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ABSTRAK 

Saluran transmisi tegangan tinggi tidak lepas akan potensi terjadinya berbagai jenis 

gangguan. Proses mengenali karakteristik gangguan tersebut seringkali masih memerlukan 

interpretasi manual yang membutuhkan waktu lama. Guna meningkatkan efisiensi dalam 

proses pemulihan sistem serta mempercepat waktu yang dibutuhkan untuk mengetahui 

jenis gangguan yang terjadi, maka pada tugas akhir ini diusulkan implementasi dari 

jaringan Multi-Layer Perceptron (MLP). Sistem kecerdasan buatan ini dirancang untuk 

membaca karakteristik arus, tegangan, dan karakteristik lainnya ketika gangguan terjadi 

sehingga dapat melakukan klasifikasi jenis gangguan secara efisien. 

Prinsip dari penelitian ini diawali dengan membangkitkan 1188 sampel data untuk 11 

jenis gangguan melalui simulasi MATLAB.  Kemudian sinyal gangguan mentah diproses 

dan dilakukan ekstraksi fitur menggunakan pendekatan Discrete Wavelet Transform 

(DWT) untuk menghasilkan delapan fitur yang akan digunakan sebagai input MLP. 

Arsitektur dari jaringan MLP ini memiliki konfigurasi final dengan susunan 8 neuron input, 

22 neuron pada hidden layer pertama, 10 neuron pada hidden layer kedua, dan 11 neuron 

output. 

Hasil penelitian menunjukkan bahwa implementasi model Multi-Layer Perceptron 

final mampu mengklasifikasikan 11 jenis gangguan dengan akurasi rata-rata sebesar 

96,18% dan standar deviasi yang rendah yaitu 1,05%. Kinerja ini merupakan hasil dari 

serangkaian proses optimasi dari performa awal model dengan akurasi 74,83%. 

 

Kata Kunci: Gangguan saluran transmisi, kecerdasan buatan, multi-layer perceptron, 

MATLAB, Discrete Wavelet Transform
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BAB I  

PENDAHULUAN 

 

1.1 Latar belakang 

Sistem transmisi yang andal merupakan pondasi vital bagi keberlangsungan 

penyaluran energi listrik ke seluruh pusat-pusat beban di Indonesia. Stabilitas 

Saluran Udara Tegangan Tinggi dan Ekstra Tinggi (SUTT/SUTET) menjadi salah 

satu infrastruktur utama yang memegang peranan krusial meskipun dalam 

operasionalnya tidak terlepas dari potensi terjadinya gangguan (fault). Gangguan 

ini merupakan suatu kondisi abnormal pada saluran yang dapat menghentikan aliran 

daya, merusak peralatan, bahkan membuka potensi bahaya pada area di sekitar 

jaringan transmisi.  

Dalam menangani gangguan, sistem proteksi modern seperti relai digital telah 

digunakan secara luas dan mampu mengisolasi gangguan dengan cepat. Akan 

tetapi, proses analisis pasca-gangguan untuk menentukan secara pasti jenis dan 

karakteristik gangguan masih memerlukan interpretasi manual oleh engineer 

proteksi [1]. Analisis manual ini membutuhkan waktu dan keahlian khusus, 

sehingga berpotensi mengurangi efisiensi dalam proses pemulihan sistem. 

Seiring dengan pesatnya perkembangan teknologi, pemanfaatan kecerdasan 

buatan (Artificial Intelligence) membuka peluang untuk meningkatkan efisiensi 

pada proses analisis tersebut. Tugas akhir ini mengusulkan implementasi Jaringan 

Multi-Layer Perceptron (MLP) yang merupakan salah satu bentuk jaringan saraf 

tiruan untuk melakukan klasifikasi gangguan secara otomatis berbasis analisis 

sinyal digital. Proses perancangan model sistem transmisi dan data gangguan untuk 

pelatihan model akan direalisasikan menggunakan simulasi MATLAB dan toolbox 

Simulink. Sistem klasifikasi otomatis ini diharapkan dapat mengidentifikasi jenis 

gangguan dengan cepat dan akurat, sehingga mampu menjadi alat pendukung dalam 

proses pemulihan sistem. Dengan demikian, efektivitas dan keandalan jaringan 

transmisi dapat ditingkatkan. 
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1.2 Rumusan Masalah 

