memastikan validitas, modularitas, dan terutama, reprodusibilitas 

dari seluruh temuan penelitian. Struktur yang diimplementasikan, sebagaimana 

diilustrasikan pada Gambar 4.1, merupakan adopsi dari praktik terbaik dalam 

rekayasa perangkat lunak dan ilmu data. 
 

 

 

 

 

Gambar 4. 1. Struktur Directori Project 

Gambar 4.1 menyajikan cetak biru dari keseluruhan ekosistem penelitian. 

Untuk mengapresiasi bagaimana setiap komponen saling berinteraksi untuk 

membentuk sebuah alur kerja yang koheren dan dapat diverifikasi secara ilmiah, 

analisis terperinci dari setiap direktori dan file konfigurasi akan dielaborasi di 

bawah ini. 

4.1.1. Elaborasi Struktur Direktori 

1. Direktori Aplikasi (app/):  
Direktori ini menampung artefak final dari penelitian, yaitu aplikasi fungsional 

yang mampu melakukan reduksi kebisingan. Pemisahan internalnya menjadi 

main.py dan direktori src/ mengimplementasikan prinsip rekayasa perangkat lunak 

pemisahan kepentingan (separation of concerns). main.py berfungsi sebagai lapisan 

presentasi (presentation layer) yang mengelola antarmuka pengguna (UI) dan 

interaksi dengan pengguna. Sementara itu, src/utils.py berisi logika inti (core logic) 
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dari penelitian, termasuk fungsi-fungsi untuk prapemrosesan sinyal, inferensi 

model, dan pascapemrosesan. Arsitektur ini memastikan bahwa kode ilmiah dapat 

dikembangkan dan diuji secara independen dari antarmukanya. 

2. Direktori Data (data/):  
Direktori ini berfungsi sebagai pusat manajemen data yang menjamin 

ketertelusuran data (data provenance). Pemisahan antara sub-direktori raw/ dan 

results/ adalah fundamental. raw/ berisi dataset sumber yang bersifat immutable 

atau tidak boleh diubah, seperti rekaman audio asli dari suara bersih dan kebisingan 

pabrik. Hal ini memastikan bahwa sumber data primer selalu terjaga integritasnya. 

Sebaliknya, results/ adalah repositori untuk semua artefak yang dihasilkan secara 

komputasi, termasuk model yang telah dilatih, data yang telah diproses, dan 

visualisasi seperti spektogram. Struktur ini memungkinkan setiap hasil dapat 

ditelusuri kembali ke data mentah dan proses yang menghasilkannya. 

3. Direktori Eksplorasi (notebooks/):  
Direktori ini diibaratkan sebagai "laboratorium" atau "buku catatan digital" 

peneliti. Di sinilah Jupyter Notebooks (denoiser.ipynb) digunakan untuk melakukan 

analisis data eksploratif, pengujian hipotesis awal, visualisasi data interaktif, dan 

iterasi cepat dalam pengembangan model. Kode dalam direktori ini bersifat 

eksperimental dan berfungsi sebagai dasar sebelum logika yang telah terbukti solid 

difaktorkan ulang dan diformalkan ke dalam modul di direktori app/. 

4.1.2. Justifikasi Lingkungan Penelitian yang Terkontainerisasi 

Salah satu tantangan terbesar dalam penelitian komputasi adalah krisis 

reprodusibilitas, di mana hasil penelitian sulit atau tidak mungkin direplikasi oleh 

pihak lain. Untuk mengatasi hal ini, proyek ini mengadopsi teknologi kontainerisasi 

menggunakan Docker, yang didefinisikan melalui Dockerfile. 

1. Peran Dockerfile dan Kontainerisasi 
Dockerfile adalah sebuah file teks yang berisi serangkaian instruksi untuk 

membangun sebuah image Docker. Image ini merupakan paket statis yang 

mencakup semua yang dibutuhkan untuk menjalankan aplikasi: kode, runtime 

(misalnya, Python), pustaka sistem, dan versi spesifik dari semua dependensi (yang 

didefinisikan dalam pyproject.toml). Ketika image ini dijalankan, ia menciptakan 

sebuah kontainer, yaitu sebuah unit perangkat lunak yang terstandarisasi dan 

terisolasi. 

2. Keunggulan Dibandingkan Metode Tradisional 
Pendekatan ini secara signifikan lebih unggul dibandingkan virtualisasi 

tradisional (Virtual Machine/VM). Sementara VM mensimulasikan seluruh 

tumpukan perangkat keras yang membuatnya besar dan lambat, kontainer berbagi 

kernel sistem operasi dari host-nya, membuatnya sangat ringan, cepat, dan efisien. 
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3. Implikasi untuk Validitas Ilmiah 
Dalam konteks penelitian ini, penggunaan Dockerfile berarti bahwa seluruh 

lingkungan komputasi mulai dari versi Python, versi TensorFlow, hingga versi 

Librosa "dibekukan" di dalam satu paket. Ini menjamin bahwa jika kode dijalankan 

di dalam kontainer ini, baik hari ini maupun beberapa tahun ke depan, di komputer 

mana pun, hasilnya akan identik secara deterministik. Dengan demikian, 

penggunaan Docker bukan sekadar pilihan teknis, melainkan sebuah pernyataan 

metodologis yang kuat yang memastikan bahwa temuan-temuan dalam tesis ini 

dapat diverifikasi, diuji, dan dibangun di atasnya oleh komunitas ilmiah secara luas. 

