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ABSTRAK 
Lettuce iceberg dipilih sebagai objek karena memiliki karakteristik morfologi dan respons 

visual yang jelas terhadap kekurangan nutrisi tertentu. Selain itu, beberapa pemilik 

tanaman dengan skala kecil dan menengah, masih mengandalkan teknik identifikasi 

berbasis pengamatan visual yang bersifat subjektif. Penelitian ini bertujuan untuk 

merancang sistem deteksi kekurangan nutrisi menggunakan pendekatan Autoencoder 

dengan arsitektur Encoder sebagai ekstraksi fitur, Bottleneck sebagai kompresi data, 

Decoder sebagai rekonstruksi, dan Multilayer Perceptron (MLP) dengan arsitektur input 

layer sebagai pintu masuk data, hidden layer sebagai mengolah informasi, dan output 

layer sebagai prediksi akhir. Sample dataset bersumber dari Kaggle yang sudah dibagi 

menjadi empat kelas, yaitu Nitrogen, Fosfor, Kalium, dan Healty. Proses persiapan 

pemrosesan dengan mengkonversi warna BGR (Blue, Green, Red) menjadi HSV (Hue, 

Saturation, Value), dengan mengubah ukuran menjadi 128*128 piksel, lalu dinormalisasi 

menjadi skala 0-1, dan dataset displit dengan perbandingan 80:20. Proses pelatihan 

Autoencoder berlangsung selama 30 epoch, dan MLP selama 25 epoch. Performa kinerja 

MLP menggunakan confusion matrix, dan evaluasi model menggunakan metrik Akurasi, 

Presisi, Recall, dan F1-Score, di mana model mencapai nilai Akurasi 86%, Presisi 89%, 

Recall 87% dan F1-Score 88%. Sistem ini telah diterapkan dalam bentuk aplikasi 

berbasis web yang ramah pengguna, memudahkan proses pengambilan citra dan 

menampilkan deteksi kekurangan nutrisi. Kesimpulannya, integrasi Autoencoder 

(encoder, bottleneck, decoder), dan MLP (input layer, hidden layer, output layer) terbukti 

efektif untuk melakukan deteksi citra pada tanaman lettuce iceberg dengan tingkat 

akurasi yang tinggi, sehingga dapat menjadi solusi alternatif yang lebih objektif. 

Kata Kunci: Lettuce Iceberg, Image Processing, Autoencoder, Multilayer Perceptron 

 

 

ABSTRRACK 
Iceberg lettuce was chosen as the object because it has morphological characteristics and 

clear visual responses to certain nutrient deficiencies. In addition, some small and 

medium scale plant owners still rely on visual observation based identification techniques 

that are subjective. This study aims to design a nutrient deficiency detection system using 

an Autoencoder approach with an architecture consisting of an Encoder, for feature 

extraction, Bottleneck for data compression, Decoder for reconstruction, and a 

Multilayer Perceptron (MLP) with an architecture consisting of an input layer as the data 

entry point, hidden layer for processing information, and output layer for final prediction. 

The sample dataset was obtained from Kaggle and divided into four classes: Nitrogen, 

Phosphorus, Pottasium, and Healty. The preprocessing stage involved converting the 

image color from BGR (Blue, Green, Red) to HSV (Hue, Saturation, Value), resizing to 

128*128 pixels, normalizing to a scale of 0-1, and splitting the dataset with an 80:20 

ratio. The Autoencoder training process was carried our for 30 epoch, and the MLP for 

25 epoch. The MLP performance was measured using a confusion matrix, and the model 

evaluation employed Accuracy, Precision, Recall, and F1-Score metrics, where the model 

achieved an accuracy of 86%, precision of 89%, Recall of 87% and an F1-Score of 88%. 

The system has been implemented in a user friendly web based application, making it 

easier to capture images and display nutrient deficiency detection result. In conclusion, 

the integration of Autoencoder (encoder, bottleneck, decoder) and MLP (input layer, 

hidden layer, output layer) proved effective in detecting images of iceberg lettuce plants 

with a high level of accuracy, making it a more objective alternative solution. 

Keywords: Lettuce Iceberg, Image Processing, Autoencoder, Multilayer Perceptron
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BAB I  

PENDAHULUAN 

 

1.1 Latar Belakang 

Pertumbuhan dan produktivitas tanaman sangat dipengaruhi oleh 

ketersediaan unsur hara yang cukup dan seimbang. Kekurangan unsur hara 

atau kekurangan nutrisi pada tanaman dapat menyebabkan perubahan 

fisiologis yang terlihat secara morfologis, khususnya pada daun, seperti 

klorosis, nekrosis, dan perubahan bentuk. Masalah ini tidak hanya 

menurunkan hasil panen, tetapi juga menbimulkan kerugian ekonomi yang 

signifikan bagi petani. Oleh karena itu, deteksi dini terhadap gejala 

kekurangan nutrisi sangat penting agar dapat segera dilakukan tindakan 

yang tepat. 

Tanaman dapat mengalami kekurangan satu atau lebih unsur hara 

secara bersamaan. Diagnosis visual merupakan salah satu metode yang 

umum digunakan oleh petani karena tidak memerlukan alat khusus. Namun, 

metode ini memiliki kelemahan, yakni subjektivitas tinggi dan rentan 

terhadap kesalahan identifikasi, terutama jika gejala antar defisiensi 

serupa.(Armita dkk., 2022) 

Tanaman Lettuce atau Selada (Lactuca Savita var.), khususnya jenis 

Iceberg (Selada Bokor), merupakan salah satu komoditas hortikultura yang 

banyak dibudidayakan dengan menggunakan metode hidroponik karena 

memiliki nilai ekonomis tinggi, waktu panen yang relatif cepat antara 70 

hingga 100 hari, serta permintaan pasar yang terus meningkat, terutama di 

sektor kuliner dan gaya hidup sehat. Namun seperti tanaman pada 

umumnya, Lettuce Iceberg sangat rentan terhadap kekurangan unsur hara 

seperti Nitrogen (N), fosfor (P), dan Kalium (K), yang dapat menyebabkan 

gangguan pertumbuhan, penurunan kualitas daun, dan kegagalan panen jika 

tidak ditangani dengan cepat. (Hong dkk., 2022) 

Pemilihan metode hidroponik dalam konteks penelitian ini didasarkan 

pada karakteristik utama sistem hidroponik yang sangat bergantung pada 
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keseimbangan nutrisi dalam larutan sebagai sumber utama pertumbuhan 

tanaman. Tidak seperti metode konvensional menggunakan tanah, sistem 

hidroponik tidak memiliki media penyimpan hara alami, sehingga 

komposisi nutrisi harus terus dipantau secara ketat agar tanaman dapat 

tumbuh optimal. Dalam kondisi ini, bahkan gangguan yang sangat kecil 

terhadap komposisi unsur hara dalam larutan nutrisi dapat menimbulkan 

dampak signifikan terhadap Kesehatan dan pertumbuhan tanaman. Oleh 

karena itu, deteksi dini terhadap ketidakseimbangan atau kekurangan nutrisi 

menjadi aspek yang krusial, agar tindakan korektif dapat segera dilakukan 

sebelum kondisi tanaman memburuk. 

Dalam penelitian ini, tanaman Lettuce Iceberg dipilih sebagai objek 

karena memiliki karakteristik morfologi dan respons visual yang cukup jelas 

terhadap kekurangan nutrisi tertentu. Selain itu, Lettuce Iceberg merupakan 

salah satu varietas tanaman hortikultura yang popular dibudidayakan secara 

hidroponik, baik konsumsi rumah tangga maupun produksi skala komersial. 

Namun, kenyataannya di lapangan menunjukkan bahwa sebagian 

besar pemilik tanaman Lettuce Iceberg, khususnya dalam skala kecil dan 

menengah, masih mengandalkan teknik identifikasi berbasis pengamatan 

visual secara langsung dan pengalaman pribadi untuk menilai kondisi nutrisi 

tanaman. Pendekatan ini cenderung bersifat subjektif, tidak konsisten, serta 

bergantung pada intuisi dan keterampilan individu, yang menyebabkan 

risiko menimbulkan kesalahan dalam diagnosis maupun penanganan yang 

dilakukan. 

Dalam perkembangan teknologi, pendekatan berbasis kecerdasan 

buatan (AI), khususnya Deep Learning, mulai banyak digunakan dalam 

bidang bertanian presisi. Penelitian yang dilakukan oleh Oktavia dkk. 

(2022) dari Universitas Telkom, menunjukkan bahwa klasifikasi defisiensi 

nutrisi tanaman padi menggunakan CNN dengan arsitektur ResNet-50 

mampu mencapai akurasi tinggi hingga 97,73% dengan citra daun sebagai 

input klasifikasi.(Oktavia dkk., 2022) 
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Meski CNN memberikan performa tinggi, arsitekturnya tergolong 

kompleks dan memerlukan sumber daya komputasi besar. Oleh karena itu, 

alternatif pendekatan yang lebih ringan seperti penggunaan Autoencoder 

untuk ekstraksi fitur dan Multilayer Perceptron (MLP) untuk deteksi dapat 

menjadi solusi efisien. Autoencoder adalah jaringan saraf tiruan yang 

digunakan untuk melakukan reduksi dimensi dan ekstraksi fitur dari data 

yang dimasukan seperti gambar daun. Dengan memproses gambar 

Autoencoder, sistem dapat mengubah citra daun yang kompleks menjadi 

representasi fitur numerik yang lebih sederhana, namun tetap menyimpan 

informasi seperti tekstur, pola, dan perubahan warna akibat kekurangan 

nutrisi. 

Fitur hasil ekstraksi dari Autoencoder ini kemudian dijadikan input 

untuk model Multilayer Perceptron (MLP), yaitu jaringan saraf feedforward 

yang mampu melakukan deteksi berdasarkan pola-pola non-linear. Dengan 

konfigurasi yang tepat, MLP dapat mengenali jenis-jenis penyakit dari pola 

visual yang telah diproses sebelumnya oleh Autoencoder. 

Kombinasi antara Autoencoder dan MLP memberikan keunggulan 

dalam hal efisiensi pemrosesan citra dan akurasi deteksi. Autoencoder 

bertindak sebagai alat penyaring dan peringkas informasi, sementara MLP 

berperan sebagai pengambilan keputusan berdasarkan informasi tersebut. 

Oleh karena itu, penelitian ini bertujuan untuk membangun sistem deteksi 

kekurangan nutrisi pada tanaman menggunakan pendekatan gabungan 

antara Autoencoder dan Multilayer Perceptron, dengan data berupa citra 

daun sebagai kontribusi bagi penerapan teknologi dalam sektor pertanian. 

Metode Autoencoder dan Multilayer Perceptron dipilih karena 

memiliki arsitektur yang relatif lebih sederhana dan ringan dibandingkan 

dengan metode lain seperti Convolutional Neural Network (CNN). 

Autoencoder mampu melakukan ekstraksi fitur secara otomatis dari citra 

input tanpa perlu desain fitur secara manual, dan cocok diterapkan pada 

dataset yang terbatas. 
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Sementara itu, Multilayer Perceptron (MLP) dipilih sebagai classifier 

karena efektif dalam mengolah representasi vektor hasil ekstraksi fitur dari 

Encoder. Selain kemudahannya dalam implementasi dan efisiensi dalam 

pelatihan tanpa memerlukan sumber daya komputasi yang tinggi, MLP juga 

menawarkan fleksibilitas tinggi dalam desain arsitekturnya. Dengan 

Multilayer yang menunjukkan bahwa model ini dapat terdiri dari lebih dari 

satu lapisan (Layer), sehingga memungkinkan untuk membangun model 

yang lebih kompleks dan mampu mempelajari hubungan non-linear antara 

fitur dan label target. Fleksibilitas ini sangat berguna dalam konteks 

klasifikasi citra daun, di mana pola visual yang mewakili kekurangan nutrisi 

sering kali bersifat halus dan memerlukan pemrosesan hierarkis untuk 

dipahami secara efektif. Dengan demikian, MLP menjadi pilihan yang tepat 

sebagai tahap klasifikasi akhir dalam sistem deteksi kekurangan nutrisi 

berbasis Autoencoder, karena mampu menjembatani representasi fitur 

dengan hasil klasifikasi. 

 

1.2 Perumusan Masalah 

Pemilik tanaman Lettuce Iceberg masih mengandalkan pengamatan 

visual dan pengalaman pribadi yang cenderung subjektif dan tidak akurat 

dalam mengidentifikasi kekurangan nutrisi pada tanaman, sehingga sering 

kali menyebabkan kesalahan diagnosis dan penanganan yang tidak tepat. 

 

1.3 Pembatasan Masalah 

Batasan masalah dalam penelitian ini adalah sebagai berikut: 

1. Penelitian ini hanya membahas deteksi kekurangan nutrisi pada satu 

jenis tanaman hortikultura, yaitu Lettuce Iceberg. 

2. Data yang digunakan berupa citra daun tanaman yang sehat dan 

menunjukkan gejala kekurangan unsur hara tertentu (N, P, K). 

3. Sistem tidak membahas penanganan kekurangan nutrisi, melainkan 

hanya fokus pada proses deteksi gejala dari citra daun. 
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1.4 Tujuan 

Menerapkan metode image processing untuk mengolah dan 

menyiapkan data citra daun dari tanaman Lettuce Iceberg sebagai input bagi 

sistem deteksi kekurangan nutrisi. 

 

1.5 Manfaat 

Manfaat dari Tugas Akhir ini adalah sebagai berikut: 

1. Penelitian ini memberikan solusi praktis bagi pemilik tanaman Lettuce 

Iceberg dalam mendeteksi secara dini kekurangan nutrisi pada 

tanaman Lettuce Iceberg. Dengan adanya sistem deteksi berbasis citra 

digital, tindakan perbaikan dapat dilakukan secara lebih cepat dan 

efisien tanpa harus bergantung pada pemeriksaan visual manual yang 

bersifat subjektif. 