Berdasarkan latar belakang yang telah dijelaskan diatas, maka dapat diambil 

perumusan masalah sebagai berikut: 

1. Bagaimana merancang model sistem saluran transmisi pendek untuk 

merepresentasikan karakteristik data sinyal gangguan yang umum terjadi 

pada saluran transmisi tegangan tinggi? 

2. Bagaimana penentuan dan ekstraksi fitur-fitur sinyal yang paling relevan 

untuk digunakan sebagai input Multi-Layer Perceptron dalam klasifikasi 

gangguan transmisi? 

3. Bagaimana merancang arsitektur Multi-Layer Perceptron yang memadai 

untuk melakukan klasifikasi jenis gangguan transmisi tegangan tinggi? 

4. Bagaimana performa dan akurasi model Multi-Layer Perceptron yang 

telah dilatih dalam klasifikasi berbagai jenis gangguan? 

 

1.3 Batasan Masalah 

Batasan masalah dalam tugas akhir ini adalah sebagai berikut: 

1. Pembahasan hanya berfokus pada penentuan jenis gangguan, tanpa 

menyertakan analisis lokasi maupun penyebab gangguan. 

2. Sumber data utama untuk pelatihan dan pengujian model adalah hasil dari 

simulasi menggunakan MATLAB Simulink. 

3. Software yang digunakan adalah MATLAB R2025a, Simulink, Deep 

Learning Toolbox, Signal Processing. 

4. Model saluran transmisi yang disimulasikan adalah model saluran 

transmisi pendek (short transmission line)  untuk level tegangan 150kV 

dengan parameter yang disesuaikan. 

5. Jenis gangguan yang akan diklasifikasikan mencakup: gangguan satu fasa 

ke tanah (AG, BG, CG), antar fasa (AB, BC, CA), dua fasa ke tanah (ABG, 

BCG, CAG), dan tiga fasa (ABC, ABCG). 

6. Untuk parameter yang tidak secara spesifik tersedia akan diestimasi 

menggunakan nilai tipikal dan pendekatan teoritis. Pendekatan ini 
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mengacu pada rentang nilai yang umum digunakan dalam literatur 

akademis dan penelitian relevan. 

 

1.4 Tujuan Penelitian 

Tujuan penelitian ini adalah: 

1. Merancang dan membangun model simulasi sistem saluran transmisi 150 

kV yang dapat membangkitkan data sinyal tegangan dan arus untuk 

berbagai skenario gangguan. 

2. Mengimplementasikan arsitektur Jaringan Multi-Layer Perceptron (MLP) 

dan melatihnya menggunakan data fitur yang telah diekstraksi. 

3. Mengevaluasi kinerja model MLP yang dihasilkan dalam 

mengklasifikasikan jenis-jenis gangguan. 

 

1.5 Manfaat Penelitian 

Manfaat penelitian ini adalah sebagai berikut: 

1. Menambah pemahaman dan wawasan mengenai sistem saluran transmisi 

tegangan tinggi, sistem proteksi dan gangguan pada saluran transmisi, 

serta teknologi kecerdasan buatan khususnya Multi-Layer Perceptron. 

2. Menyajikan pengetahuan mengenai pemodelan gangguan pada saluran 

transmisi tegangan tinggi menggunakan MATLAB Simulink. 

3. Memberikan kontribusi dalam penerapan kecerdasan buatan dalam 

domain sistem tenaga listrik. 

4. Menghasilkan sebuah prototipe sistem cerdas yang berpotensi untuk 

dikembangkan dan digunakan pada aplikasi industrial dan aktual sebagai 

instrumen pendukung bagi engineer untuk efisiensi analisis gangguan. 