4.2. Arsitektur Alur Kerja Pemrosesan Sinyal dan Inferensi Model 

Alur kerja teknis dari sistem reduksi kebisingan, yang menjadi inti dari 

implementasi pada skrip main.py, dirancang sebagai sebuah pipeline pemrosesan 

sinyal yang sistematis. Keseluruhan proses yang terjadi dalam sistem ini untuk 

mengubah audio bising menjadi audio bersih (dikenal sebagai proses inferensi) 

dapat dibagi menjadi tiga tahap algoritmik utama. Proses ini mengacu pada alur 

yang diilustrasikan pada Gambar 3.2 (Blok Diagram Sistem) dan Gambar 4.2 (Alur 

Proses Teknis) 

4.2.1. Fase 1 Transformasi dan Dekomposisi Sinyal 

Fase pertama merupakan tahap preparasi data fundamental di mana sinyal 

audio mentah dari domain waktu dikonversi menjadi representasi domain 

frekuensi-waktu yang dapat dianalisis oleh arsitektur Convolutional Neural 

Network (CNN). Proses ini diawali dengan akuisisi dan digitalisasi sinyal audio 

.wav menjadi serangkaian sampel numerik diskrit (waveform) menggunakan 

librosa.load. 

Mengingat sinyal ucapan dan kebisingan industrial bersifat non-stasioner—

di mana karakteristik statistiknya berubah seiring waktu—analisis Fourier pada 

seluruh sinyal menjadi tidak efektif. Oleh karena itu, diterapkan Short-Time Fourier 

Transform (STFT) melalui librosa.stft(). Teknik ini memecah waveform menjadi 

segmen-segmen pendek yang saling tumpang tindih (overlapping frames), di mana 

pada setiap segmen sinyal diasumsikan bersifat stasioner untuk sementara. 

Transformasi Fourier kemudian diterapkan pada setiap segmen untuk mengekstrak 

spektrum frekuensinya. Hasil dari proses ini adalah sebuah spektogram bernilai 

kompleks, matriks dua dimensi di mana setiap elemen merepresentasikan 

magnitudo dan fasa dari komponen frekuensi pada titik waktu tertentu. 

Sebagai langkah akhir dari fase ini, spektogram kompleks tersebut 

didekomposisi menjadi dua matriks terpisah, matriks magnitudo 

(merepresentasikan energi suara) dan matriks fasa (mengandung informasi 

temporal). Matriks magnitudo inilah yang akan menjadi input utama bagi model U-

Net karena kemampuannya dalam merepresentasikan pola secara visual. Matriks 
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fasa disimpan sementara untuk digunakan kembali pada fase rekonstruksi. Proses 

transformasi ini dirangkum dalam Tahap 1 pada diagram alir di Gambar 4.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Diagram alir yang disajikan pada Gambar 4.2 tersebut berfungsi sebagai peta 

konseptual yang memvalidasi alur kerja teknis yang telah dielaborasi. Representasi 

visual ini menegaskan bahwa proses reduksi kebisingan yang diimplementasikan 

Gambar 4. 2. Alur Proses Teknis Program Reduksi Kebisingan 
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bukanlah sebuah 'kotak hitam', melainkan serangkaian transformasi sinyal yang 

logis dan dapat dipertanggungjawabkan. Alur yang terstruktur dari transformasi 

input, inferensi model, hingga rekonstruksi output ini menjadi fondasi metodologis 

untuk analisis hasil yang akan disajikan secara empiris pada sub-bab berikutnya. 

Fase pertama ini menyiapkan audio untuk dianalisis dan mengubahnya ke 

domain frekuensi. Proses ini krusial untuk memastikan semua jenis audio dapat 

diolah secara konsisten dan diubah menjadi representasi yang optimal untuk 

dianalisis oleh model U-Net ANN.  
Proses Utamanya adalah Konversi Format, Digitalisasi, STFT, dan Konversi ke 

Log-Mel Spectrogram. 
Pengaturan Parameter: 
1. Konversi Format Audio  
Untuk memastikan konsistensi pemrosesan, fungsi process_audio_file akan 

mengkonversi berbagai format audio input seperti .m4a menjadi format .wav 

standar. Hal ini dilakukan karena library librosa yang digunakan untuk analisis 

sinyal bekerja paling optimal dengan format .wav. 

2. Digitalisasi (SR=16000)  
Seluruh sinyal audio didigitalisasi ulang ke sampling rate 16.000 Hz. Pengaturan 

ini merupakan standar dalam pemrosesan ucapan, yang bertujuan untuk menangkap 

seluruh rentang frekuensi vokal manusia secara akurat sekaligus menjaga efisiensi 

komputasi. 

3. Parameter STFT (n_fft=1024 & hop_length=256)  
Sinyal audio diubah ke domain frekuensi menggunakan Short-Time Fourier 

Transform (STFT). Parameter n_fft diatur ke 1024 untuk memberikan resolusi 

frekuensi yang baik guna mengidentifikasi struktur harmonik vokal. Sementara itu, 

hop_length diatur ke 256 untuk memberikan resolusi waktu yang tinggi guna 

menangkap perubahan cepat dalam sinyal, seperti pada konsonan. 

4. Konversi ke Log-Mel Spectrogram (n_mels=128)  
Hasil STFT kemudian dikonversi menjadi Log-Mel Spectrogram dengan 128 filter 

Mel. Pengaturan ini bertujuan meniru persepsi pendengaran manusia yang lebih 

sensitif pada frekuensi rendah, sehingga menghasilkan representasi fitur yang lebih 

relevan dan optimal untuk dianalisis oleh model U-Net. 

4.2.2. Fase 2 Inferensi Model dan Estimasi Masker Spektral 

Sebagaimana diilustrasikan pada Tahap 2 dalam diagram di atas, fase 

selanjutnya adalah inti dari proses reduksi kebisingan. Matriks magnitudo dari 

spektogram bising dinormalisasi dan dimasukkan ke dalam model U-Net yang telah 

dilatih. Model menjalankan proses inferensi untuk menganalisis "citra" spektogram 

tersebut. Penting untuk dicatat bahwa model ini tidak menghasilkan spektogram 
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bersih secara langsung. Sebaliknya, ia bertugas untuk mengestimasi sebuah masker 

spektral, yaitu Ideal Ratio Mask (IRM). 