2. Penelitian ini memberikan kontribusi dalam pengembangan penerapan 

teknologi kecerdasan buatan dibidang pertanian, khususnya melalui 

pemandaatan metode Autoencoder dan Multilayer Perceptron. 

 

1.6 Sistematika penulisan 

Untuk mempermudah penulisan tugas akhir ini, penulis membuat 

suatu sistematika yang terdiri dari: 

BAB I: PENDAHULUAN 

Bab ini menjelaskan mengenai latar belakang pemilihan judul tugas akhir 

"DETEKSI KEKURANGAN NUTRISI PADA TANAMAN LETTUCE 

ICEBERG MENGGUNAKAN METODE AUTOENCODER DAN 

MULTILAYER PERCEPTRON ". Rumusan masalah, batasan masalah, 

tujuan penelitian, metodologi penelitian, dan sistematika penulisan. 

BAB II: TINJAUAN PUSTAKA DAN DASAR TEORI 

Bab ini bertujuan memuat dasar teori yang berfungsi sebagai sumber dalam 

memahami permasalahan yang dipilih. 
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BAB III: METODE PENELITIAN 

Bab ini menjelaskan proses tahapan-tahapan penelitian dimulai dari Analisa 

kebutuhan sistem, kemudian perancangan sistem hingga selesai dibuat. 

BAB IV: HASIL PENELITIAN DAN IMPLEMENTASI SISTEM 

Bab ini menjelaskan hasil penelitian berupa teks dari gambar tanaman 

Lettuce berdasarkan deteksi kekurangan nutrisi menggunakan Autoencoder 

dan MLP. 

BAB V: KESIMPULAN DAN SARAN 

Bab ini memuat Kesimpulan dari keseluruhan uraian bab-bab sebelumnya 

dan saran-saran dari hasil yang diperoleh dan diharapkan dapat bermanfaat 

dalam penelitian selanjutnya.
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BAB II  

TINJAUAN PUSTAKAN DAN DASAR TEORI 

 

2.1 Tinjauan Pustaka 

Dalam penelitian oleh Taha dkk (2022), pendekatan berbasis 

pengolahan citra digital dan Deep Learning telah diterapkan untuk 

mendeteksi defisiensi nutrisi pada tanaman Lettuce. Penelitian ini 

menunjukkan bahwa fitur visual seperti perubahan warna, bentuk, dan 

tekstur daun akibat kekurangan Nitrogen, fosfor, dan Kalium dapat 

diklasifikasikan secara otomatis menggunakan algoritma seperti 

InceptionV3 dan ResNet18. Proses deteksi dimulai dari akuisisi citra, 

segmentasi daun, ekstraksi fitur visual, hingga klasifikasi menggunakan 

model pembelajaran mesin. Hasil evaluasi menunjukkan akurasi tinggi, 

membuktikan bahwa teknologi ini dapat menjadi solusi efektif dalam 

mendiagnosis defisiensi nutrisi secara cepat dan objektif. (Taha dkk., 2022) 

Penelitian oleh Vought dkk (2024), memahami efisiensi penggunaan 

nutrisi dan potensi kehilangan unsur hara utama seperti Nitrogen (N), fosfor 

(P), dan Kalium (K) dalam sistem hidroponik berbasis Nutrient Film 

Technique (NFT), khususnya untuk tanaman daun seperti selada. Dalam 

sistem NFT, larutan nutrisi mengalir secara terus-menerus di sekitar akar 

tanaman, sehingga tanaman sangat bergantung pada komposisi nutrisi dalam 

larutan tersebut. Selain itu, mengungkap bahwa sistem NFT dirancang untuk 

efisiensi tinggi, terdapat tingkat kehilangan nutrisi yang cukup signifikan 

selama masa pertumbuhan tanaman. Mereka mencatat bahwa kehilangan 

Nitrogen dari larutan nutrisi bisa mencapai 27-40%, sementara kehilangan 

fosfor berkisar antara 11-35%, tergantung pada fase pertumbuhan dan jenis 

manajemen larutan yang digunakan. Faktor penyebab kehilangan nutrisi ini 

meliputi penguapan, presipitasi senyawa dalam bentuk yang tidak dapat 

diserap tanaman, penumpukan residu pada sistem, serta adsorpsi nutrient 

pada media tanam atau dinding saluran hidroponik. Penelitiani ni menjadi 

dasar penting dalam mengembangkan sistem monitoring dan manajemen



8 
 

 
 

nutrisi berbasis sensor maupun kecerdasan buatan, untuk memastikan bahwa 

suplai nutrisi tetap dalam kondisi optimal dan terhindar dari risiko 

defisiensi. (Vought dkk., 2024) 

Penelitian oleh Hong dkk (2022), memberikan kontribusi signifikan 

terhadap pemahaman tentang pengaruh pemupukan makronutrien terhadap 

pertumbuhan dan kualitas tanaman selada. Dalam studi ini, para peneliti 

mengevaluasi efek dari berbagai dosis Nitrogen, fosfor, dan Kalium 

terhadap parameter agronomis dan kualitas hasil panen, termasuk tinggi 

tanaman, jumlah daun, bobot segar, serta kandungan nutrisi seperti vitamin 

C. hasil penelitian menunjukkan bahwa aplikasi Nitrogen hingga dosis 

tertentu mampu meningkatkan tinggi tanaman dan bobot hasil secara 

signifikan, tetapi pemberian Nitrogen secara berlebihan justru menurunkan 

efisiensi pemanfaatan nutrisi oleh tanaman. Sementara itu, pemberian fosfor 

terbukti meningkatkan diameter batang dan kualitas fisiologis daun, naum 

aplikasi fosfor yang terlalu tinggi juga menimbulkan penurunan kualitas 

hasil panen. Kalium, disisi lain diketahui sangat berpengaruh terhadap 

kualitas tekstur daun dan diameter batang, serta memiliki peran penting 

dalam menjaga keseimbangan air dan metabolisme tanaman, meskipun 

dalam jumlah berlebihan dapat menghambat penyerapan unsur hara lain dan 

menyebabkan penurunan kualitas daun. (Hong dkk., 2022) 

Penelitian oleh Lu dkk (2023) ini menyoroti penggunaan pendekatan 

machine vision dalam mengenali gejala kekurangan unsur hara mikro pada 

tanaman selada (Lactuca Savita L.) dengan menerapkan metode pattern 

recognition berbasis citra. Penelitian ini memanfaatkan beberapa jenis fitur 

visual yang diperoleh dari gambar daun, yaitu fitur warna, tekstur, dan 

bentuk. Fitur warna diekstraksi melalui color moments dan histogram warna 

RGB (Red, Green, Blue) untuk menangkap distribusi intensitas warna secara 

menyeluruh, yang umumnya terdistorsi akibat kekurangan unsur hara seperti 

Nitrogen, fosfor dan Kalium. Setelah itu, fitur tekstur diolah dengan 

memanfaatkan Gray-Level Co-occurrence Matrix (GLCM) yang 

menghitung parameter seperti Angular Secon Moment, Entropy, Contrast, 
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dan Correlation pada berbagai sudut orientasi citra (0°, 45°, 90°, dan 135°), 

untuk mendeteksi kehalusan atau kekasaran tekstur yang biasanya muncul 

saat terjadi defisiensi nutrisi. Disisi lain, bentuk dan pola tepi daun juga 

menjadi pertimbangan penting yang diekstraksi menggunakan metode 

Scale-Invariant Feature Transform (SIFT), yang berguna untuk mendeteksi 

perubahan struktur fisik daun, seperti kerusakan atau bercak. (Lu dkk., 

2023) 

Penelitian oleh Xie dkk (2025) melakukan eksplorasi pendekatan 

multidimensi dalam analisis citra digital untuk mendeteksi kekurangan 

unsur hara pada tanaman selada secara presisi. Penelitian ini memfokuskan 

pada penerapan metode advance pattern recognition berbasis analisis citra 

multidimensi, yang menggabungkan tiga teknik yaitu adaptive threshold 

segmentation, Canny edge detection, dan gradient-based region refinement. 

Proses dimulai dengan konversi citra kedalam ruang warna HSV (Hue, 

Saturation, Value) guna memisahkan warna daun latar belakang dengan 

lebih akurat, karena perubahan warna daun merupakan salah satu indikator 

paling signifikan dalam defisiensi nutrisi. Setelah itu, dilakukan segmentasi 

awal menggunakan threshold adaptif untuk menangkap area yang 

mencurigakan secara global. Teknik Canny edge detection yang telah 

dimodifikasi untuk mendeteksi kontur tepi daun dari berbagai arah 

digunakan untuk meningkatkan ketelitian dalam menentukan batas antar 

jaringan sehat dan jaringan yang mengalami defisiensi. Langkah akhir 

menggunakan pendekatan gradient-guided adaptive segmentation untuk 

menyempurnakan hasil segmentasi, terutama untuk memperjelas area yang 

memiliki variasi tekstur dan perubahan warna halus. (Xie dkk., 2025) 

Penelitian oleh Okasha dkk (2022) dijelaskan bahwa budidaya Iceberg 

Lettuce dalam sistem hidroponik dapat dioptimalkan dengan memanfaatkan 

air irigasi asin (saline water) yang telah diproses secara magnetic. Studi ini 

bertujuan untuk meningkatkan produktivitas air dan hasil tanaman melalui 

pendekatan teknologi yang inovatif, dengan menggunakan dua varietas 

Iceberg Lettuce. Hasil dari penelitian menunjukkan bahwa kombinasi antara 
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air irigasi yang dimagnetisasi dan pengaturan sudut kemiringan pipa 

hidroponik mampu memberikan pengaruh signifikan terhadap peningkatan 

berat segar tanaman (fresh weight), efisiensi penggunaan air, serta mutu 

tanaman secara keseluruhan. Salah satu temuan penting dari studi ini adalah 

bahwa perlakuan dengan sudut kemiringan pipa 2% menggunakan air yang 

telah dimagnetisasi mampu meningkatkan hasil tanaman hingga lebih dari 

70% dibandingkan dengan kontrol. Penelitian ini memperkuat pentingnya 

factor lingkungan teknis dalam pertumbuhan Iceberg Lettuce serta 

memberikan wawasan bahwa pengelolaan kondisi hidroponik secara tepat 

dapat berkontribusi dalam mendukung performa visual dan fisiologis 

tanaman, yang juga berkaitan erat dengan proses deteksi kekurangan nutrisi 

berbasis citra daun. (Okasha dkk., 2022) 

Penelitian oleh Vanacore dkk (2024) berfokus pada perbandingan 

pertumbuhan, respons ekofisiologis, dan komposisi mineral daun dari 

tanaman Lettuce Iceberg yang dibudidayakan dalam dua sistem berbeda, 

yaitu hidroponik dan akuaponik. Studi ini bertujuan untuk mengetahui 

sistem mana yang lebih optimal dalam mendukung pertumbuhan dan 

kualitas daun selada. Berdasarkan hasil pengamatan, tanaman yang ditanam 

dalam sistem hidroponik menunjukkan kinerja yang lebih unggul 

dibandingkan dengan yang dibudidayakan dalam sistem akuaponik. Hal ini 

ditunjukkan dari hasil biomassa daun segar yang lebih tinggi sebesar 26%, 

kandungan kandungan Kalium dalam daun meningkat sekitar 63%, serta 

nilai SPAD (Soil Plant Analysis Development) dan laju fotosintesis yang 

lebih baik. Selain itu, sistem hidroponik juga menghasilkan efisiensi 

penggunaan air yang lebih tinggi, menjadikannya sebagai pilihan sistem 

budidaya yang lebih efisien dan productid untuk tanaman selada. Temuan 

ini sangat relevan dalam konteks pengolahan citra daun, karena berbagai 

parameter fisiologis yang diukur dalam penelitian ini, seperti warna, tekstur, 

dan tingkat kehijauan daun, secara langsung memengaruhi fitur visual yang 

dapat digunakan dalam proses ekstraksi ciri dan klasifikasi pada sistem 
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berbasis pengolahan citra digital untuk deteksi defisiensi nutrisi. (Vanacore 

dkk., 2024) 

Penelitian oleh Bedi & Gole (2021) menjelaskan bahwa Autoencoder, 

khususnya dalam bentuk Convolutional Autoencoder (CAE), sangat efektif 

digunakan untuk proses ekstraksi fitur dalam klasifikasi citra tanaman. 

Dalam studi ini, peneliti mengembangkan arsitektur hibrida yang 

menggabungkan CAE untuk tahap ekstraksi fitur dan CNN untuk proses 

klasifikasinya. Autoencoder digunakan untuk mempelajari representasi 

visual yang lebih dalam dan abstrak dari citra daun tanaman yang terdampak 

penyakit, seperti variasi warna, tekstur, dan pola morfologis lainnya. CAE 

dalam sistem ini mampu mereduksi dimensi input dan mengekstraksi fitur 

laten penting dari citra tanaman secara efisien. Menariknya, meskipun hanya 

memiliki 9.900 parameter, sistem mampu mencapai akurasi lebih dari 98% 

dalam mengklasifikasikan berbagai jenis penyakit tanaman, yang 

menunjukkan bahwa fitur-fitur yang dipelajari dari Autoencoder sangat 

informatif. Hal ini menegaskan peran penting Autoencoder dalam 

menyaring informasi visual mentah menjadi representasi yang bermakna. 