 

1.6 Sistematika Penelitian 

Sistematika penulisan dari penelitian ini adalah sebagai berikut: 

BAB I   :   PENDAHULUAN 
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Bab ini membahas tentang latar belakang masalah, rumusan   

masalah, batasan masalah, tujuan, manfaat, metode penelitian dan 

penulisan sistematis penelitian yang akan dilakukan. 

BAB II  :  TINJAUAN PUSTAKA DAN LANDASAN TEORI 

Bab ini membahas secara umum tentang sistem transmisi tenaga 

listrik, gangguan transmisi, Neural Network serta dasar teori dan 

prinsip yang melandasi pembuatan Tugas Akhir ini. 

BAB III :  METODOLOGI PENELITIAN 

Berisi tentang model penelitian, alat dan bahan yang digunakan 

berupa software maupun hardware sebagai media pendukung, 

menjelaskan prosedur penelitian, melakukan pemodelan serta 

simulasi untuk mendapatkan hasil penelitian yang dibutuhkan. 

BAB IV :  HASIL DAN ANALISIS 

Bab ini membahas data simulasi gangguan, pelatihan model Multi-

Layer Perceptron serta analisis evaluasi kinerja model dalam 

menentukan berbagai jenis gangguan. 

BAB V  : PENUTUP 

Bab ini berisi kesimpulan dan saran dari hasil penelitian Tugas 

Akhir ini. 
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BAB II 

TINJAUAN PUSTAKA DAN LANDASAN TEORI 

 

2.1 Tinjauan Pustaka 

Menurut Raj Jain dalam The Art of Computer Systems Performance Analysis, 

terdapat tiga teknik utama untuk evaluasi kinerja sistem: pemodelan analitis, 

simulasi, dan pengukuran. Salah satu pertimbangan kunci yang penulis tekankan 

adalah pada tahap apa sistem tersebut berada (life-cycle stage). Dengan kata lain, 

pemilihan teknik sangat bergantung pada tujuan dan konteks dari evaluasi yang 

dilakukan. Ketika tujuannya adalah perancangan atau konsep baru yang belum 

tersedia secara fisik, maka pemodelan analitis dan simulasi menjadi satu-satunya 

teknik yang dapat dipilih. Lebih jauh lagi, simulasi seringkali mampu memberikan 

hasil yang lebih mendekati kondisi nyata dibandingkan pemodelan analitis karena 

simulasi dapat mengakomodasi lebih banyak detail dan memerlukan lebih sedikit 

asumsi penyederhanaan [2]. 

Prinsip yang dipaparkan Raj Jain menjadi sangat relevan dalam konteks 

penelitian ini, di mana tujuannya adalah untuk melatih sebuah model Jaringan 

Multi-Layer Perceptron untuk melakukan klasifikasi gangguan pada saluran 

transmisi tegangan tinggi. Keberhasilan model tersebut sangat bergantung pada 

ketersediaan dataset yang besar dan beragam, yang mencakup berbagai jenis dan 

lokasi gangguan. Membangkitkan skenario-skenario gangguan secara fisik pada 

sistem transmisi yang sesungguhnya bukan hanya tidak praktis dan memerlukan 

biaya tinggi, tetapi juga berbahaya. Oleh karena itu, penggunaan simulasi untuk 

membangkitkan data (data generating) menjadi metode yang valid dan efektif 

untuk menyediakan bahan penelitian yang dibutuhkan dalam tugas akhir ini. 

Pemanfaatan Jaringan Saraf Tiruan (JST) untuk klasifikasi gangguan pada 

sistem transmisi merupakan bidang riset yang telah banyak dieksplorasi. Salah satu 

penelitian yang relevan adalah tesis Md. Chayon Ali (2023) yang meneliti metode 

deteksi dan klasifikasi gangguan menggunakan kombinasi Wavelet Transform dan 

Jaringan Saraf Tiruan (JST). Untuk keperluan penelitian ini, sebuah model sistem 

transmisi 230 kV disimulasikan secara menyeluruh menggunakan 
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MATLAB/Simulink. Proses pembangkitan data dilakukan dengan menciptakan 

berbagai skenario gangguan yang meliputi variasi pada jenis gangguan, lokasi 

gangguan di sepanjang saluran, dan nilai resistansi gangguan. Sinyal arus dari setiap 

simulasi kemudian dianalisis menggunakan Discrete Wavelet Transform (DWT) 

yang selanjutnya digunakan sebagai masukan untuk melatih model ANN [3]. 