IRM adalah sebuah matriks dengan dimensi yang sama seperti spektogram 

input, di mana setiap elemennya memiliki nilai kontinu antara 0 dan 1. Nilai ini 

merepresentasikan rasio ideal antara energi sinyal ucapan terhadap total energi 

(ucapan + kebisingan) pada setiap titik frekuensi-waktu. Masker IRM yang telah 

diestimasi ini kemudian diaplikasikan pada matriks magnitudo asli melalui operasi 

perkalian element-wise, yang secara efektif menekan energi pada titik-titik yang 

diidentifikasi sebagai kebisingan, sambil mempertahankan energi pada titik-titik 

yang diidentifikasi sebagai ucapan. Hasil dari tahap ini adalah sebuah matriks 

magnitudo yang telah dibersihkan (denoised magnitude). 

Fase kedua merupakan inti dari proses reduksi kebisingan. Pada tahap ini, 

model U-Net ANN yang telah dilatih menganalisis spektogram bising untuk 

memisahkan komponen suara dari derau.  
Proses utamanya adalah Inferensi Model U-Net, Prediksi Ideal Ratio Mask (IRM), 

dan Aplikasi Masker. 
Pengaturan Parameter: 
1. Arsitektur U-Net ANN  
Model menggunakan arsitektur Encoder-Decoder. Jalur encoder mengekstraksi 

fitur-fitur abstrak, sementara jalur decoder merekonstruksi sinyal. Pengaturan kunci 

pada arsitektur ini adalah penggunaan skip connections, yang memungkinkan 

model untuk menggabungkan informasi spasial beresolusi tinggi dari encoder 

dengan informasi kontekstual dari decoder, sehingga detail penting pada sinyal 

tidak hilang. 

2. Prediksi Ideal Ratio Mask (IRM)  
Output dari model U-Net bukanlah spektogram bersih, melainkan sebuah Ideal 

Ratio Mask (IRM). Masker ini adalah matriks bernilai antara 0 dan 1 yang 

merepresentasikan rasio ideal antara energi sinyal ucapan terhadap total energi. 

Nilai yang mendekati '1' menandakan dominasi sinyal ucapan, sedangkan nilai yang 

mendekati '0' menandakan dominasi derau. 

3. noise_reduction_strength  
Parameter ini, yang diatur oleh pengguna melalui antarmuka, mengontrol tingkat 

agresivitas aplikasi IRM pada magnitudo spektogram bising. Nilai yang diatur 

menentukan seberapa kuat energi pada area yang diidentifikasi sebagai derau akan 

ditekan berdasarkan masker yang telah diprediksi oleh model. 
 

4.2.3. Fase 3 Rekonstruksi Sinyal Audio 

Fase terakhir, yang dirangkum dalam Tahap 3 pada diagram, adalah 

mengembalikan representasi spektral yang telah bersih menjadi sinyal audio yang 
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dapat didengar. Matriks magnitudo yang telah dibersihkan dari fase sebelumnya 

digabungkan kembali dengan matriks fasa asli yang telah disimpan. Penggabungan 

ini merekonstruksi sebuah spektogram kompleks yang utuh dan bersih. Langkah 

final adalah menerapkan algoritma Inverse Short-Time Fourier Transform (ISTFT) 

menggunakan librosa.istft(). Proses matematis ini merupakan kebalikan dari STFT, 

yang mentransformasikan kembali representasi sinyal dari domain frekuensi-waktu 

ke domain waktu, sehingga menghasilkan sinyal audio akhir yang kebisingannya 

telah direduksi secara signifikan. 

Fase terakhir bertujuan untuk mengubah kembali data spektogram yang 

telah dibersihkan menjadi sinyal audio yang dapat didengar. Proses Utama:nya 

adalah Penggabungan Fasa dan Inverse STFT (ISTFT). 
Pengaturan Parameter: 

1. Penggunaan Fasa Asli  
Langkah kritis pada tahap ini adalah menggabungkan kembali magnitudo yang 

telah dibersihkan (hasil dari aplikasi IRM) dengan fasa dari sinyal asli yang telah 

disimpan dari Tahap 1. Pengaturan ini esensial untuk menjaga kealamian dan 

koherensi temporal suara, serta mencegah timbulnya distorsi pada hasil akhir. 

2. Parameter ISTFT Simetris  
Proses rekonstruksi menggunakan Inverse STFT dengan parameter (shop_length) 

yang identik dan simetris dengan proses STFT di awal. Pengaturan ini menjamin 

bahwa proses transformasi-balik dapat berjalan dengan akurat dan tidak 

menimbulkan eror atau artefak tambahan. 

4.3. Analisis Visual Komponen Sinyal Dataset 

Fundamen dari keberhasilan sebuah model deep learning dalam tugas separasi 

sinyal terletak pada kemampuannya untuk mempelajari dan membedakan fitur-fitur 

diskriminatif dari data pelatihan. Sebelum mengevaluasi kinerja model, esensial 

untuk terlebih dahulu melakukan analisis mendalam terhadap karakteristik 

individual dari komponen-komponen sinyal yang membentuk dataset. Analisis ini 

berfokus pada dua sinyal utama: sinyal suara manusia yang bersih (clean speech) 

sebagai sinyal target, dan sinyal kebisingan murni (pure noise) dari lingkungan 

pabrik sebagai sinyal derau yang akan direduksi. 

Dengan memvisualisasikan kedua sinyal ini dalam domain waktu (waveform) 

dan domain frekuensi-waktu (spektrogram), kita dapat mengidentifikasi fitur-fitur 

akustik unik yang menjadi dasar bagi model U-Net untuk melakukan proses 

pemisahan. 
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Gambar di atas merepresentasikan sinyal ucapan dalam kondisi ideal tanpa adanya 

interferensi derau. Analisis dari kedua plot menunjukkan karakteristik sebagai 

berikut: 

1. Analisis Waveform (Domain Waktu) 
Grafik waveform (atas) secara visual menampilkan fluktuasi amplitudo yang 

sangat dinamis. Terdapat variasi yang jelas antara segmen berenergi tinggi (saat 

pengucapan vokal) dan segmen berenergi rendah atau hening (jeda antar kata). Pola 

yang tidak seragam ini merupakan cerminan dari struktur periodik (dari getaran pita 

suara) dan aperiodik (dari konsonan) yang kompleks dalam sinyal ucapan manusia. 