(Bedi & Gole, 2021) 

Penelitian oleh Huddar dkk (2024), menunjukkan pendekatan yang 

lebih kompleks dengan memanfaatkan Denoising Autoencoder (DAE) untuk 

meningkatkan kualitas citra dan sekaligus melakukan ekstraksi fitur. Dalam 

studi ini, DAE digunakan untuk menghilangkan noise dari citra daun 

tanaman yang diperoleh dari lapangan. Proses denoising ini membantu 

model untuk fokus hanya pada fitur penting yang berkaitan dengan gejala 

penyakit atau kekurangan nutrisi, seperti perubahan warna dan tekstur daun. 

Setelah citra diperbaiki, berbagai jenis fitur seperti tekstur, warna, dan 

wavelet diekstraksi dan dikombinasikan untuk membentuk satu set fitur 

yang kaya dan informatif. Hasil dari ekstraksi ini kemudian diberikan 

kepada model klasifikasi berbasis SVM. Berdasarkan evaluasi, sistem 

berhasil mencapai akurasi klasifikasi lebih dari 98%, yang bahkan melebihi 

metode konvensional yang hanya menggunakan satu jenis fitur atau CNN 
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saja. Temuan ini menegaskan bahwa Autoencoder tidak hanya berguna 

untuk reduksi dimensi atau pembelajaran representasi, tetapi juga efektif 

dalam meningkatkan kualitas data sebelum klasifikasi. Oleh karena itu, 

dalam konteks sistem klasifikasi tanaman berbasis citra seperti Lettuce 

Iceberg, penggunaan Autoencoder terbukti menjadi pendekatan yang 

strategis untuk menghasilkan input yang representatif bagi model 

klasifikasi. (Huddar dkk., 2024) 

Penelitian oleh Iatrou dkk (2022), Penelitian yang membahas tentang 

pemanfaatan Variational Autoencoder (VAE), sebuah arsitektur lanjutan dari 

Autoencoder konvensional, yang dirancang untuk menghasilkan representasi 

laten yang lebih terdistribusi dan bersifat probabilistik, guna mendeteksi dan 

memprediksi kebutuhan Nitrogen pada tanaman padi. Dalam studi ini, 

digunakan data citra multispectral dari satelit Sentinel-2 yang mencakup 

informasi NDRE (Normalized Difference Red Edge Index). VAE dilatih 

untuk mengekstraksi fitur-fitur penting dari citra tersebut dan membentuk 

representasi laten yang mampu merepresentasikan kondisi fisiologis 

tanaman secara efisien. Hasil ekstraksi fitur ini kemudian digunakan untuk 

memprediksi jumlah Nitrogen yang dibutuhkan oleh tanaman pagi secara 

lebih akurat jika dibandingkan dengan metode konvensional seperti 

Principal Component Analysis (PCA) atau Partial Least Square Regression 

(PLSR). Penelitian ini menunjukkan bahwa penggunaan VAE mampu 

meningkatkan akurasi prediksi kebutuhan Nitrogen secara signifikan, yang 

pada akhirnya dapat digunakan sebagai dasar pengambilan keputusan dalam 

manajemen pemupukan secara lebih presisi dan berkelanjutan. (Iatrou dkk., 

2022)  

Penelitian oleh Kolhar dkk (2024), membahas tentang kerangka Deep 

Learning yang efisien dan menggabungkan Xception model, Vision 

Transformer, serta model MLP-Mixer yang berbasis Multilayer Perceptron 

untuk mengidentifikasi defisiensi Nitrogen (N), fosfor (P), dan Kalium (K) 

pada tanaman padi menggunakan citra RGB daun. Model-model ini diuji 

secara langsung untuk mengetahui sejauh mana MLP-Mixer mampu 
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bersaing dengan arsitektur CNN dan transformer modern. Hasil penelitian 

menunjukkan bahwa ketiga model berhasil mencapai tingkat akurasi di atas 

92%, dengan Xception yang mencapai akurasi sebesar 95,14%, meskipun 

jumlah parameter pelatihannya hanya sekitar 1,2 juta, jauh lebih sedikit 

dibandingkan arsitektur Vision Transformer. Model MLP-Mixer berbasis 

MLP juga menunjukkan performa yang kompetitif, memberikan bukti 

bahwa MLP mampu menangani representasi citra dengan baik meskipun 

tanpa menggunakan lapisan konvolusional tradisional. Studi ini menegaskan 

bahwa MLP tidak hanya cocok diterapkan didomain citra secara umum, 

tetapi juga layak digunakan dalam klasifikasi kondisi nutrisi tanaman 

berdasarkan citra daun. (Kolhar dkk., 2024) 

Penelitian oleh Song dkk (2023) membuat sebuah pendekatan berbasis 

Multilayer Perceptron dan Artificial Neural Network (MLP-ANN) untuk 

mengklasifikasikan status nutrisi tanaman berdasarkan fitur warna daun. 

Penelitian ini menekankan pada pentingnya visual daun, khususnya warna 

sebagai indikator utama untuk mendeteksi defisiensi unsur hara makro 

seperti Nitrogen (N), fosfor (P), dan Kalium (K). data yang digunakan 

dalam penelitian ini berupa citra daun tanaman yang kemudian diolah untuk 

diambil nilai rata-rata dari channel warna RGB (Red, Green, Blue), yang 

selanjutnya dijadikan sebagai input vector fitur ke dalam jaringan MLP. 

Arsitektur MLP yang digunakan terdiri dari tiga lapisan utama: input layer, 

yang menerima data fitur warna, hidden layer yang melakukan proses 

pembelajaran dengan fungsi aktivasi ReLU untuk memetakan hubungan 

non-linear, serta output layer yang terdiri dari beberapa neuron sesuai 

jumlah kelas dan menggunakan fungsi aktivasi Softmax untuk menghasilkan 

probabilitas klasifikasi. Proses pelatihan dilakukan dengan metode 

backpropagation dan optimasi fungsi loss menggunakan algoritma gradient 

descent, yang memungkinkan model mempelajari representasi kompleks 

dari hubungan warna daun terhadap status nutrisi. Dari segi hasil dan 

evaluasi, model MLP-ANN menunjukkan performa klasifikasi yang cukup 

tinggi. Dalam pengujian terhadap dataset yang telah dipisah menjadi data 
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pelatihan dan data pengujian, sistem berhasil mencapai akurasi sebesar 

87,8%. Selain itu, metrik evaluasi lain seperti precision, Recall, dan F1-

Score juga menunjukkan nilai yang tinggi dan seimbang, menandakan 

bahwa model tidak hanya akurat secara umum, tetapi juga konsisten dalam 

membedakan antar kelas defisiensi yang berbeda. (Song dkk., 2023) 

Penelitian oleh Veazie dkk (2024), mengembangkan model klasifikasi 

berbasis Machine Learning untuk menginterpretasikan analisis jaringan 

daun Lettuce, yang terdiri dari 1.950 sampel daun yang diambil dari 

berbagai eksperimen serta data laboratorium diagnostic nasional. Setiap 

sampel diberi label dalam lima kategori nutrisi (deficient, low, sufficient, 

high, excessive) untuk 11 unsur hara utama (termasuk N, P, K, Ca, Mg, dan 

S), berdasarkan rentang interpretative distribusi Gamma atau Weibull yang 

telah diturunkan dari data luas tersebut. Model Machine Learning yang diuji 

mencakup decision tree (J48), Random Forest (RF), Sequential Minimal 

Optimization (SMO) sebagai algoritma SVM, serta Multilayer Perceptron 

(MLP). Kinerja masing-masing model dievaluasi menggunakan dua teknik 

cross-validation: 66% split dan 10-fold stratified cross-validation. Metode 

evaluasi yang diukur meliputi Percentage Correct Classification (PCC), 

Kappa Statistic, dan ROC Score. Hasil akhir menunjukkan bahwa MLP 

memiliki performa baik, tetapi secara umum Random Forest dan J48 

memberikan akurasi tertinggi pada hamper semua unsur hara yang diuji. 

Sebagai contoh, untuk beberapa unsur seperti magnesium dan sulfur, 

Random Forest mencapai akurasi hingga 99%, sedangkan MLP lebih rendah 

konsisten. Meski demikian, MLP tetap mempertahankan performa 

signifikan dengan nilai PCC dan Kappa yang menunjukkan klasifikasi yang 

jauh diatas acak (ROC > 0.5), menandakan model bekerja dengan baik. 

(Veazie dkk., 2024) 

Multilayer Perceptron (MLP) merupakan arsitektur jaringan saraf 

tiruan yang efektif dalam mengklasifikasikan penyakit tanaman berdasarkan 

citra daun. Dalam penelitian oleh Naeem dkk (2021), MLP digunakan untuk 

mengidentifikasi enam jenis daun tanaman obat. Penelitian ini 
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memanfaatkan kombinasi fitur multispectral dan tekstur dari citra daun 

untuk menghasilkan representasi data yang lebih kaya. Hasil penelitian 

menunjukkan bahwa MLP mampu mengolah fitur-fitur citra secara efisien 

dan memberikan akurasi klasifikasi yang tinggi, yaitu antara 98% hingga 

99%, menjadikannya sebagai metode yang potensial dalam pengenalan jenis 

daun berdasarkan citra. (Naeem dkk., 2021) 

Penelitian oleh Pacal dkk (2024) memberikan tinjauan menyeluruh 

terhadap 160 artikel ilmiah yang terbit antara tahun 2020 hingga 2024. 

Kajian ini bertujuan untuk mengevaluasi perkembangan dan efektivitas 

berbagai teknik Deep Learning dalam mendeteksi serta mengklasifikasi 

penyakit tanaman melalui citra daun. Fokus utama dalam studi ini adalah 

pemanfaatan metode Autoencoder untuk ekstraksi fitur dan Multilayer 

Perceptron (MLP) sebagai model klasifikasi. Dari hasil analisis yang 

dilakukan, ditemukan kombinasi antara Autoencoder dan MLP sering 

digunakan dalam berbagai penelitian karena kemampuannya dalam 

menyaring fitur penting dari citra daun dan menerapkannya secara akurat 

dalam proses klasifikasi penyakit. Secara keseluruhan, akurasi yang dicapai 

dalam studi-studi tersebut berkisar antara 92% hingga 99%, menunjukkan 

bahwa pendekatan ini cukup untuk digunakan dalam sistem diagnosis 

otomatis berbasis citra. (Pacal dkk., 2024) 

Penelitian oleh Al-Safaar & Al-Yaseen (2023), membahas tentang 

pendekatan hibrida berbasis Deep Learning dengan mengintegrasikan 

Autoencoder (AE) dan Multilayer Perceptron (MLP) untuk membangun 

sistem deteksi yang efisien dan akurat. Studi ini menyoroti keunggulan 

penggunaan Autoencoder sebagai metode unsupervised feature extraction, 

di mana Autoencoder dirancang untuk mempelajari representasi laten dari 

data masukan secara otomatis dengan cara melakukan kompresi dan 

rekonstruksi. Proses encoding yang dilakukan oleh Autoencoder bertujuan 

untuk mereduksi kompleksitas data asli dengan tetap mempertahankan fitur 

penting yang paling representatif. Hasil dari encoding ini kemudian 

digunakan sebagai input bagi MLP, yang berperan sebagai pengklasifikasi 
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utama dalam arsitektur ini. MLP sebagai model supervised learning dilatih 

untuk mengenali pola-pola dari representasi fitur yang telah dipadatkan oleh 

Autoencoder. Dalam eksperimen penelitian ini, pendekatan AE-MLP 

diterapkan pada sistem deteksi intrusi jaringan, namun prinsip dan 

arsitekturnya sangat relevan untuk diterapkan pada bidang pengolahan citra, 

khususnya dalam klasifikasi berbasis gambar seperti mendeteksi defisiensi 

nutrisi pada daun tanaman. (Al-Safaar & Al-Yaseen, 2023) 

Penelitian oleh Boukhlifah & Chibani (2024) memperkenalkan 

arsitektur jaringan saraf konvolusional (CNN) yang dirancang secara ringan 

dengan memanfaatkan pendekatan Convolutional Autoencoder (CAE) untuk 

melakukan identifikasi penyakit pada daun tanaman tomat. Pendekatan ini 

dirancang untuk menghasilkan sistem klasifikasi yang efisien namun tetap 

memiliki akurasi tinggi. Dalam metode ini, CAE dimanfaatkan sebagai 

tahap awal untuk mengekstraksi fitur-fitur penting dari citra daun tomat 

yang terinfeksi. Hasil ekstraksi tersebut kemudian dijadikan input untuk 

proses klasifikasi menggunakan CNN, yang bertugas menentukan jenis 

penyakit berdasarkan pola visual yang telah diolah. Model ini dievaluasi 

menggunakan dataset PlantVillage yang mencakup 10 kelas penyakit daun 

tomat, dan berhasil mencapai tingkat akurasi sebesar 99,13%. Akurasi yang 

tinggi ini menunjukkan bahwa kombinasi CAE dan CNN sangat efektif 

dalam menangani klasifikasi citra. (Boukhlifa & Chibani, 2024) 

Penelitian oleh Sikati & Nouaze (2023) mengusulkan sistem 

klasifikasi defisiensi nutrisi berbasis real-time untuk tanaman selada 

hidroponik. Model ini memanfaatkan YOLOv8 Nano, varian dari arsitektur 

YOLO yang dioptimalkan untuk kecepatan dan efisiensi. Penelitian ini 

merespons kebutuhan akan sistem klasifikasi yang dapat diimplementasikan 

langsung di lapangan tanpa perangkat keras yang mahal. Dataset citra daun 

selada yang menunjukkan defisiensi N, P, dan K digunakan dalam pelatihan 

model. Hasilnya, model ini tidak hanya mampu mencapai akurasi lebih dari 

85%, tetapi juga dapat memproses setiap citra dalam waktu inferensi kurang 

dari 170 milidetik, yang menunjukkan potensi besar untuk penerapan 
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langsung di sistem monitoring pertanian berbasis Internet of Things (IoT) 

atau perangkat mobile. (Sikati & Nouaze, 2023) 

Penelitian oleh Adianggiali dkk (2023) mengkaji pendekatan 

klasifikasi defisiensi nutrisi pada tanaman selada hidroponik dengan 

memanfaatkan arsitektur Deep Learning ringan, yaitu MobileNetV2. 