Dalam penelitian yang dilakukan oleh Rao, Kumar, dan Kesava Rao (2017), 

diusulkan sebuah pendekatan untuk klasifikasi gangguan pada saluran transmisi 

menggunakan kombinasi antara Wavelet Multi-Resolution Analysis dan Jaringan 

Saraf Tiruan. Untuk mendapatkan data penelitian, mereka merancang dan 

mensimulasikan sebuah model sistem tenaga 220 kV sepanjang 300 km 

menggunakan MATLAB Simulink. Melalui simulasi ini dibangkitkan berbagai 

skenario gangguan untuk menghasilkan sinyal arus tiga fasa. Sinyal-sinyal ini 

kemudian dianalisis menggunakan Discrete Wavelet Transform (DWT), yang 

selanjutnya digunakan sebagai masukan untuk melatih Jaringan Saraf Tiruan dalam 

mengklasifikasikan jenis gangguan [4]. 

 

Gambar 2.1 Model Saluran Transmisi yang digunakan oleh peneliti Rao, Kumar, dan Kesava Rao 

(2017) 

 

Penelitian lain yang relevan dilakukan oleh Li et al. (2021) mengembangkan 

sebuah metode klasifikasi gangguan hubung singkat ke tanah pada jaringan 

transmisi menggunakan Convolutional Neural Network (CNN). Selanjutnya suatu 

simulasi terukur dilakukan pada perangkat lunak PSCAD/EMTDC menggunakan 

model grid new England 10 machine 39 nodes. Proses pembangkitan data 
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dilakukan dengan menciptakan 5000 set sampel gangguan yang berbeda. Data 

mentah berupa bentuk gelombang arus, tegangan, sudut phasa dan daya beban 

kemudian diproses dengan metode Z-score standardization. Setelah data diproses 

kemudian data dibagi menjadi training set dan test set untuk jaringan CNN yang 

memiliki lima convolutional layers, tiga max-pooling layers, satu concatenate 

layer, satu dropout layer, satu fully connected layer, dan satu Softmax classifier [5]. 

Selanjutnya, Tunio et al. (2024) menyajikan sebuah metode deteksi dan 

klasifikasi gangguan menggunakan Discrete Wavelet Transform (DWT) yang 

dikombinasikan dengan Temporal Convolutional Neural Network (TCN) Penelitian 

ini juga bergantung pada simulasi yang dibangun menggunakan MATLAB untuk 

membuat model sistem transmisi 500 kV Jamshoro-New Karachi di Sindh, 

Pakistan [6]. 

Menindaklanjuti keberhasilan konsep tersebut, maka pada tugas akhir ini akan 

dilakukan penelitian serupa. Sebuah model Multi-Layer Perceptron (MLP) akan 

dirancang untuk menjadi sistem klasifikasi gangguan di mana input untuk model 

akan diperoleh dari hasil analisis sinyal digital yang dibangkitkan melalui simulasi 

komputasi. 

 

2.2 Dasar Teori 

2.2.1 Sistem Tenaga Listrik 

Sistem tenaga listrik merupakan sebuah jaringan kompleks dan saling 

terhubung. Sistem ini terdiri dari pusat-pusat pembangkit, saluran transmisi, dan 

jaringan distribusi yang mengalirkan listrik sampai ke konsumen [1]. Keandalan 

dan stabilitas sistem tenaga listrik menjadi faktor krusial, karena setiap gangguan 

yang terjadi dapat menyebabkan pemadaman listrik yang merugikan secara 

ekonomi dan sosial. 
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Gambar 2.2 Dasar Konfigurasi Sistem Tenaga Listrik 

Gambar 2.2 menunjukkan konfigurasi umum dari sistem tenaga listrik yang secara 

sederhana terdiri dari pembangkit kemudian disalurkan melalui transmisi dengan 

berbagai level tegangan sebelum berakhir di konsumen. 