2. Analisis Spektogram (Domain Frekuensi-Waktu) 
Grafik spektogram (bawah) memberikan wawasan yang lebih kaya. 

Karakteristik utama ucapan termanifestasi sebagai struktur harmonik dan formant 

yang terdefinisi dengan baik. Garis-garis horizontal terang yang merepresentasikan 

frekuensi fundamental (F0) dan formant vokal (F1, F2, dst.) menunjukkan pola 

yang teratur namun terus bergerak secara dinamis seiring waktu. Struktur inilah 

yang mengandung informasi linguistik dan menjadi petunjuk akustik paling vital 

yang harus dipreservasi oleh model selama proses reduksi kebisingan. 
  

Gambar 4. 3. Representasi Waveform dan Spektogram Sinyal Suara Asli (Clean Speech) 



56 
 

 

 

 

 

 

 

 

 

 

 

 

Gambar di atas merepresentasikan sinyal bising atau derau dari lingkungan pabrik. 

Analisis dari kedua plot menunjukkan karakteristik sebagai berikut: 

1. Analisis Waveform (Domain Waktu) 
Berbeda dengan sinyal ucapan, grafik waveform dari kebisingan pabrik 

menunjukkan sinyal dengan densitas yang tinggi dan variasi amplitudo yang 

cenderung lebih acak namun persisten. Tidak ada pola jeda yang jelas, menandakan 

bahwa sumber derau beroperasi secara kontinu. 

2. Analisis Spektogram (Domain Frekuensi-Waktu) 
Analisis pada domain frekuensi-waktu mengonfirmasi bahwa sinyal ini 

merupakan derau broadband (pita lebar). Hal ini ditandai dengan distribusi energi 

spektral yang relatif merata di hampir seluruh rentang frekuensi, tanpa adanya 

struktur harmonik yang jelas seperti pada sinyal ucapan. Energi yang tersebar luas 

dan cenderung stasioner (pola spektralnya tidak banyak berubah seiring waktu) 

inilah yang menjadi fitur pembeda utama. Kemampuan model U-Net untuk 

mengenali pola visual yang tersebar dan stasioner ini sebagai "latar belakang" dan 

memisahkannya dari pola dinamis dan terstruktur dari ucapan adalah kunci 

keberhasilan dari penelitian ini. 

4.4. Analisis Komparatif Sinyal Input dan Output Model 

 Sub-bab ini menyajikan inti dari bukti empiris penelitian, di mana efektivitas 

model U-Net CNN dalam mereduksi kebisingan dievaluasi melalui analisis 

komparatif secara visual. Dengan membandingkan representasi sinyal sebelum 

(input) dan sesudah (output) pemrosesan, kita dapat secara kualitatif mengukur 

kapabilitas model dalam memisahkan dan merekonstruksi komponen sinyal ucapan 

Gambar 4.4. Representasi Waveform dan Spektogram Sinyal Bising Asli (Factory Noise) 
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dari lingkungan akustik yang sangat terdegradasi oleh derau industrial.Analisis 

komparatif ini memberikan bukti visual yang intuitif mengenai kapabilitas model 

dalam merekonstruksi sinyal ucapan dari lingkungan akustik yang menantang. 

4.4.1. Karakteristik Sinyal Input Model 

Sinyal input yang digunakan untuk inferensi merupakan hasil superposisi dari 

sinyal ucapan bersih dan sinyal bising pabrik, yang secara akurat merepresentasikan 

kondisi audio di lingkungan penelitian. 

 

 

 

 

 

 

 

 

 

 

 

Gambar 4.5. Representasi Waveform dan Spektogram Sinyal Input Model 

(Bising + Suara) di atas mengilustrasikan sinyal input yang realistis, yang 

merupakan superposisi dari sinyal ucapan bersih dan kebisingan pabrik. 

1. Analisis Waveform (Domain Waktu) 
Grafik waveform dari sinyal input menunjukkan hilangnya rentang dinamis 

yang menjadi ciri khas ucapan. Amplitudo sinyal secara konsisten berada pada level 

yang tinggi dan rapat, di mana struktur silabik dan jeda antar kata dari sinyal ucapan 

asli menjadi sepenuhnya tersamarkan oleh densitas energi dari derau yang persisten. 

Secara visual, mustahil untuk membedakan segmen yang mengandung ucapan dari 

segmen yang hanya berisi kebisingan. 

2. Analisis Spektogram (Domain Frekuensi-Waktu) 
Degradasi sinyal menjadi lebih jelas pada representasi spektogram. Fenomena 

efek penopengan (masking effect) terjadi secara signifikan di seluruh spektrum. 

Energi derau broadband yang tersebar luas (seperti yang dianalisis pada Gambar 

4.4) secara efektif menaikkan ambang batas pendengaran di semua frekuensi, 

menyebabkan struktur formant dan harmonik dari sinyal ucapan (dari Gambar 4.3) 

Gambar 4.5 Representasi Waveform dan Spektogram Sinyal Input Model (Bising + Suara) 
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menjadi terdistorsi dan hampir tidak dapat diidentifikasi. Penopengan ini secara 

langsung berkorelasi dengan penurunan drastis pada inteligibilitas atau kejelasan 

komunikasi verbal, yang menjadi masalah utama yang ingin diatasi dalam 

penelitian ini. 

4.4.2. Karakteristik Sinyal Output Hasil Pemrosesan Model 

Setelah sinyal input yang terdegradasi diproses oleh model U-Net CNN, sinyal 

output menunjukkan restorasi yang fundamental pada karakteristik sinyal ucapan. 

 

 

 

 

 

 

 

 

 

 

 

Analisis terhadap Gambar 4.6 memberikan bukti visual yang meyakinkan mengenai 

keberhasilan model: 

1. Analisis Waveform (Domain Waktu) 
Grafik waveform sinyal output kini menampilkan kembali kontur amplitudo 

dinamis yang khas dari ucapan manusia. Perbedaan antara segmen berenergi tinggi 

(ucapan) dan segmen berenergi sangat rendah (jeda/hening) kini terlihat jelas. 