Penelitian ini dilatarbelakangi oleh pentingnya deteksi dini terhadap 

kekurangan nutrisi pada tanaman hidroponik, yang kerap menunjukkan 

gejala visual pada daun. Metode yang digunakan melibatkan pengumpulan 

dataset citra daun selada dari platform publik seperti Kaggle dan roboflow, 

yang kemudian diproses melalui tahapan Preprocessing, augmentasi, serta 

pelatihan model menggunakan platform google colab. Model MobileNetV2 

dipilih karena keunggulannya dalam efisiensi komputasi tanpa 

mengorbankan akurasi. Hasil evaluasi menunjukkan bahwa model ini 

mampu mencapai tingkat akurasi sebesar 88%, membuktikan bahwa 

arsitektur lightweight CNN dapat diterapkan secara praktis dalam 

mendeteksi kekurangan nutrisi secara visual pada sistem pertanian modern 

berbasis hidroponik. (Adianggiali dkk., 2023) 

 

2.2 Dasar Teori 

2.2.1 Defisiensi Nutrisi 

Defisiensi nutrisi merupakan kondisi di mana tanaman tidak 

memperoleh jumlah unsur hara esensial yang mencukupi untuk menjalankan 

fungsi fisiologis secara optimal. Dalam budidaya hidroponik, kondisi ini 

sangat rentan terjadi mengingat seluruh kebutuhan nutrisi tanaman disuplai 

secara penuh melalui laurtan nutrisi. Ketidak seimbangan dalam komposisi 

larutan, baik karena kekurangan maupun kelebihan unsur tertentu, dapat 

menyebabkan gejala fisiologis yang khas dan menurunkan kualitas serta 

produktivitas tanaman. 

Menurut Djidonou & Leskovar (2019), tanaman selada yang 

dibudidayakan secara hidroponik menunjukkan gejala visual yang spesifik 

terhadap kekurangan beberapa unsur hara makro dan mikro. Misalnya, 
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kekurangan Nitrogen (N) menyebabkan klorosis atau perubahan warna daun 

menjadi kuning dimulai dari daun-daun tua. Fosfor (P) yang rendah 

ditunjukkan oleh daun yang berwarna hijau gelap dengan potensi pigmentasi 

keunguan, sedangkan defisiensi Kalium (K) menyebabkan bercak nekrotik 

atau kematian jaringan pada daun. (Djidonou & Leskovar, 2019) 

Seiring dengan kemajuan teknologi, pendekatan konvensional 

berbasis pengamatan visual yang bersifat subjektif dan memerlukan 

keahlian khusus dinilai kurang efisien untuk mendeteksi defisiensi nutrisi 

secara akurat dan cepat. Oleh karena itu, metode berbasis citra digital dan 

kecerdasan buatan mulai dikembangkan sebagai solusi modern untuk 

mengidentifikasi kekurangan unsur hara pada tanaman. Menurut Pandey 

dkk (2003) menjelaskan bahwa penggunaan teknologi hyperspectral 

imaging (HSI) yang dikombinasikan dengan algoritma Deep Learning dapat 

secara signifikan meningkatkan akurasi deteksi gejala defisiensi pada daun 

tanaman Lettuce. Setiap jenis kekurangan nutrisi menunjukkan pola spectral 

unik yang dapat dianalisis secara otomatis menggunakan model 

pembelajaran mesin, sehingga memungkinkan sistem mendeteksi defisiensi 

dengan tingkat presisi tinggi bahkan dalam kondisi pencahayaan yang 

bervariasi.(Pandey dkk., 2023) 

Penerapan pendekatan ini tidak hanya mengurangi ketergantungan 

pada pengamatan subjektif, tetapi juga mempercepat proses diagnosis dan 

pengambilan keputusan budidaya tanaman, terutama dalam sistem 

hidroponik yang sensitif terhadap perubahan komposisi nutrisi. Dengan 

dukuran data visual yang objektif dan akurat, teknologi ini membuka 

peluang bagi pengembangan sistem pemantauan nutrisi tanaman secara real-

time, yang sangat relevan untuk meningkatkan efisiensi dan produktivitas di 

sektor pertanian modern. 

2.2.2 Pengolahan Citra (Image Processing) 

Pengolahan citra digital telah menjadi teknologi yang sangat penting 

dalam bidang pertanian, terutama dalam deteksi kekurangan nutrisi. Dengan 

menggunakan teknik pengolahan citra, kita dapat menganalisis gambar daun 
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tanaman untuk mengidentifikasi gejala penyakit seperti perubahan warna, 

tekstur, atau bentuk. Proses ini melibatkan beberapa tahapan yang sangat 

penting, yaitu: 
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1. Pengambilan gambar daun menggunakan kamera digital atau 

perangkat lain. 

2. Pembersihan dan penyesuaian gambar untuk memisahkan objek daun 

dari latar belakang. 

3. Identifikasi ciri-ciri khas dari gambar yang relevan untuk deteksi 

kekurangan nutrisi. 

4. Penentuan kategori penyakit berdasarkan ciri-ciri yang telah dideteksi. 

Dengan demikian, pengolahan citra digital telah menjadi teknologi 

yang sangat penting dalam bidang pertanian, terutama dalam mendeteksi 

penyakit tanaman. Dengan menggunakan teknik ini, kita dapat 

meningkatkan efisiensi dan akurasi dalam mendeteksi penyakit, sehingga 

dapat mengurangi kerugian yang disebabkan oleh penyakit tanaman. 

Untuk memperjelas proses dan tahapan pengolahan citra yang 

diterapkan dalam deteksi kekurangan nutrisi pada tanaman, berikut 

ditampilkan ilustrasi alur image processing dari penelitian yang relevan. 

 

Gambar 2. 1 Illustrasi Image Processing (Taha dkk., 2022) 
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Pada gambar 2. 1 menunjukkan ilustrasi alur image processing untuk 

mendeteksi kekurangan nutrisi pada tanaman selada yang ditulis oleh Taha 

dkk (2022). Proses dimulai dari pemilihan tanaman dan pengambilan 

gambar, dilanjutkan dengan tahap segmentasi menggunakan model Deep 

Learning seperti SegNet untuk memisahkan area daun dari latar belakang 

gambar. 

Setelah proses segmentasi, dilakukan ekstraksi fitur dari citra daun, 

yang mencakup: 

1. Fitur warna (seperti red, green blue, hue, saturation, dan value), 

2. Fitur morfologis (seperti area, perimeter, convex hull), dan 

3. Fitur tekstur (seperti energy, homogeneitu, contrast, correlation, dan 

entropy). 

Fitur-fitur tesebut kemudian digunakan sebagai input untuk model 

klasifikasi, baik Machine Learning tradisional seperti SVM, KNN, dan 

Decision Tree, maupun Deep Learning Convolutional Neural Networks 

(DCNNs) seperti InceptionV3 dan ResNet18. 

Hasil dari proses klasifikasi digunakan untuk menentukan jenis 

kekurangan nutrisi, seperti FN (Full Nutrient), (Nitrogen Deficiency), P 

(Phosphorus Deficiency), dan K (Potassium Deficiency). Terakhir, 

dilakukan evaluasi kinerja klasifikasi menggunakan metrik umum seperti 

akurasi, presisi, Recall, dan F1-Score.  

2.2.3 Autoencoder dalam Ekstraksi Fitur Citra 

Autoencoder adalah jenis jaringan saraf tiruan yang digunakan untuk 

belajar representasi data dalam bentuk dimensi yang lebih rendah secara 

tidak terawasi. 
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Gambar 2. 2 Arsitektur Autoencoder 

Pada gambar 2. 2 menjelaskan tentang struktur dasar Autoencoder 

terdiri dari tiga komponen utama: 

1. Encoder: Mengubah input menjadi representasi laten berdimensi lebih 

rendah. 

2. Bottleneck: lapisan tersempit yang memaksa jaringan untuk belajar 

representasi yang paling penting dari data. 

3. Decoder: merekonstruksi data asli dari representasi laten. 

Dalam konteks deteksi penyakit tanaman, Autoencoder digunakan 

untuk mengekstraksi fitur penting dari citra daun secara otomatis tanpa 

label. Fitur-fitur ini kemudian digunakan sebagai input untuk tahap 

klasifikasi menggunakan MLP.(naz & Malik, 2023) 

Rumus Autoencoder terdiri dari tiga bagian utama: 

1. Encoder: 

Mengubah input 𝑥 menjadi representasi laten 𝑧 melalui fungsi 

aktivasi: 

𝑧 = 𝑓𝑒𝑛𝑐(𝑥) = 𝑜1(𝑊𝑒𝑥 + 𝑏𝑒) (1) 

Penjelasan rumus: 

a. 𝑥: input asli (citra daun) 

b. 𝑓𝑒𝑛𝑐(𝑥): fungsi Encoder yang mengubah input x menjadi 

representasi laten z. 
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c. 𝑊𝑒: bobot pada layer encoder. 

d. 𝑏𝑒: bias pada layer encoder. 

e. 𝑜1: fungsi aktivasi encoder menggunakan ReLU. 

f. 𝑧: representasi fitur laten hasil kompresi dari input 

Fungsi rumus: 

Rumus ini digunakan untuk menyandikan data input ke dalam 

bentuk vektor fitur yang lebih ringkas (laten). Tujuannya adalah 

menangkap informasi penting dati citra secara efisien, sambil 

membuang noise atau informasi yang kurang relevan. 

2. Bottleneck: 

Merupakan representasi padat hasil dari Encoder: 

𝑧 𝜖 ℝ𝑛 (2) 

Penjelasan rumus: 

a. 𝑧: vektor representasi laten dari input. 

b. ℝ𝑛: ruang berdimensi n (real number), artinya vektor z memiliki 

n dimensi, lebih kecil dimensi input. 

Fungsi rumus: 

Bottleneck merupakan lapisan tersempit pada Autoencoder. Di 

sini, representasi input dikompresi maksimal, berfungsi sebagai inti 

dari data. Informasi dari sinilah yang akan direkonstruksi oleh 

Decoder dan digunakan untuk ekstraksi fitur lebih lanjut. 

3. Decoder: 

𝑥 = 𝑓𝑑𝑒𝑐(𝑧) = 𝑜2(𝑊𝑑𝑧 + 𝑏𝑑) (3) 

Penjelasan rumus: 

a. 𝑧: representasi dari Encoder. 

b. 𝑓𝑑𝑒𝑐(𝑧): fungsi Decoder untuk mengubah z kembali ke bentuk 

menyerupai x. 

c. 𝑊𝑑: bobot pada Encoder. 

d. 𝑏𝑑: bias pada Decoder. 

e. 𝑜2: fungsi aktivasi pada Encoder, sering menggunakan sigmoid 

atau ReLU. 
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f. 𝑥: output rekonstruksi, yaitu hasil akhir dari Decoder yang 

mencoba mereknstruksi kembali input asli. 

Fungsi rumus: 

Decoder digunakan untuk membangun kembali input dari 

representasi laten. Jika hasil rekonstruksi sangat mirip dengan input, 

itu menunjukkan bahwa fitur penting telah berhasil ditangkap oleh 

Encoder. 

2.2.4 Ekstraksi Fitur dengan Autoencoder 

Autoencoder tidak mengekstraksi fitur secara eksplisit seperti warna, 

bentuk, atau tekstur secara langsung seperti metode konvensional pada 

pengolahan citra. Namun, Autoencoder mampu membentuk representasi 

numerik dalam ruang laten yang secara tidak langsung menangkap pola-pola 

penting dan struktur mendalam dari gambar. Representasi ini menyimpan 

informasi penting yang dibutuhkan oleh sistem untuk memahami perbedaan 

antar kelas gambar, meskipun tidak dalam bentuk fitur yang secara kasat 

mata dapat diidentifikasi oleh manusia. 

2.2.5 Multilayer Perceptron (MLP) 

Multilayer Perceptron (MLP) adalah jenis jaringan saraf tiruan yang 

terdiri dari tiga atau lebih lapisan, seperti input layer, hidden layer, dan 

output layer. Setiap neuron dalam MLP menggunakan fungsi aktivitas non-

linear, memungkinkan jaringan untuk memodelkan hubungan kompleks 

antara input dan output. Dalam deteksi penyakit tanaman, MLP digunakan 

untuk mengklasifikasikan citra daun berdasarkan fitur yang diekstraksi oleh 

Autoencoder.(Kusuma dkk., 2023) 
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Gambar 2. 3 Arsitektur Jaringan Saraf Tiruan MLP (Kusuma dkk., 2023) 

Jaringan pada gambar 2. 3 tersusun atas tiga komponen utama, yaitu: 

1. Input Layer 

a. Fungsi: menjadi titik masuk data ke dalam jaringan saraf. 

b. Komponen: tiap bulatan biru mewakili satu neuron (node) input 

yang menerima fitur dari data mentah. Misalnya, jika kita 

memproses citra daun, maka tiap neuron bisa mewakili nilai 

piksel, warna, tekstur, atau fitur citra lainnya. 

2. Hidden Layer 

a. Fungsi: menangkap hubungan kompleks antara input dan output 

melalui proses pembobotan dan fungsi aktivasi. 

b. Komponen:  

1) Setiap neuron menerima input dari seluruh neuron di layer 

sebelumnya (input layer). 