1. Saluran Transmisi Tegangan Tinggi 

Saluran transmisi tegangan tinggi merupakan komponen vital dan menjadi 

tulang punggung dalam penyaluran energi listrik dari pusat pembangkit ke pusat 

beban. Di Indonesia, sistem transmisi ini secara umum diklasifikasikan berdasarkan 

level tegangannya, yaitu Saluran Udara Tegangan Tinggi (SUTT) yang beroperasi 

pada tegangan 70 kV-150 kV dan Saluran Udara Tegangan Ekstra Tinggi (SUTET) 
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pada tegangan 275 kV-500 kV. Pemilihan level tegangan yang tinggi ini ditujukan 

untuk mengurangi rugi-rugi daya selama transmisi jarak jauh. Hal ini didasarkan 

pada prinsip bahwa besarnya arus yang mempengaruhi rugi daya akan berbanding 

terbalik dengan besarnya tegangan. dinyatakan sebagai berikut: 

𝑃𝑙𝑜𝑠𝑠𝑒𝑠  =  3. 𝐼2. 𝑅   (2.1) 

dan 

𝑃 = √3. 𝑉. 𝐼. 𝑐𝑜𝑠(𝜙)   (2.2) 

 

Di mana, 

Plosses = rugi-rugi daya  (Watt) 

V = Tegangan (Volt) 

I = Arus (A) 

R = Tahanan kondukstor (Ω) 

𝑐𝑜𝑠(𝜙) = Faktor Daya  

 

 

2. Gangguan Pada Saluran Transmisi  

Meskipun dirancang untuk tingkat keandalan tinggi, saluran transmisi masih 

rentan terhadap berbagai jenis gangguan (faults). Gangguan adalah suatu kondisi 

abnormal yang mengganggu kestabilan sistem dan menyebabkan aliran arus besar 

ke peralatan listrik [7]. Secara umum, gangguan ini dapat diklasifikasikan menjadi 

dua kategori utama: gangguan simetris berupa hubung singkat tiga fasa dan 

gangguan tidak simetris [1]. Gangguan tidak simetris merupakan jenis yang paling 

sering terjadi, meliputi gangguan hubung singkat satu fasa ke tanah (single line-to-

ground), hubung singkat antar fasa (line-to-line), dan hubung singkat dua fasa ke 

tanah (double line-to-ground). Oleh karena itu, deteksi dan klasifikasi jenis 

gangguan secara cepat dan akurat sangat penting untuk mengisolasi area yang 

terganggu dan mempercepat proses pemulihan sistem. 
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Gambar 2.3 Contoh kondisi sistem ketika gangguan fasa a ke ground 

Gambar 2.3 Menunjukkan contoh kondisi sistem ketika terjadi gangguan Fasa a 

ke tanah. Sistem yang sebelumnya seimbang kini terdapat arus yang mengalir ke 

tanah melalui impedansi gangguan Zf. 

 

3. DC Offset Transient  

Pada rangkaian daya yang didominasi induktansi (R–L), arus gangguan sesaat 

setelah fault terdiri dari dua komponen: komponen AC kondisi tunak (simetris) dan 

komponen DC offset (asimetri) yang memiliki decay rate proporsional terhadap 

R/L. Nilai awal komponen DC ini ditentukan oleh sudut penutupan/terjadinya 

gangguan (α) berdasarkan persamaan, 

𝑖𝑑𝑐 =  − 𝐼√2 𝑠𝑖𝑛 (𝛼 − 𝜑) 𝑒−
𝑅

𝐿
𝑡    (2.3) 

dengan, 

𝑖𝑑𝑐= Komponen arus DC offset (asimetris) 

I = Arus RMS 

𝛼 = Sudut terjadinya gangguan (fault inception angle) 

φ = Sudut fasa arus relatif terhadap tegangan sumber 

R = Resistansi ekuivalen dari sistem dari titik gangguan. 