Pemulihan rentang dinamis ini adalah indikasi pertama dari keberhasilan penekanan 

komponen derau yang sebelumnya konstan. 

2. Analisis Spektogram (Domain Frekuensi-Waktu):  
Transformasi paling signifikan terlihat pada spektogram. Terjadi atenuasi 

drastis pada noise floor, yaitu tingkat energi latar di seluruh spektrum frekuensi, 

yang ditandai dengan perubahan warna latar dari kuning/jingga menjadi biru 

tua/hitam. Konsekuensi langsung dari penekanan derau ini adalah pemulihan 

struktur harmonik dan formant dari sinyal ucapan. Garis-garis horizontal yang 

sebelumnya kabur kini menjadi tajam, jelas, dan menonjol. Kemampuan model 

untuk secara selektif meredam energi derau sambil mempertahankan energi pada 

Gambar 4. 6. Representasi Waveform dan Spektogram Sinyal Output Model (Hasil Proses) 
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frekuensi yang relevan dengan ucapan adalah demonstrasi dari efektivitas Ideal 

Ratio Mask (IRM) yang diestimasi oleh jaringan. Bukti visual ini secara 

meyakinkan mendukung hasil kuantitatif (Tabel 4.2) yang akan dibahas 

selanjutnya, di mana tingginya nilai Peningkatan SNR dan Pemeliharaan Spektral 

berakar dari fenomena restorasi sinyal yang ditampilkan di sini. 

4.5. Studi Kasus: Simulasi Skenario Komunikasi Verbal 

Untuk memvalidasi efektivitas praktis model di luar data uji generik, sub-bab 

ini menyajikan sebuah studi kasus yang dirancang khusus untuk menyimulasikan 

skenario komunikasi verbal di lingkungan pabrik tekstil. Sesuai dengan tujuan 

utama penelitian untuk "meningkatkan kejelasan komunikasi verbal", sebuah dialog 

spesifik antara dua teknisi (Supervisor dan Operator) direkam dalam kondisi bersih. 

Dialog ini kemudian dicampur secara sintetis (augmentasi data) dengan 

kebisingan pabrik murni yang telah direkam untuk menciptakan sinyal input yang 

realistis dan menantang. Akhirnya, sinyal bising ini diproses menggunakan model 

U-Net CNN untuk mengevaluasi kemampuannya dalam merestorasi kejelasan 

vokal dalam konteks yang relevan. 

Skenario Dialog yang Digunakan: 

Teknisi 1 (A): "Halo, ada masalah apa nih? Kemarin kan sudah dicek, kok bisa 

rusak lagi?" 
Teknisi 2 (B): "Iya, aku juga gak tau. Mesin spinning ini kan baru seminggu yang 

lalu sudah diperbaiki. Aku cek lagi deh." 
A: "Coba cek kabel powernya, jangan-jangan ada yang putus." 
B: "Oke, aku cek dulu. (setelah beberapa saat) Hmm, kabel powernya aman, tapi 

aku lihat ada masalah di panel kontrol." 
A: "Panel kontrol? Bisa jadi itu masalahnya. Coba reset dulu, kalau gak bisa kita 

ganti komponennya." 
B: "Oke, aku coba reset dulu. (setelah beberapa saat) Wah, berhasil! Mesinnya 

sudah hidup lagi." 
A: "Bagus, sekarang kita pantau dulu ya, biar gak rusak lagi." 
B: "Iya, setuju. Aku catat ini di logbook, biar besok kita cek lagi." 

Analisis visual dari ketiga tahap skenario ini (bersih, bising, dan hasil proses) 

disajikan di bawah ini. 
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4.5.1. Analisis Skenario Komunikasi Bersih (Target) 

 
Gambar 4.7. Komunikasi Bersih Target 

Gambar 4.7 di atas berfungsi sebagai sinyal referensi (ground truth) untuk 

dialog skenario. Representasi waveform (domain waktu) menampilkan kontur 

amplitudo yang sangat dinamis, sesuai dengan pola ucapan manusia. Jeda antar kata 

dan frasa sangat jelas terlihat sebagai segmen berenergi rendah, yang esensial untuk 

inteligibilitas (kejelasan). 
Representasi spektogram (domain frekuensi-waktu) menunjukkan struktur 

harmonik dan formant yang terdefinisi dengan baik. Garis-garis horizontal terang 

ini merepresentasikan komponen vokal yang membawa informasi linguistik dari 

dialog. 

4.5.2. Analisis Skenario Komunikasi Bising (Input Model) 

 

 

 

 

 

 

 

 

 

Gambar 4.8. Komunikasi didalam area pabrik 
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Gambar 4.8 merepresentasikan sinyal yang diterima oleh model. Ini adalah 

sinyal percakapan yang direkam didalam area pabrik. Terjadi kehilangan rentang 

dinamis secara total pada sinyal Waveform. Sinyal kebisingan yang padat dan 

persisten sepenuhnya menyamarkan jeda antar kata, mengisi setiap celah dengan 

energi derau . Secara visual, struktur dialog asli terganggu oleh derau. 
Efek penopengan (masking effect) terlihat sangat jelas. Energi derau 

broadband yang tersebar di seluruh spektrum (terlihat sebagai latar kuning/jingga 

yang solid) secara efektif menutupi struktur formant dan harmonik dari sinyal 

ucapan. Inilah kondisi yang secara langsung menurunkan kejelasan komunikasi 

verbal di lingkungan pabrik. 