2) Hasil Iiput layer tersebut kemudian dilewatkan ke fungsi 

aktivasi untuk menghasilkan output non-linear. 
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3. Output Layer 

a. Fungsi: memberikan hasil akhir dari jaringan. 

b. Komponen: 

1) Neuron di output layer menerima hasil dari seluruh neuron 

di hidden layer. 

2) Prosesnya mirip seperti di hidden layer, yaitu penjumlahan 

bobot dan aktivasi. 

3) Hasil akhirnya adalah 𝑦, yang bisa berupa klasifikasi atau 

nilai prediksi. 

Dalam arsitektur aringan Multilayer Perceptron (MLP), fungsi 

aktivasi (activation function) memegang peranan penting dalam 

memungkinkan jaringan untuk belajar dan memodelkan hubungan non-

linear antar data. Fungsi aktivasi disisipkan disetiap neuron pada hidden 

layer maupun output layer untuk menentukan apakah suatu neuron akan 

diaktifkan atau tidak berdasarkan nilai input yang diterimanya. 

1. ReLU (Rectified Linear Unit) 

Pada penelitian ini, digunakan fungsi aktivasi ReLU dibagian 

input layer dan hidden layer. Fungsi ini bekerja dengan cara 

meneruskan nilai positif sebagaimana adanya dan mengubah semua 

nilai negatif menjadi nol. Secara matematis dituliskan sebagai: 

𝑓(𝑥) = max(0, 𝑥) (4) 

Penjelasan Rumus: 

a. 𝑓(𝑥): nilai keluaran dari fungsi aktivasi ReLU terhadap input x. 

b. 𝑥: nilai input dari neuron sebelumnya (hasil perhitungan bobot 

dan bias). 

c. max (0, 𝑥): fungsi maksimum yang akan memilih nilai terbesar 

antara 0 dan x. 

ReLU digunakan karena: 

a. Menghindari masalah vanishing gradient 

b. Mempercepat konvergensi pelatihan model 

c. Sederhana dan efisien secara komputasi 
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2. Softmax 

Pada output layer, digunakan fungsi aktivasi Softmax, yang 

berfungsi untuk mengubah output jaringan menjadi distribusi 

probabilitas terhadap kelas-kelas target. Fungsi ini memastikan bahwa 

total output bernilai 1 dan masing-masing output merepresentasikan 

kemungkinan input termasuk ke dalam masing-masing kelas. Rumus 

fungsi Softmax adalah: 

𝑦𝑖 =
𝑒𝑧𝑖

∑ 𝑒𝑧𝑗𝐾
𝑗=1

(5) 

Penjelasan rumus: 

a. 𝑦𝑖: nilai output (probabilitas) kelas ke-i setelah fungsi Softmax 

diterapkan. 

b. 𝑧𝑖: skor dari neuron ke-i output layer. 

c. 𝑒: bilangan eksponensial (sekitar 2.718). 

d. 𝐾: jumlah total kelas dalam masalah klasifikasi. 

e. ∑ 𝑒𝑧𝑗𝐾
𝑗=1 : penjumlahan seluruh nilai eksponensial dari setiap 

skor kelas sebagai normalisasi. 

Softmax digunakan karena: 

Penggunaan fungsi Softmax sangat cocok untuk kelas multiclass 

classification, seperti dalam penelitian ini yang mengklasifikasikan 

daun ke dalam empat kategori: Nitrogen, Phosphor, Kalium, dan 

Healty.
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BAB III  

METODE PENELITIAN 

 

3. 1 Metode Penelitian 

3.1.1 Integrasi Autoencoder dan MLP 

Pada tahap ini dilakukan integrasi antara model Autoencoder dan 

Multilayer Perceptron (MLP) sebagai solusi dalam mendeteksi kekurangan 

nutrisi tanaman berdasarkan citra daun. Pendekatan ini memungkinkan 

sistem melakukan ekstraksi fitur penting secara otomatis dari citra input dan 

mengklasifikannya ke dalam kategori defisiensi nutrisi. 

Pendekatan gabungan antara Autoencoder dan Multilayer Perceptron 

(MLP) merupakan solusi yang menjanjikan untuk menggabungkan 

mekanisme ekstraksi fitur dan kemampuan klasifikasi dalam satu sistem 

yang ringan dan efektif. 

Peratama, Autoencoder bertugas mereduksi dimensi dan mengekstrak 

fitur penting dari citra daun dengan cara mengompresi informasi visual ke 

dalam representasi laten. Salah satu contoh implementasi sukses adalah 

model PDSE-Lite oleh Bedi, dkk (2023), yang memanfaatkan Convolutional 

Autoencoder untuk mendeteksi tingkat keparahan penyakit pada tanaman 

secara efisien(Bedi dkk., 2023) 

Selain itu, dikembangkan juga sebuah pendekatan berbasis Deep 

Learning yang memanfaatkan jaringan Autoencoder konvolusional untuk 

mendeteksi penyakit pada tanaman. Penelitian ini secara khusus menyoroti 

kemampuan Autoencoder dalam melakukan ekstraksi fitur penting dari citra 

daun tanaman secara otomatis, tanpa perlu proses segmentasi atau 

pemrosesan manual yang kompleks. Proses ekstraksi ini dilakukan melalui 

kompresi informasi visual ke dalam representasi yang lebih padat dan 

bermakna menggunakan jaringan Encoder, yang kemudian diolah untuk 

menghasilkan informasi yang dapat dikenali oleh sistem. (Natarajan dkk., 

2024)
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Setelah fitur diekstaksi melalui arsitektur Autoencoder, langkah 

selanjutnya dalam penelitian ini adalah melakukan deteksi terhadap jenis 

penyakit yang teridentifikasi dalam citra, seperti Workflow dibawah ini: 

 

Gambar 3. 1 Alur Kerja Model 

Pada gambar 3. 1 menjelaskan gambaran alur kerja sistem klasifikasi 

defisiensi nutrisi pada tanaman Lettuce Iceberg berbasis pengolahan citra 

digital yang terdiri dari beberapa tahap utama, yaitu: pengambilan data 

(input citra), pemrosesan awal (preprocessing), ekstraksi fitur dengan 

Autoencoder, klasifikasi dengan MLP, dan evaluasi model. 

1. Pengambilan Data (Foto Lettuce Iceberg) 

Proses dimulai dengan pengumpulan citra tanaman lettuce 

iceberg yang diambil dari dataset. Gambar-gambar ini menjadi input 

awal sistem. 
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2. Preprocessing 

Tahap ini merupakan proses penting dalam mempersiapkan data 

gambar sebagai input model: 

a. Pemberian Label 

Setiap gambar diberi label numerik yang 

merepresentasikan kondisi nutrisi daun, seperti 0 untuk 

defisiensi Nitrogen, 1 untuk Phosphor, 2 untuk Kalium, dan 3 

untuk daun sehat 

b. Segmentasi Warna (HSV): 

Gambar awal dikonveri dari format RGB (Red, Green, 

Blue) ke ruang warna HSV (Hue, Saturation, Value). Model 

HSV digunakan karena dapat memisahkan informasi warna 

(Hue) dari kecerahan (Value), sehingga mempermudah dalam 

melakukan filter objek berdasarkan warna tertentu. Dengan 

menentapkan threshold pada channel hue, bagian daun dapat 

disegmentasi dari latar belakang yang tidak televan. 

c. Pengubahan Ukuran Gambar (Resize) 

Gambar hasil segmentasi kemudian diubah ukurannya 

menjadi 128*128 piksel agar seragam yang dapat mengurangi 

kompleksitas komputasi dan menyamaratakan ukuran dalam 

input. 

d. Normalisasi Piksel 

Gambar yang telah diresize kemudian dinormalisasi ke 

rentang [0, 1] dengan membagi setiap nilai piksel RGB dengan 

255 yang bertujuan untuk mempercepat proses pelatihan dan 

menghindari dominasi nilai piksel besar dalam perhitungan 

bobot jaringan. 

e. Pembagian Dataset 

Dataset gambar dan label kemudian dibagi menjadi data 

latih dan data uji menggunakan metode train-test split dengan 
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rasio 80:20, yang di mana 80% data digunakan untuk pelatihan 

model, dan 20% untuk pengujian. 

3. Ekstraksi fitur dengan Autoencoder 

Pada tahap ini, fitur-fitur penting dari gambar diekstrak, seperti 

pada fitur warna (merah, hijau, dan biru) digunakan karena perubahan 

warna daun merupakan indikator utama dari defisiensi nutrisi. Gambar 

hasil preprocessing dioleh menggunakan arsitektur Autoencoder, yang 

bertugas mengekstrak dan merepresentasikan fitur penting dalam 

bentuk encoded vektor berdimensi lebih kecil. Autoencoder juga 

digunakan untuk melakukan rekonstruksi citra untuk memastikan 

bahwa fitur yang diambil cukup merepresentasikan informasi penting 

dari gambar. 

4. Klasifikasi dengan MLP 

Tahap seetelah Autoencoder Adalah melakukan klasifikasi 

menggunakan model MLP. Berikut Adalah penjelasnnya: 

a. Pembuatan Encoder dari Autoencoder 

Encoder dari Autoencoder yang sudah dilatih lalu 

dipisahkan sehingga hanya digunakan untuk menghasilkan 

representasi terkompresi atau encoded vektor dari setiap gambar 

daun. 

b. Ekstraksi dari Flatten Fitur 

Proses ekstraksi dilakukan dari encoder dan diratakan 

hasilnya agar dapat diolah model MLP yang menerima input 

berupa vektur satu dimensi. 

c. One-Hot Encoding Label 

Label yang berawal dari bentuk angka diubah menjadi 

format one-hot encoding, untuk merepresentasikan setiap kelas 

sebagai vektor biner yang sesuai dengan jumlah kelas yang ada. 

d. Aktivasi ReLU dan Softmax 

Pada proses ini, MLP didefinisikan menjadi tiga lapisan 

utama, yaitu lapisan dense pertama yang berjumlah 256 neuron 
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dengan aktivasi ReLU untuk memproses semua fitur dengan 

dropout sebessar 30% untuk mencegah overfitting, lapisan 

kedua berjumlah 126 neuron dengan aktivasi ReLU dan dropout 

30%, dan lapisan ketiga dengan 4 neuron yang menggunakan 

aktivasi Softmax untuk menghasilkan probabilitas prediksi bagi 

masing-masing kelas. 

e. Kompilasi Model 

Model ini dikompilasi dengan menggunakan optimizer 

Adam, fungsi loss categorical crossentropy yang sesuai untuk 

klasifikasi multiclass dengan label one-hot dan metrik evaluasi 

akurasi. 

f. Pelatihan Model 

Proses pelatihan dilakukan sebanyak 25 epoch, dengan 

menggunakan data pengujian digunakan untuk melihat performa 

model di setiap epoch. 

5. Evaluasi Model 

Tahap akhir adalah evaluasi performa dari model klasifikasi. 

Dua jenis evaluasi yang digunakan adalah: 

a. Confusion Matrix, yang menampilkan penyebaran prediksi 

benar dan salah antar kelas. Matriks ini memberikan gambaran 

detail tentang berapa banyak gambar tiap kelas yang 

diklasifikasikan dengan benar atau salah. 

b. Grafik Evaluasi Metrik (Akurasi, Presisi, Recall, dan F1-Score) 

yang menunjukkan performa numerik model: 

1) Akurasi sebagai mengukur seberapa banyak prediksi yang 

benar dari keseluruhan data. 

2) Presisi sebagai menggambarkan seberapa akurat model 

dalam memprediksi suatu kelas. 

3) Recall sebagai menggambarkan seberapa baik model 

dalam menemukan semua contoh dari satu kelas tertentu. 

4) F1-Score sebagai perhitungan antara presisi dan Recall. 
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3.1.2 Evaluasi Model 

Evaluasi terhadap performa model dilakukan untuk mengukur 

seberapa baik sistem dalam mengklasifikasikan kondisi daun tanaman 

lettuce iceberg berdasarkan jenis kekurangan nutrisinya. Dalam penelitian 

ini, proses evaluasi dilakukan menggunakan pendekatan, yaitu metrik 

akurasi, presisi, dan F1-Score. 

Akurasi digunakan untuk mengukur persentase prediksi yang benar 

dari keseluruhan data yang diuji, yang dihitung dengan rumus sebagai 

berikut: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(6) 

Di mana TP (True Positive) adalah jumlah prediksi positif yang benar, TN 

(True Negative) adalah jumlah prediksi negatif yang benar, FP (False 

Positive) adalah jumlah prediksi positif yang salah, dan FN (False Negative) 

adalah jumlah prediksi yang salah. 

Selain akurasi, F1-Score juga digunakan untuk memberikan penilaian 

performa model yang lebih seimbang, khususnya pada dataset yang 

memiliki distribusi tidak merata antar kelas. F1-Score mempertimbangkan 

keseimbangan antara precision dan Recall, dan dihitung menggunakan 

rumus berikut: 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2. (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛. 𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(7) 

Dengan: 

1.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(8) 

2.  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(9) 

Evaluasi dilakukan menggunakan data validasi yang tidak dilibatkan dalam proses 

pelatihan, sehingga hasil evaluasi ini memberikan Gambaran umum mengenai 

kemampuan generalisasi model terhadap data baru. Metri-metrik tersebut 
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diimplementasikan menggunakan library scikit-learn untuk mendapatkan nilai 

akurasi dan F1-Score dari hasil prediksi model terhadap data uji. 

Selain metrik akurasi, presisi, dan F1-Score, evaluasi performa model 

juga dilengkapi dengan Confusion Matrix untuk memberikan gambaran 

lebih detail mengenai hasil prediksi model terhadap masing-masing kelas. 

Confusion Matrix Adalah tabel yang menunjukkan jumlah prediksi 

benar dan salah yang dilakukan oleh model untuk setiap kelas. Baris pada 

tabel mewakili kelas sebenarnya (Actual), sedangkan kolom mewakili kelas 

prediksi (Predicted). Dengan menggunakan Confusion Matrix, kita dapat 

mengidentifikasi kelas mana yang paling sering diprediksi salah, serta 

mengevaluasi sejauh mana model membedakan antar kelas. 

Tabel 3. 1 Contoh Tabel Confusion Matrix 

Actual\Predicted N P K H 

N 9 1 3 0 

P 0 5 5 0 

K 0 0 14 0 

H 0 0 0 7 

Tabel 3. 1 adalah contoh tabel Confusion Matrix yang dihasilkan 

menggunakan fungsi confusion_matrix dari library scikit-learn, yang 

menerima label actual dan label prediksi sebagai input. 

Dari tabel Confusion Matrix pada 3.1, dapat dilihat bahwa model 

berhasil mengklasifikasikan sebgian besar sampel dengan benar, terutama 

pada kelas Kalium (K) dan Healty (H) yang menunjukkan nilai prediksi 

sempurna sebanyak 14 dan 7 kali secara berurutan. Namun, terdapat 

beberapa kesalahan klasifikasi pada kelas Nitrogen (N) dan Phosphor (P), di 

mana model memprediksi 1 sampel kelas Nitrogen sebagai Phosphor, serta 

5 sampel kelas Phosphor salah diklasifikasikan sebagai Kalium. Dari hasil 

ini menunjukkan bahwa meskipun performa model cukup baik secara 

umum, masih ada tantangan dalam membedakan fitur visual yang serupa 

antara kelas tertentu. 
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3. 2 Analisa kebutuhan 

Pada tahap ini penulis menganalisa apa saa kebutuhan selama 

pembangunan sistem, seperti Bahasa pemrograman, software, library, dan 

Framework yang digunakan. Berikut adalah apa saja yang digunakan dalam 

pembangunan sistem: 

1. Bahasa Pemrograman 

a. Python 

Bahasa pemrograman utama yang digunakan dalam 

pengembangan sistem, karena dukungan ekosistem library yang 

sangat kuat dalam bidang Machine Learning, pengolahan citra, 

dan pengembangan web berbasis data. 

2. Software 

a. Google colab 

Digunakan sebagai platform cloud untuk menulis dan 

menjalankan kode python, terutama dalam pelatihan model 

Deep Learning dan Preprocessing gambar. 

b. Google Drive 

Berfungsi sebagai penyimpanan dataset citra dan model 

hasil pelatihan yang diakses langsung dari Colab. 

c. Draw.io 

digunakan untuk membuat diagram alur sistem, arsitektur 

jaringan, serta visualisasi perancangan aplikasi. 

d. Visual Studio Code 

Digunakan untuk menulis dan menyusun File program 

Streamlit yang kemudian dijalankan secara lokal. 

e. Figma 

Dimanfaatkan untuk membuat desain tampilan antarmuka 

pengguna aplikasi sebelum diimplementasikan di Streamlit. 

f. Canva 

Digunakan untuk membuat sebuah desain arsitektur dan 

alur sistem model. 
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g. Streamlit Cloud 

Digunakan untuk mendeploy sistem yang sudah dibuat 

untuk diakses secara umum. 

3. Library dan Framework 

a. TensoreFlow & Keras 

TensorFlow adalah platform open-source yang popular 

untuk mengembangkan Machine Learning dan Deep Learning. 

Dalam penelitian ini, TensorFlow digunakan sebagai kerangka 

utama untuk membangun arsitektur Autoencoder dan Multilayer 

Perceptron (MLP). Keras, yang merupakan API dari 

TensorFlow, memberikan antarmuka yang lebih sederhana dan 

intuitif dalam membangun dan melatih model. 

b. NumPy 

NumPy merupakan library fundamental untuk komputasi 

numerik dalam Python. Dalam konteks penelitian ini, NumPy 

digunakan untuk melakukan sebagai operasi terhadap array atau 

tensor, seperti mengubah bentuk array, menggabungkan data, 

serta menyusun dan memanipulasi fitur yang diekstraksi dari 

Autoencoder. 

c. OpenCV 

OpenCV digunakan untuk membaca dan memproses citra 

digital. Dalam penelitian ini, OpenCV dimanfaatkan untuk 

membaca dataset citra daun lettuce, mengubah ukuran gambar, 

dan melakukan transformasi gambar dasar seperti konversi 

warna. 

d. Matplotlib 

Matplotlib adalah library visualisasi yang banyak 

digunakan dalam Python. Library ini digunakan untuk 

menampilkan hasil visualisasi selama proses Preprocessing dan 

evaluasi, seperti menampilkan batch gambar hasil augmentasi, 

dan hasil prediksi model klasifikasi. 
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e. Scikit-learn (sklearn) 

Scikit-learn adalah library yang menyediakan berbagai 

tools untuk Machine Learning dan analisis data. Dalam 

penelitian ini, scikit-learn digunakan untuk evaluasi model 

klasifikasi menggunakan metrik seperti akurasi, presisi, Recall, 

F1-Score, Confusion Matrix, serta classification report. 

f. PIL (Python Imaging Library) 

PIL digunakan untuk memproses gambar dalam 

antarmuka pengguna. Dalam konteks Streamlit yang dibangun, 

PIL digunakan untuk membuka File gambar yang diunggah 

pengguna agar bisa ditampilkan dan diproses lebih lanjut oleh 

model klasifikasi. 

g. Streamlit 

Digunakan untuk membangun antarmuka pengguna 

berbasis web agar pengguna dapat mengunggah gambar dan 

melihat hasil deteksi secara langsung. 

 

3. 3 Penggunaan Sistem 

Pada tahap ini dilakukan Analisa untuk menentukan alur kerja 

penggunaan sistem restorasi citra yang akan dilakukan oleh user dalam 

bentuk Flowchart. Alur kerja sistem dapat dilihat dibawah ini: 

 
Gambar 3. 2 Alur Sistem 
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Pada gambar 3. 2 adalah alur sistem deteksi kekurangan nutrisi saat 

digunakan oleh user. Pada gambar 3. 2 memiliki beberapa tahapan, sebagai 

berikut: 

1. User membuka aplikasi kemudian akan muncul tampilan awal 

website. 

2. User mengunggah gambar bisa dengan tiga cara, yaitu menggunakan 

Drag and drop File here, Browser File atau Take Photo untuk 

memasukkan citra yang ingin dideteksi. 

3. Selanjutnya sistem akan memproses citra daun tersebut dengan 

melihat ciri-ciri warna, bercak, dan sebagainya untuk menentukan 

daun memiliki kekurangan nutrisi atau tidak. 

4. Terakhir, user akan mendapatkan input dari sistem berupa citra daun 

yang sudah dideteksi dari citra daun yang user masukkan ke sistem.  

 

3. 4 Perancangan User Interface 

3.4.1 Halaman Awal Sistem 

Gambar berikut merupakan wireframe atau rancangan awal antarmuka 

pengguna (user interface) dari sistem deteksi kekurangan nutrisi daun 

lettuce iceberg. Desain ini menggambarkan tampilan halaman awal yang 

dirancang untuk memudahkan pengguna dalam mengunggah citra daun 

sebelum dilakukan proses klasifikasi lebih lanjut oleh sistem. 
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Gambar 3. 3 User Interface desktop sebelum upload gambar 

 

Gambar 3. 4 User Interface mobile sebelum upload gambar 
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Pada gambar 3. 3 dan 3. 4 menampillkan rancangan antarmuka 

pengguna (user interface) pada halaman awal sistem deteksi kekurangan 

nutrisi. Halaman ini merupakan titik awal interaksi pengguna dengan sistem, 

di mana pengguna diarahkan untuk mengunggah citra daun yang ingin 

diperiksa tingkat kecukupan nutrisinya. Desain antar muka dibuat sederhana 

dan intuitif agar dapat digunakan dengan mudah oleh siapapun. 

Pada bagian tengah halaman, terhadap area unggah (upload area) 

dengan instruksi   "Drag and drop File here  " bagi pengguna yang ingin 

langsung menyeret gambar ke area tersebut atau tombol   "Browser Files  " 

yang dapat diklik untuk memilih File gambar secara manual dari perangkat 

pengguna. 

3.4.2 Tampilan Hasil Sistem 

Gambar berikut merupakan wireframe atau rancangan awal antarmuka 

pengguna (user interface) dari sistem deteksi kekurangan nutrisi daun 

lettuce iceberg. Desain ini menggambarkan tampilan halaman awal yang 

dirancang apabila gambar berhasil diupload. 

 

Gambar 3. 5 User Interface desktop seteleah upload gambar 
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Gambar 3. 6 User Interface desktop seteleah upload gambar 

Pada gambar 3. 5 dan 3. 6 merupakan tampilan sistem deteksi setelah 

gambar diunggah. Antarmuka ini menampilkan hasil akhir dari proses 

analisis menggunakan model deteksi berbasis citra digital. Hasil deteksi 

ditampilkan dalam bentuk teks dibagian bawah, dengan label   "Kelas: 

Sehat" yang ditandai dengan latar hijau. Label ini menunjukkan bahwa 

sistem mengenali gambar daun yang diunggah sebagai daun dengan kondisi 

sehat. 

Antar muka ini dirancang dengan pendekatan minimalis dan fokus 

pada fungsionalitas, untuk memudahkan pengguna dalam memahami hasil 

tanpa kerumitan teknis.
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BAB IV  

HASIL PENELITIAN DAN IMPLEMENTASI SISTEM 

 

4.1 Hasil Pengumpulan Data 

Berikut ini menunjukkan tabel sampel citra daun tanaman lettuce 

iceberg yang digunakan dalam penelitian, lengkap dengan deskripsi masing-

masing kategori kondisi nutrisi. Setiap kategori mewakili satu jenis 

tanaman, mulai dari tanaman sehat hingga tanaman yang mengalami 

defisiensi nutrisi seperti Nitrogen (N), Fosfor (P), dan Kalium (K). dataset 

citra daun ini diperoleh dari Kaggle, yang menyediakan data visual tanaman 

lettuce iceberg dengan berbagai tingkat Kesehatan. 

Tabel 4. 1 Tabel Sampel Dataset 

Citra Deskripsi 

 

Tanaman yang memiliki nutrisi yang terpenuhi, 

terlihat dari warna daun yang hijau merata dan 

pertumbuhan yang baik. 

 

Tanaman yang mengalami defisiensi Nitrogen, 

ditandai dengan warna daun yang menguning 

secara menyeluruh, terutama pada tua. 

 

Tanaman yang mengalami kekurangan fosfor, 

terlihat dari warna daun yang berubah menjadi 

ungu atau kemerahan pada bagian bawah. 

 

Tanaman yang mengalami defisiensi Kalium, 

ditunjukkan oleh tepi daun yang mengering atau 

berwarna coklat serta bentuk daun yang tidak 

normal. 
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Pada tabel 4. 1 proses pengumpulan data dalam penelitian ini 

dilakukan dengan mengumpulkan citra daun tanaman lettuce yang 

diklasifikasikan kedalam empat kategori, yaitu daun sehat (Healty), 

kekurangan Nitrogen (Nitrogen Deficiency), kekurangan fosfor (Phosphorus 

Deficiency), dan kekurangan Kalium (Potassium Deficiency). Dataset 

diperoleh dari sumber digital dan secara langsung, kemudian disusun dalam 

direktori terpisah berdasarkan masing-masing kelas untuk memudahkan 

proses pelabelan dan pelatihan model. 

Adapun deskripsi dari masing-masing kategori adalah sebagai berikut: 

1. Daun Sehat (Healty) 

Ditandai dengan warna hijau segar merata di seluruh permukaan daun, 

tidak terdapat bercak atau perubahan warna, serta memiliki tekstur 

yang normal tanpa kerusakan fisik. 

2. Kekurangan Nitrogen (Nitrogen Deficiency) 

Ditandai dengan warna yang menguning, terutama pada daun bagian 

bawah, pertumbuhan daun melambat, dan ukuran daun cenderung 

lebih kecil dari normal. 

3. Kekurangan Fosfor (Phosphorus Deficiency) 

Ditandai dengan warna daun yang hijau gelap, biasanya terlihat pada 

daun tua, serta pertumbuhan akar yang lambat. 

4. Kekurangan Kalium (Potassium Deficiency) 

Ditandai ujung dan tepi daun yang mengering atau berwarna coklat, 

serta daun menggulung atau terlihat keriting. 

 

4.2 Arsitektur Model Autoencoder dan Multilayer Perceptron 

Arsitektur sistem yang dibuat dengan menggabungkan dua model, 

yaitu Autoencoder dan Multilayer Perceptron (MLP) untuk mendeteksi 

kekurangan nutrisi pada daun lettuce iceberg. Autoencoder berfungsi 

sebagai ekstraktor fitur laten melalui proses encoding, sedangkan MLP 

digunakan sebagai klasifikator untuk memprediksi kondisi nutrisi 

berdasarkan fitur yang telah diekstraksi. 
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Gambar 4. 1 Arsitektur Autoencoder dan MLP 

Pada gambar 4. 1 menampilkan arsitektur dari model Autoecoder dan 

Multilayer Perceptron (MLP), proses dimulai dari lapisan encoder yang 

melakukan ekstraksi fitur menggunakan Conv2D dan MaxPooling2D, 

kemudian hasil kompresi pada bottleneck diflatten untuk menghasilkan 

representasi fitur yang lebih sederhana. Decoder berfungsi untuk proses 

rekonstruksi sebagai bahan evaluasi dari kualitas ekstraksi fitur, namun 

tidak digunakan dalam tahap klasifikasi. Representasi fitur selanjutnya 

diproses oleh MLP yang terdiri dari beberapa Dense Layer dengan aktivasi 

ReLU dan Dropout untuk mencegah overfitting, serta lapisan Softmax pada 

output untuk menghasilkan daun ke dalam empat kategori nutrisi. 
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4.3 Implementasi Sistem Deteksi 

4.3.1 Preprocessing Dataset 

Gambar berikut menampilkan hasil proses preprocessing pada dataset 

citra daun lettuce iceberg yang melewati labeling, segmentasi, resize, 

normalisasi, dan train-test split. 