4.5.3. Analisis Skenario Komunikasi Hasil Proses (Output Model) 

 
Gambar 4.9. Output setelah proses 

Gambar 4.9 adalah output dari model U-Net CNN setelah memproses sinyal 

bising dari skenario di Gambar 4.8. Pemulihan rentang dinamis terlihat secara 

signifikan. Model berhasil menekan komponen derau yang konstan, sehingga jeda 

antar kata dalam dialog (segmen berenergi sangat rendah) kini terlihat jelas 

kembali. Kontur amplitudo dari ucapan kini mendominasi sinyal. 
Transformasi paling impresif terjadi di sini. Latar kebisingan (noise floor) 

telah berhasil diredam secara drastis, ditandai dengan kembalinya warna latar 

menjadi biru tua/hitam. Konsekuensi terpentingnya adalah restorasi struktur 

harmonik dan formant dari sinyal ucapan. Garis-garis horizontal terang yang 

membawa informasi dialog kini kembali tajam dan menonjol, membuktikan bahwa 

model mampu secara cerdas memisahkan komponen ucapan dari derau industrial. 
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Rangkaian analisis visual dalam studi kasus ini (dari Gambar 4.7 hingga 4.9) 

secara kualitatif membuktikan kapabilitas model U-Net CNN. Model ini terbukti 

tidak hanya efektif dalam pengujian kuantitatif, tetapi juga mampu merestorasi 

kejelasan vokal dalam skenario komunikasi praktis yang relevan dengan 

lingkungan pabrik tekstil. Kemampuan untuk memulihkan struktur sinyal ucapan 

yang tertutupi oleh kebisingan padat secara langsung mendukung tujuan penelitian 

ini. 

4.6. Fungsionalitas Aplikasi dan Skenario Pengujian 
Aplikasi voice denoising ini dibangun menggunakan Streamlit, dan memiliki 

antarmuka yang intuitif serta mudah dioperasikan oleh pengguna umum. Gambar 

4.7 berikut menampilkan tampilan awal aplikasi ketika pengguna pertama kali 

membuka halaman: 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Pengguna cukup mengunggah file audio dalam format .wav, .mp3, .m4a, atau 

.ogg, kemudian mengatur kekuatan pengurangan noise melalui slider yang 

disediakan. Nilai slider dapat diatur mulai dari 0.1 hingga 1.0 untuk menyesuaikan 

tingkat penghilangan noise. Antarmuka hasil akhir ini menyediakan beberapa 

bentuk umpan balik (feedback) yang saling melengkapi: 
1. Umpan Balik Auditori 

Melalui pemutar audio "Original Audio" dan "Processed Audio", pengguna 

dapat melakukan perbandingan dengar secara langsung. Evaluasi perseptual dan 

subjektif ini adalah validasi paling penting untuk mengukur peningkatan 

kejelasan vokal. 

2. Umpan Balik Visual 
Plot "Before/After Comparison" menyajikan bukti analitis dari apa yang 

didengar. Pengguna dapat secara visual mengonfirmasi penekanan pada noise 

Gambar 4.10. Tampilan Antar Muka Aplikasi 
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floor di spektogram, yang menjadi dasar teknis mengapa audio yang diproses 

terdengar lebih jernih. 

3. Fungsionalitas Praktis 
Adanya tombol "Download Processed Audio" mengubah sistem ini dari sekadar 

alat analisis menjadi sebuah perkakas fungsional yang menghasilkan artefak 

(file audio bersih) yang dapat digunakan lebih lanjut. 
Keberadaan parameter noise_reduction_strength sebagai kontrol pengguna 

memberikan fleksibilitas, sementara umpan balik auditori dan visual 

memungkinkan validasi hasil secara menyeluruh. Dengan demikian, aplikasi yang 

dikembangkan ini berhasil menjadi sebuah bukti konsep (proof-of-concept) yang 

sukses, yang memenuhi tujuan utama penelitian untuk menciptakan alat bantu 

fungsional demi meningkatkan kejelasan komunikasi verbal di lingkungan bising. 

4.7. Proses Pengolahan Audio 

Alur kerja pengolahan dimulai segera setelah pengguna mengunggah file audio 

yang valid. Sistem secara otomatis mengekstraksi dan menampilkan metadata dasar 

dari file tersebut, seperti nama, ukuran, dan tipe formatnya. Proses denoising dapat 

diinisiasi dengan menekan tombol "Proses". 
Inti dari fungsionalitas aplikasi ini adalah penerapan model deep learning dengan 

arsitektur U-Net CNN. Cara kerjanya adalah sebagai berikut: 
1. Analisis Spektral 

Sinyal audio diubah dari domain waktu ke domain frekuensi menggunakan 

Short-Time Fourier Transform (STFT). Hasilnya adalah spektogram, yang 

secara visual merepresentasikan audio sebagai sebuah "citra" dan menjadi input 

bagi model CNN. 

2. Pemrosesan oleh U-Net CNN 
Model U-Net yang telah dilatih menganalisis "citra" spektogram bising 

tersebut. Melalui arsitektur Encoder-Decoder dengan skip connections, model 

belajar untuk memisahkan fitur-fitur kompleks dari suara manusia dan 

kebisingan latar. 

3. Prediksi Masker Spektral 
Alih-alih menggunakan ambang batas (threshold) sederhana, U-Net 

memprediksi sebuah masker spektral (spectral mask) yang canggih. Masker ini 

secara cerdas menentukan komponen mana yang harus dipertahankan (suara) 

dan mana yang harus ditekan (noise) di seluruh spektrum frekuensi. 

4. Rekonstruksi Sinyal 
Spektogram yang telah bersih (setelah dikalikan dengan masker) kemudian 

dikembalikan ke domain waktu menggunakan Inverse Short-Time Fourier 

Transform (ISTFT) untuk menghasilkan file audio akhir. 
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Proses ini memungkinkan sistem untuk menekan kebisingan yang kompleks dan 

non-stasioner secara jauh lebih efektif daripada metode tradisional, sambil tetap 

menjaga kejernihan dan kealamian komponen utama dari suara (misalnya, ucapan 

manusia). 
 

4.8. Analisis Kinerja Berdasarkan Slider Strength 

Kekuatan reduksi noise yang diatur melalui slider memiliki dampak langsung 

terhadap kualitas output audio. Tabel berikut menyajikan analisis kualitatif dari 

hasil pemrosesan pada beberapa nilai strength yang berbeda. 