 

Gambar 4. 2 Hasil Prepocessing 

Pada gambar 4. 2 menampilkan hasil proses preprocessing, diperoleh 

citra daun lettuce iceberg yang sudah melalui serangkaian tahapan 

pengolahan awal. Tahap pertama adalaha pemberian label pada setiap citra 

sesuai kategori masing-masing, yaitu Nitrogen, Phosphor, Kalium, dan 

Healty. Sehingga setiap data sudah memiliki identitas kelas yang jelas. 

Selanjutnya dilakukan tahap segmentasi, di mana citra dikonversi dari 

warna BGR (Blue, Green, Red) menjadi HSV (Hue, Saturation, Value). 

Model HSV digunakan karena lebih efektif untuk memisahkan warna objek 

dari latar belakang, khususnya dalam mendeteksi warna hijau daun. Rentang 

nilai warna hijau ditentukan menggunakan lower bound dan upper bound 

dalam format HSV, sehingga sistem dapat membuat mask yang 

mempertahankan bagian daun dan menghilangkan seluruh area latar 

belakang. 

Citra hasil segmentasi kemudian diubah menjadi ukuran 128*128 

piksel agar seluruh data memiliki resolusi yang sama rata dan sesuai 

kebutuhan model arsitektur model. Setelah itu, setiap nilai piksel pada citra 

dinormalisasi dari skala 0-255 menjadi 0-1 dengan cara membagi nilai 

piksel dengan 255.0, yang bertujuan untuk mempercepat konvergensi saat 

pelatihan model serta menjaga stabilitas perhitungan. 
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Dataset yang telah diproses kemudian dibagi menjadi dua bagian 

menggunakan metode train-test split dengan perbandingan 80% untuk data 

pelatihan, dan 20% untuk data pengujian. Proses pemisahan dilakukan 

secara stratified untuk memastikan proporsi kelas pada data pelatihan dan 

pengujian tetap seimbang. 

4.3.2 Pelatihan Model Autoencoder 

Tabel berikut menyajikan konfigurasi hyperparameter yang digunakan 

pada model Autoencoder. Hyperparameter ini ditetapkan untuk 

mengoptimalkan proses pelatihan, termasuk pengaturan laju pembelajaran, 

fungsi aktivasi, jumlah epoch, dan mekanisme stopping untuk mencegah 

overfitting. 

Tabel 4. 2 Tabel Hyperparameter Autoencoder 

No. Hyperparameter Value 

1. Learning Rate 0.001 

2. Optimizer Adam 

3. Loss Binary Crossentropy 

4. Activation ReLU 

5. Output Sigmoid 

6. Train Epoch 30 

7. Batch Size 32 

8. Callback EarlyStopping 

9. Monitor Val_loss 

10. Patience 5 

11. Restore Best Weights True 

Pada tabel 4. 2 menampilan tabel hyperparameter dari model 

Autoencoder, model tersebut dirancang dengan learning rate sebesar 0.001 

menggunakan optimizer Adam, yang dipilih karena kemampuannya dalam 

menyesuaikan laju pembelajaran secara adaptif terhadap setiap parameter 

sehingga proses konvergensi menjadi lebih cepat dan stabil. Fungsi loss 

yang digunakan adalah binary crossentropy, yang sesuai untuk rekonstruksi 

citra dengan nilai piksel yang telah dinormalisasi pada rentang 0 hingga 1. 
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Fungsi aktivasi ReLU diterapkan pada bottleneck untuk mempercepat 

proses pembelajaran dengan mencegah masalah vanishing gradient, dan 

aktivasi Sigmoid digunakan pada output untuk menghasilkan rekonstruksi 

nilai piksel dalam skala yang diinginkan. Pelatihan dilakukan selama 30 

epoch dengan batch size 32, proses ini dapat berhenti lebih awal karena 

penggunaan callback EarlyStopping yang memantau nilai val_loss. Jika 

tidak terjadi peningkatan performa selama 5 epoch berturut-turut, pelatihan 

akan dihentikan secara otomatis, dan bobot terbaik sebelum terjadinya 

overfitting akan dipulihkan untuk memastikan model memiliki performa 

optimal pada data validasi. 

 

Gambar 4. 3 Hasil Ekstraksi Autoencoder 

Pada gambar 4. 3 menampilkan perbandingan antara citra asli dan 

pada baris pertama dan citra hasil rekonstruksi pada baris kedua. Pada hasil 

rekonstruksi terlihat bahwa struktur utama daun, pola warna hijau, dan 

bentuk umum objek masih terjaga, meskipun beberapa detail halus seperti 

tekstur dan tepian daun mengalami penyederhanaan. Hal ini merupakan 

indikasi bahwa Autoencoder berhasil menangkap fitur visual yang relevan, 

seperti gradasi warna, perbedaan intensitas cahaya, dan bentuk objek utama. 

4.3.3 Pelatihan Model Multilayer Perceptron (MLP) 

Tabel berikut menyajikan konfigurasi hyperparameter yang digunakan 

pada model Multilayer Perceptron (MLP). Hyperparameter ini dirancang 

untuk menfukung proses klasifikasi berdasarkan fitur yang telah diekstraksi 

dari Autoencoder, dengan pengaturan mencakup laju pembelajaran, fungsi 

aktivasi, jumlah epoch pelatihan, serta pengguanan callback EarlyStopping 

untuk mengoptimalkan performa model dan mencegah overfitting. 
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Tabel 4. 3 Tabel Hyperparameter MLP 

No. Hyperparameter Value 

1. Learning Rate 0.001 

2. Optimizer Adam 

3. Loss Categorical Crossentropy 

4. Metrics Accuracy 

5. Activation ReLU 

6. Output Softmax 

7. Train Epoch 25 

8. Batch Size 32 

9 Validation Data x_test_enc, y_test_cat 

10. Callback EarlyStopping 

11. Monitor Val_loss 

12. Patience 5 

13. Restore Best Weights True 

Pada tabel 4. 3 menampilkan tabel hyperparameter dari model MLP, 

model tersebut menggunakan learning rate sebesar 0.001 dengan optimizer 

Adam yang dapat menyesuaikan laju pembelajaran secara adaptif untuk 

mempercepat proses konvergensi. Fungsi loss yang digunakan adalah 

categorical crossentropy, sesuai dengan permasalahan klasifikasi multi-

kelas, serta metrics yang dipantau adalah accuracy untuk mengukur tingkat 

ketepatan prediksi. Fungsi aktivasi ReLU diterapkan pada hidden layer, 

sedangkan fungsi aktivasi Softmax digunakan pada lapisan output layer 

untuk menghasilkan distribusi probabilitas pada masing-masing kelas. 

Pelatihan dilakukan dengan maksmisal 25 epoch dan batch size 32, dengan 

proses validasi menggunakan data (X_test_enc, y_test_cat) untuk memantau 

kinerja model selama pelatihan. Selain itu, digunakan callback 

EarlyStopping yang memantau val_loss untuk menghentikan pelatihan lebih 

awal apabila tidak terjadi penurunan nilai kerugian validasi selama 5 epoch 

berturut-turut, serta restore best weights diaktifkan agar model 
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menggunakan bobot terbaik sebelum overfitting terjadi, sehingga hasil 

pelatihan lebih optimal pada data uji. 

 

Gambar 4. 4 Dataset hasil prediksi menggunakan MLP 

Pada gambar 4. 4 menunjukkan hasil visualisasi prediksi model MLP 

terhadap beberapa citra daun lettuce iceberg. Setiap citra menampilkan dua 

informasi penting, yaitu pred (hasil prediksi model) dan true (label 

sebenarnya). Angka-angka tersebut merepresentasikan kelas yang telah 

didefinisikan sebelumnya, seperti kategori defisiensi Nitrogen, Phosphor, 

Kalium, atau Healty. Label prediksi ditampilkan dalam warna hijau apabila 

model memberikan hasil yang sesuai dengan label sebenarnya, sedangkan 

warna merah menandakan prediksi yang salah. Dari visualisasi ini terlihat 

bahwa model mampu mengklasifikasikan sebagian besar citra dengan benar, 

namun pada beberapa kasus masih terjadi kesalahan prediksi, yang 

kemungkinan disebabkan oleh kemiripan pola antar kelas atau kompleksitas 

tekstur daun. 

4.3.4 Evaluasi Model 

Evaluasi dilakukan menggunakan metrik akurasi, presisi, dan F1-

Score. Akurasi mengukur jumlah prediksi yang tepat terhadap keseluruhan 

data uji, sedangkan F1-Score digunakan untuk mengevaluasi keseimbangan 

antara presisi dan Recall, khususnya pada data yang memiliki distribusi 

kelas tidak seimbang. Hasil evaluasi menunjukkan bahwa sistem memiliki 

performa yang baik dengan akurasi mencapai 86%, Presisi mencapai 89%, 

Recall mencapai 87%, dan F1-Score mencapai 88% Evaluasi visual 



50 
 

 
 

terhadap citra validasi juga menunjukkan bahwa sebagian besar prediksi 

sudah sesuai dengan label aslinya. 

Evaluasi model dilakukan dengan menggunakan empat metrik utama, 

yaitu akurasi, presisi, recall, dan F1-Score, untuk menilai kinerja model 

secara menyeluruh. Akurasi digunakan untuk mengukur seberapa besar 

proporsi prediksi yang benar dibandingkan dengan total data uji yang 

tersedia. Meskipun akurasi memberikan gambaran umum performa model, 

metrik ini bisa kurang representatif jika data memiliki distribusi kelas yang 

tidak seimbang. 

Untuk melengkapi pengukuran, digunakan model presisi yang 

mengukur sejauh mana model mampu menghindari kesalahan dalam 

klasifikasi positif. Presisi didefinisikan sebagai rasio antara jumlah prediksi 

positif yang benar terhadap seluruh prediksi positif yang dihasilkan oleh 

model. Dengan kata lain, presisi menunjukkan seberapa tepat model dalam 

memutuskan bahwa suatu sampel termasuk dalam kelas tertentu. Presisi 

menjadi sangat penting terutama ketika konsekuensi dari prediksi salah 

positif cukup besar. 

Selanjutnya, metrik F1-Score digunakan sebagai ukuran gabungan 

antara presisi dan Recall untuk memberikan evaluasi yang seimbang. F1-

Score sangat berguna dalam kasus di mana data tidak seimbang, karena 

mempertimbangkan baik prediksi yang benar maupun yang tidak terdeteksi. 

Nilai F1-Score yang tinggi menandakan bahwa model tidak hanya akurat, 

tetapi juga konsisten dalam mengidentifikasi kelas target tanpa banyak salah 

klasifikasi. 

Hasil evaluasi menunjukkan bahwa sistem memiliki performa yang 

baik, dengan capaian akurasi sebesar 86%, presisi sebesar 89%, Recall 

sebesar 87% dan F1-Score sebesar 88%. Selain evaluasi berbasis angka, 

juga dilakukan evaluasi visual terhadap hasil prediksi dengan 

membandingkannya terhadap label asli pada sejumlah citra validasi. 

Hasilnya menunjukkan bahwa sebagian besar prediksi telah sesuai, yang 

menandakan bahwa sistem ini dapat digunakan secara andal untuk 
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membantu identifikasi kekurangan nutrisi pada tanaman berdasarkan citra 

daun. 

1. Visualisasi Evaluasi Model 

Untuk memberikan gambaran visual mengenai performa 

klasifikasi model terhadap data uji, berikut ditampilkan Confusion 

Matrix hasil prediksi model MLP terhadap empat kelas kondisi daun. 

Visualisasi ini membantu dalam mengindentifikasi sejauh mana model 

berhasil mengenali setiap kelas secara benar maupun kesalahan yang 

terjadi dalam klasifikasi. 

 

Gambar 4. 5 Confusion Matrix 

Pada gambar 4. 5 menampilkan sebuah Confusion Matrix yang 

ditunjukkan di atas menggambarkan performa klasifikasi model MLP 

dalam mengklasifikasikan empat keals kondisi daun, yaitu Nitrogen, 

Phosphor, Kalium, dan Healthy. Setiap baris mewakili label 

sebenarnya (True Label), sedangkan setiap kolom menunjukkan label 

yang diprediksi oleh model. 



52 
 

 
 

Dari matriks diatas, dapat dilihat bahwa: 

1. Kelas Nitrogen memiliki total 13 data uji, dengan 10 data 

diklasifikasikan dengan benar, 1 data salah diklasifikasikan 

sebagai Phosphor, dan 2 data salah diklasifikasikan sebagai 

Kalium. 

2. Kelas Phosphor, dari 10 data uji, hanya 8 data yang 

diklasifikasikan dengan benar, sementara 2 lainnya 

diklasifikasikan sebagai Kalium. 

3. Kelas Kalium, dari 14 data uji, ada 13 data yang diklasifikasikan 

dengan benar, dan 1 data diklasifikasikan sebagai Phosphor. 

4. Kelas Healthy memiliki performa yang tinggi dengan 7 data 

berhasil diprediksi dengan benar. 

2. Visualisasi Kinerja Model 

Selain menggunakan Confusion Matrix, evaluasi performa 

model juga disajikan dalam bentuk grafik batang untuk memudahkan 

analisis secara visual terhadap masing-masing metrik evaluasi. Grafik 

ini memperlihatkan nilai dari empat metrik utama, yaitu Akurasi, 

Presisi, Recall, dan F1-Score yang mencerminkan kinerja keseluruhan 

model dalam mengklasifikasikan kondisi daun dengan benar. 

Tabel 4. 4 Tabel Evaluasi Model 

Akurasi Presisi Recall F1-Score 

0.86 0.89 0.87 0.88 

Pada tabel 4.2 menampilkan evaluasi kinerja dari model MLP 

dengan menampilkan metrik utama yaitu, Akurasi, Presisi, Recall, dan 

F1-Score yang masing-masing diukur berdasarkan performa model 

klasifikasi terhadap data uji. Dari grafik data tersbut, dapat dilihat 

bahwa nilai akurasi model mencapai 0.86, nilai presisi mencapai 0.89, 

nilai Recall mencapai 0.87, dan nilai F1-Score mencapai 0.88. 

Secara keseluruhan, hasil evaluasi ini menunjukkan bahwa 

model MLP yang dikembangkan mampu melakukan klasifikasi 

dengan performa yang cukup baik dan stabil, serta menunjukkan 
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klasifikasi dengan performa yang cukup baik dan stabil, serta 

menunjukkan generalisasi yang layak terhadap data uji yang belum 

pernah dilihat sebelumnya. Keempat metrik ini hampir sejajar secara 

visual juga menandakan tidak adanya ketimpangan ekstrem antara 

kemampuan model dalam memprediksi dan mengenali pola data 

secara menyeluruh. 

 

4.4 Implementasi Antar Muka Menggunakan Streamlit 

4.4.1 Fitur Utama Aplikasi Streamlit 

Aplikasi antarmuka yang dibangun menggunakan Streamlit dilengkapi 

dengan sejumlah fitur utama yang dirancang untuk mempermudah 

pengguna dalam melakukan deteksi kekurangan nutrisi tanaman. Adapun 

fitur-fitur tersebut adalah sebagai berikut: 

1. Upload dan capture gambar daun langsung dari perangkat. 

Pengguna dapat dengan mudah memilih dan mengunggah citra 

daun dari perangkat lokal mereka, baik melalui desktop maupun 

mobile. Streamlit secara otomatis akan membaca file gambar tersebut 

dan menampilkannya di layar. 

2. Tampilan visual gambar yang diunggah. 

Setelah gambar diunggah, sistem akan menampilkan pratinjau 

gambar tersebut secara langsung di halaman antarmuka. Fitur ini 

penting untuk memastikan bahwa gambar yang dipilih sudah benar 

sebelum diproses lebih lanjut. 

3. Hasil klasifikasi jenis kekurangan nutrisi yang ditampilkan secara 

real-time. 

Setelah gambar diproses oleh model Autoencoder dan MLP di 

backend, hasil deteksi akan ditampilkan secara langsung dalam bentuk 

teks informatif. Hasil ini mencakup jenis kekurangan nutrisi yang 

terindentifikasi pada daun berdasarkan citra yang diunggah. 
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4.4.2 Cara Akses Streamlit 

Agar sistem ini dapat digunakan secara fleksibel, termasuk melalui 

perangkat smartphone, disediakan dua cara akses utama terhadap aplikasi 

Streamlit yang berjalan secara lokal. Pertama, pengguna dapat menjalankan 

aplikasi pada jaringan lokal menggunakan perintah "Streamlit run app.py". 

setelah dijalankan, aplikasi akan tersedia pada alamat IP lokal dari desktop 

tempat aplikasi dijalankan. mobile yang berada dalam jaringan Wi-Fi yang 

sama dapat mengakses aplikasi ini melalui browser dengan mengetikkan 

alamat IP lokal tersebut, diikuti oleh port default Streamlit (8501). 

Kedua, untuk penggunaan yang lebih praktis dan dapat diakses dari 

mana saja tanpa harus berada pada jaringan yang sama, aplikasi ini sudah 

dideploy kedalam Streamlit Cloud. Untuk cara akses nya bisa menggunakan 

"https://detection-lettuce-iceberg.streamlit.app" 

4.4.3 Hasil Implementasi 

1. Tampilan Home 

Halaman utama sistem ini menampilkan judul aplikasi serta 

penjelasan singkat mengenai tujuan penelitian. Sistem ini dirancang 

untuk mengidentifikasi kekurangan nutrisi pada daun lettuce iceberg 

dengan memanfaatkan metode Autoencoder dan Multilayer 

Perceptron (MLP). 

 

Gambar 4. 6 Tampilan home pada desktop 
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Gambar 4. 7 Tampilan home pada mobile 

Pada gambar 4. 6 dan 4. 7 menampilkan kategori deteksi yang 

mencakup kekurangan unsur hara seperti Nitrogen, Fosfor, Kalium, 

serta kondisi Sehat. Selain itu, sistem juga dilengkapi dengan fitur 

untuk mengunggah gambar daun, melakukan deteksi langsung melalui 

kamera, serta menampilkan persentase kemungkinan dari setiap hasil 

klasifikasi. 

2. Hasil Implementasi sebelum di Upload 

Sebelum proses upload gambar dilakukan, antarmuka awal dari 

sistem yang dibangun akan menampilkan halaman utama dengan 

menampilkan sederhana dan informatif. Pada tampilan ini, pengguna 

diberikan petunjuk untuk mengunggah gambar daun yang akan 

dianalisis. Hal ini dirancang agar pengguna dapat dengan mudah 

memahami langkah awal dalam penggunaan sistem. Adapun tampilan 

antarmuka sebelum upload dapat dilihat pada gambar berikut: 
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Gambar 4. 8 Tampilan prediksi pada desktop sebelum capture gambar 

 

Gambar 4. 9 Tampilan prediksi pada mobile sebelum capture gambar 

Pada gambar 4. 8 dan 4. 9 menampilkan tampilan Streamlit 

sebelum upload gambar dari aplikasi deteksi kekurangan nutrisi. 
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Tampilan ini menunjukkan halaman utama aplikasi yang memfasilitasi 

pengguna untuk mengunggah gambar daun atau capture gambar yang 

akan dianalisis. Fitur utama pada halaman ini adalah komponen File 

uploader, di mana pengguna dapat melakukan   "drag and drop", 

memilih File gambar secara manual menggunakan tombol Browse 

Files, atau men-capture secara langsung. Sistem ini mendukung 

format File gambar seperti JPG, PNG, dan JPEG, dengan batas ukuran 

maksimum 200MB per gambar, memungkinkan fleksibilitas dalam 

proses input data. 

Secara keseluruhan, tampilan ini tidak hanya mencerminkan 

aspek fungsional dari sistem, tetapi juga menunjukkan kesiapan 

aplikasi dalam mendukung deteksi secara real-time, berbasis web, 

tanpa harus menginstal perangkat lunak tambahan. Antarmuka yang 

ramah pengguna ini menjadi bagian penting dari keberhasilan 

implementasi model deteksi kekurangan nutrisi berbasis Deep 

Learning yang telah dikembangkan sebelumnya menggunakan 

Autoencoder dan MLP. 

3. Hasil Implementasi setelah di Upload 

Setelah pengguna berhasil mengunggah gambar daun, sistem 

akan secara otomatis memproses citra yang diberikan, melakukan 

ekstraksi fitur, dan mengklasifikasikan jenis defisiensi nutrisi yang 

terdeteksi menggunakan model MLP. Hasil prediksi ditampilkan 

dalam bentuk label klasifikasi, yang menunjukkan kategori 

kekurangan nutrisi pada daun seperti Nitrogen, Fosfor, Kalium, atau 

kondisi sehat. Tampilan antarmuka setelah proses upload ditunjukkan 

pada gambar berikut: 
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Gambar 4. 10 Tampilan prediksi pada desktop setelah capture gambar 

 

Gambar 4. 11 Tampilan prediksi pada mobile setelah capture gambar 
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Pada Gambar 4. 10 dan 4. 11 menampilkan hasil akhir dari 

antarmuka penggguna aplikasi berbasis Streamlit yang dikembangkan 

untuk mendeteksi kekurangan nutrisi pada daun lettuce iceberg. 

Setelah pengguna mengunggah gambar daun melalui tampilan awal 

aplikasi, sistem secara otomatis akan memproses citra tersebut 

menggunakan Flowchart model yang telah dibangun, yang terdiri dari 

proses Preprocessing, ekstraksi fitur menggunakan Autoencoder, dan 

klasifikasi menggunakan Multilayer Perceptron (MLP).  

Berdasarkan hasil prediksi gambar, sistem mendeteksi bahwa 

kondisi tanaman yang dianalisis memiliki kemungkinan tertinggi 

mengalami kekurangan kalium dengan tingkat kepercayaan sebesar 

54,91%. Selain itu, persentase untuk kelas lainnya menunjukkan 

bahwa tanaman ini memiliki kemungkinan 16,90% mengalami 

kekurangan nitrogen, 18,03% mengalami kekurangan fosfor, dan 

10,15% dalam kondisi sehat. 

4.5 Pembahasan Implementasi 

Implementasi sistem deteksi kekurangan nutrisi pada daun lettuce 

iceberg menggunakan kombinasi Autoencoder dan Multilayer Perceptron 

(MLP) telah berhasil direalisasikan secara menyeluruh. Sistem ini dirancang 

untuk memproses citra daun secara otomatis mulai dari tahap Preprocessing, 

ekstraksi fitur, hingga menghasilkan prediksi jenis kekurangan nutrisi yang 

dialami oleh tanaman. Proses klasifikasi terbukti berjalan dengan baik, di 

mana model Autoencoder mampu menangkap fitur penting dari citra daun 

secara efisien, sementara model MLP dapat mengklasifikasikan jenis 

defisiensi nutrisi dengan akurasi yang memuaskan. 

Sistem yang dibangun menunjukkan performa yang cukup baik, 

dengan tingkat akurasi mencapai 86%, presisi sebesar 89%, Recall sebesar 

87% dan F1-Score sebesar 88%, yang menunjukkan bahwa model mampu 

memprediksi jenis kekurangan nutrisi dengan ketepata yang tinggi dan 

konsistensi hasil yang baik. Nilai metrik tersebut mengindikasikan 

kemampuan generalisasi model terhadap data uji, sehingga dapat diandalkan 
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dalam melakukan klasifikasi citra daun yang belum pernag dilihat 

sebelumnya. 

Dari sisi antarmuka, pengguna Streamlit sebagai platform sebagai 

aplikasi berbasis web memberikan nilai tambah yang signifikan. Sistem 

telah berhasil diintegrasikan ke dalam antarmuka pengguna berbasis 

Streamlit, memungkinkan pengguna untuk mengunggah gambar daun dan 

langsung menerima hasil klasifikasi secara real-time melalui browser, baik 

di perangkat desktop maupun mobile, tanpa memerlukan instalasi perangkat 

lunak tambahan. Antarmuka yang dibangun bersifat ringan, interaktif, dan 

ramah pengguna dari berbagai kalangan. 

Secara keseluruhan, sistem ini telah berhasil memenuhi tujuan 

pengembangan, yaitu menyediakan alat bantu berbasis kecerdasan buatan 

yang mempu mendeteksi kekurangan nutrisi pada tanaman secara otomatis, 

akurat, dan mudah diakses. Dengan adanya sistem ini, diharapkan pengguna 

seperti petani, peneliti, maupun praktisi pertanian dapat lebih cepat dalam 

mengambil Tindakan yang tepat untuk mengatasi defisiensi nutrisi pada 

tanaman. 

Sebagai catatan dan arahan pengembangan sistem ke depan, 

disarankan agar dilakukan perluasan dan peningkatan variasi dataset, 

terutama dari segi pencahayaan, sudut pengambilan gambar, serta kondisi 

daun yang lebih beragam. Hal ini penting agar model mampu melakukan 

generalization yang lebih baik terhadap kondisi nyata di lapangan. Selain 

itu, penerapan Teknik data augmentation seperti rotasi, flipping, dan zoom 

juga dapat digunakan untuk meningkatkan keragaman data pelatihan tanpa 

harus melakukan pengumpulan data baru secara besar-besaran. Dengan 

langkah tersebut, diharapkan performa sistem dapat ditingkatkan dan lebih 

adaptif dalam menghadapi variasi data yang lebih kompleks di dunia nyata.
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BAB V  

KESIMPULAN DAN SARAN 

 

5.1 Kesimpulan 

Sistem yang dibangun menunjukkan performa yang cukup baik, 

dengan tingkat akurasi mencapai 86%, presisi mencapai 89%, Recall 87% 

dan F1-Score mencapai 88%, yang berarti model mampu memprediksi jenis 

kekurangan nutrisi dengan tingkat ketepatan yang tinggi. Hasil tersebut 

diperoleh dari proses pelatihan menggunakan 147 citra daun dan penguijan 

sebanyak 36 citra daun, yang masing-masing mewakili kondisi dari 

kelasnya masing-masing. Selain itu, sistem telah berhasil diintegrasikan ke 

dalam antarmuka pengguna berbasis Streamlit, sehingga memungkinkan 

pengguna untuk mengunggah gambar daun dan langsung menerima hasil 

klasifikasi melalui browser, baik di perangkat desktop maupun mobile. 

 

5.2 Saran 

Untuk meningkatkan performa sistem kedepannya, disarankan agar 

dilakukan perluasan dan peningkatan variasi dataset, terutama dari segi 

pencahayaan, sudut pengambilan gambar, dan kondisi daun yang lebih 

beragam. Hal ini penting agar model dapat melakukan generalisasi dengan 

lebih baik pada kondisi di dunia nyata. Teknik augmentasi data seperti 

rotasi, flipping, dan zoom dapat diterapkan untuk meningkatkan keragaman 

data pelatihan tanpa harus mengumpulkan data baru dalam jumlah besar. 
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