Tabel 4. 1. Slider Strength 
Strenght Keterangan Kualitas Output 

03 
Reduksi rendah, noise latar masih 

cukup terdengar. 
Suara utama terdengar sangat 

natural dan tidak terdistorsi. 

0.5 
Reduksi sedang, sebagian besar 

noise berhasil dihilangkan. 
Suara utama terdengar jauh lebih 

jelas dan bersih. 

0.8 
Reduksi tinggi, noise latar hampir 

hilang sepenuhnya. 
Terdengar sedikit distorsi atau efek 

"robotik" pada suara utama. 

Berdasarkan hasil pengujian, nilai strength optimal berada pada rentang 0.5 

hingga 0.6. Pada rentang ini, aplikasi mampu mencapai keseimbangan terbaik 

antara menekan noise secara signifikan dan menjaga kealamian suara asli. 

4.9. Hasil Pengujian Kuantitatif 

Perhitungan untuk metrik kinerja utama yang disajikan dalam Tabel 4.2, 

khususnya kolom 'Peningkatan SNR (dB)', didasarkan pada metodologi yang 

didefinisikan dalam Bab II, Sub-bab 2.2.9 (Metrik Evaluasi Kinerja).Penting untuk 

dicatat bahwa nilai yang dilaporkan (rata-rata $63.28$ dB) bukan nilai SNR absolut, 

melainkan Peningkatan SNR (SNR Improvement). Ini adalah metrik yang 

mengukur daya guna atau nilai tambah dari model yang dikembangkan. 
Perhitungan ini secara spesifik berasal dari Rumus (2.9) SNR Improvement, yang 

secara konseptual dihitung sebagai berikut: 

SNRImprovement = SNRprocessed - SNRoriginal 
Dimana: 
1. SNRoriginal (SNR Asli): Pertama, SNR dihitung untuk file audio input yang 

bising (dari Test Set). Ini membandingkan daya sinyal ucapan bersih 

(referensi/$ground truth$) terhadap daya sinyal kebisingan asli. 

2. SNRprocessed (SNR Proses): Kedua, SNR dihitung untuk file audio output yang 

telah dibersihkan oleh model U-Net. Ini membandingkan daya sinyal ucapan 

bersih (referensi/$ground truth$) terhadap daya sisa kebisingan (yaitu, 

perbedaan antara output model dan sinyal bersih referensi). 
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Validasi kinerja model secara kuantitatif dilakukan dengan melakukan evaluasi 

pada dataset uji (test set) yang secara ketat dipisahkan dari data pelatihan dan 

validasi. Dataset ini terdiri dari 9 sampel audio, di mana setiap sampel memiliki 

pasangan sinyal bising sebagai input dan sinyal bersih sebagai referensi (ground 

truth). Pendekatan ini memastikan bahwa metrik yang dihasilkan merupakan 

cerminan objektif dari kemampuan generalisasi model terhadap data yang belum 

pernah ditemui sebelumnya. Seluruh pengujian dijalankan dengan parameter 

noise_reduction_strength yang diatur pada nilai 0.6. 

Tabel 4. 2. Hasil Evaluasi Metrik Kinerja 

No Nama File 
Peningkatan 

SNR (dB) 
Pemeliharaan 

Spektral (%) 
Kecepatan Proses 

(x- real time) 

1.  
BR Cleanig 

SP2.m4a 
66.26 dB 99.93 % 51.56x real-time 

2. BR SP1.m4a 60.90 dB 99.93 % 43.29x real-time 
3.  BR-Card sp2.m4a 61.69 dB 99.94 % 49.42x real-time 

4. 
DMI SMX 

SP2.m4a 
61.55 dB 99.99 % 45.67x real-time 

5. DMI SP2.m4a 65.54 dB 99.99 % 51.04x real-time 
6. RSF 10 SP1.m4a 55.51 dB 99.99 % 49.04x real-time 
7. RSF 7 Daily.m4a 65.61 dB 99.99 % 51.28x real-time 
8.  RSF Prob.m4a 63.83 dB 99.99 % 53.92x real-time 
9. BIR SP2.m4a 68.61 dB 99.98 % 33.58x real-time 
Hasil rata-rata evaluasi 63.28 dB 99.97 % 47.64x real-time 

Dari Tabel 4.2 di atas, dapat dilihat bahwa sistem secara konsisten memberikan 

peningkatan SNR yang sangat tinggi di semua file uji, dengan rata-rata peningkatan 

sebesar 63.28 dB. Tingkat pemeliharaan spektral juga sangat baik, dengan rata-rata 

99.97%, yang menunjukkan kualitas suara asli tidak banyak berubah. Kecepatan 

pemrosesan rata-rata adalah 47.64x real-time, membuktikan bahwa aplikasi ini 

sangat efisien. 

4.10.  Pembahasan 

Hasil implementasi dan pengujian menunjukkan bahwa aplikasi voice denoising 

yang dikembangkan telah berhasil mencapai tujuannya secara fungsional. 

Kombinasi antara algoritma model U-Net CNN untuk pemrosesan inti dan 

framework Streamlit untuk antarmuka pengguna terbukti menjadi sebuah solusi 

yang tidak hanya efektif dalam mereduksi noise, tetapi juga sangat ramah pengguna 

(user-friendly). Kemampuan pengguna untuk secara interaktif mengatur parameter 

strength memberikan tingkat kontrol yang esensial, memungkinkan aplikasi ini 

beradaptasi untuk menangani berbagai jenis dan intensitas noise latar. 

Analisis Keunggulan Sistem 
Beberapa keunggulan utama dari sistem yang dibangun dapat diuraikan sebagai 

berikut: 
1. Antarmuka yang Sederhana dan Aksesibel 
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Keunggulan paling signifikan dari aplikasi ini adalah desain antarmukanya yang 

intuitif. Dengan meminimalisir kompleksitas dan fokus pada fungsionalitas inti 

(unggah, atur, proses), aplikasi ini berhasil menurunkan hambatan teknis.  

2. Proses Cepat dan Umpan Balik Instan 
Waktu pemrosesan yang relatif cepat memungkinkan pengguna mendapatkan 

umpan balik secara langsung. Kemampuan untuk mendengarkan, 

membandingkan, dan mengunduh hasil sesaat setelah proses selesai 

menciptakan alur kerja yang efisien. 

3. Visualisasi sebagai Alat Analisis Intuitif 
Penyertaan grafik waveform dan spectrogram bukan hanya sekadar pelengkap 

visual, melainkan berfungsi sebagai alat analisis yang kuat. Visualisasi ini 

memberikan bukti empiris dari efektivitas proses denoising. Pengguna tidak 

hanya mengandalkan persepsi pendengaran subjektif, tetapi juga dapat secara 

objektif mengamati pengurangan fluktuasi noise pada waveform dan hilangnya 

artefak frekuensi pada spectrogram, yang memperkuat validitas hasil. 
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BAB V 
KESIMPULAN DAN SARAN 

 

Bab terakhir ini menyajikan rangkuman dari keseluruhan hasil penelitian dan 

pembahasan yang telah diuraikan pada bab-bab sebelumnya. Bagian ini mencakup 

kesimpulan utama yang ditarik dari hasil analisis, serta saran-saran konstruktif yang 

teridentifikasi selama penelitian untuk pengembangan di masa depan. 

 

5.1. Kesimpulan 

Berdasarkan hasil penelitian dan pembahasan yang telah dilakukan untuk 

mengatasi permasalahan tingginya tingkat kebisingan di lingkungan pabrik tekstil 

yang mengganggu kejelasan komunikasi verbal, maka dapat ditarik kesimpulan 

sebagai berikut: 
1. Aplikasi peredam bising berbasis web telah berhasil diimplementasikan 

menggunakan arsitektur Convolutional Neural Network (CNN). Secara teknis, 

sistem ini mengubah sinyal audio menjadi representasi spektogram yang 

kemudian diproses oleh model untuk memisahkan pola kebisingan dari suara 

manusia, sehingga mampu menghasilkan audio dengan tingkat kejernihan yang 

sangat signifikan, dibuktikan dengan peningkatan Signal-to-Noise Ratio (SNR) 

rata-rata sebesar 63.28 dB. 
2. Selain mampu menekan kebisingan secara efektif, model CNN yang 

dikembangkan juga terbukti dapat menjaga kualitas dan kealamian suara asli 

dengan sangat baik. Hal ini ditunjukkan oleh hasil pengujian kuantitatif yang 

mencapai tingkat pemeliharaan spektral (spectral preservation) rata-rata 

sebesar 99.97%. 
3. Parameter noise_reduction_strength yang diintegrasikan pada antarmuka 

aplikasi Streamlit memberikan kontrol yang efektif bagi pengguna untuk 

menyeimbangkan antara tingkat reduksi kebisingan dan potensi timbulnya 

artefak audio. 
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5.2. Saran 

Untuk pengembangan penelitian ini di masa mendatang, beberapa hal yang dapat 

dilakukan adalah sebagai berikut: 

1. Optimalisasi Model untuk Efisiensi 
Untuk aplikasi di dunia nyata, model yang telah dilatih dapat dioptimalkan lebih 

lanjut untuk mempercepat waktu inferensi. Teknik-teknik seperti Quantization 

(mengurangi presisi bobot) dan Pruning (menghilangkan koneksi yang tidak 

signifikan) dapat dieksplorasi untuk menciptakan model yang lebih ringan dan 

efisien tanpa penurunan kinerja yang drastis. 

2. Implementasi Real-Time 
Saran berikutnya adalah mengembangkan sistem ini menjadi aplikasi 

pemrosesan real-time. Ini dapat dicapai dengan mengimplementasikan streaming 

pipeline, di mana audio dari mikrofon diolah dalam segmen-segmen kecil (buffer) 

secara kontinu, memungkinkan penggunaan sebagai alat bantu komunikasi 

langsung di lingkungan pabrik. 

3. Ekspansi Metrik Evaluasi 
Untuk validasi yang lebih komprehensif di masa depan, pengujian dapat 

diperluas dengan menggunakan metrik kualitas audio standar industri lainnya 

seperti PESQ (Perceptual Evaluation of Speech Quality) dan STOI (Short-Time 

Objective Intelligibility). Metrik-metrik ini memberikan ukuran yang lebih dekat 

dengan persepsi pendengaran manusia dibandingkan SNR saja. 
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Lampiran 1 

Proses memulai aplikasi 

1. Buka folder file yang sudah di siapkan di Visual Studio Code 

 

2. Buka Aplikasi Docker Desktop yang sudah di install sebelumnya 

 

3. Kembali ke visual Studio code, buka terminal dan masuk ke folder voice-

denoizing 
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4. Jalankan[ docker compose up -d –build ] di terminal, untuk membuat 

container di docker dan untuk sekaligus menjalankan aplikasi 

 

5. Buka browser dan ketikkan[ http://localhost:8501/ ], aplikasi siap digunakan 

 

  

http://localhost:8501/
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Lampiran 2 

Proses memulai Program evaluasi 

1. Buka terminal dan masuk ke folder kemudian masukkan [ python 

evaluate_model.py ] 

 

2. Berikut adalah format folder dalam program evaluasi : 

 
A. data/test/ (root folder) Isi Folder utama yang menampung ketiga folder di 

atas. Berfungsi menjadi dataset uji (test set) untuk menjalankan evaluasi 

model. 
B. noissy, berisi File audio yang sudah bising (noisy). Berfungsi sebagai input 

untuk model. Setiap file di sini akan diproses untuk "dibersihkan". 
C. Clean, berisi File audio bersih (tanpa noise) yang menjadi ground truth. 

Berfungsi untuk evaluasi. Program membandingkan hasil denoising 

(processed_output) dengan file ini untuk menghitung metrik seperti: 
[Peningkatan SNR, Kualitas spectral]. Nama file di clean harus sama 

persis dengan nama file di noisy. 
D. processed_output, berisi file audio hasil denoising dari model. Disimpan 

setelah file noisy diproses. Nama file akan berakhiran _processed.wav 
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