L = Induktansi ekuivalen dari sistem dari titik gangguan. 

t = Waktu setelah terjadinya gangguan [8]. 
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Secara spesifik, besarnya offset ini bervariasi dari nilai minimum 0 ketika 

gangguan terjadi pada sudut 𝛼 =  𝜃, hingga mencapai nilai maksimum √2 ∗ 𝑖𝑎𝑐   

yang setara dengan nilai puncak arus AC ketika gangguan terjadi pada sudut 𝛼 =

(𝜃 ±  𝜋/2). Oleh karena itu, tergantung pada waktu terjadinya gangguan bentuk 

gelombang arus gangguan yang dihasilkan dapat bersifat simetris (dengan DC 

offset minimal) atau sangat asimetris (dengan DC offset maksimal). Fenomena ini 

secara fundamental mempengaruhi karakteristik sinyal transien secara keseluruhan 

[9].  

 

4. Analisis Transien 

Analisis transien adalah metode investigasi fenomena kelistrikan yang diambil 

ketika suatu sistem mengalami gangguan seperti hubung singkat. Ketika gangguan 

terjadi, perubahan drastis pada tegangan dan arus di titik gangguan akan 

membangkitkan gelombang elektromagnetik berfrekuensi tinggi yang dikenal 

sebagai traveling wave. Gelombang ini merambat di sepanjang saluran transmisi ke 

kedua arah dari titik gangguan dengan kecepatan mendekati kecepatan cahaya [10]. 

Analisis transien berfokus pada pendeteksian dan interpretasi “ledakan” sinyal-

sinyal gangguan non-stasioner. Transien terjadi dalam beberapa milidetik pertama 

sebelum sistem mencapai kondisi stabil baru atau kembali normal  

Pendekatan investigasi transien ini secara fundamental berbeda dengan analisis 

steady-state konvensional. Analisis steady-state mengamati perilaku sistem setelah 

semua komponen transien mereda dan sinyal mencapai bentuk stabil yang baru 

(steady state).Sebaliknya, analisis transien justru memanfaatkan "kekacauan" awal 

pasca-gangguan. Analisis pada sinyal yang kaya informasi ini selaras dengan 

kebutuhan untuk deteksi gangguan yang cepat di sistem tenaga modern saat ini [11]. 

Validitas penggunaan analisis transien untuk diagnosis gangguan terletak pada 

fakta bahwa sinyal transien yang dihasilkan oleh gangguan bersifat unik dan 

informatif. Sinyal-sinyal ini dapat memberikan informasi ekstensif mengenai tipe 

gangguan, deteksi, lokasi, arah, dan durasinya [10]. Kehadiran komponen frekuensi 

tinggi yang tiba-tiba muncul pada sinyal tegangan dan arus merupakan indikator 

yang sangat jelas bahwa sebuah anomali telah terjadi. Karena sinyal ini muncul 
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seketika dan dapat dibedakan dengan jelas dari kondisi operasi normal, analisisnya 

menjadi dasar yang kuat untuk merancang sistem proteksi yang cepat dan akurat. 

Oleh karena itu, pemanfaatan analisis transien menjadi landasan penting dalam 

pengembangan skema proteksi modern yang menuntut kecepatan dan keandalan. 

Dengan menganalisis sinyal pada jendela waktu yang sangat singkat sesaat setelah 

gangguan terdeteksi, dimungkinkan untuk mengekstraksi fitur-fitur kunci sebelum 

sinyal tersebut terdistorsi oleh respons sistem lainnya. Pendekatan ini tidak hanya 

mempercepat waktu deteksi secara drastis tetapi juga meningkatkan akurasi 

klasifikasi gangguan. Analisis ini menjadi metode yang sangat relevan dan 

fundamental untuk penelitian ini. 

 

5. Model Saluran Transmisi Pendek 

Untuk keperluan analisis dan simulasi, saluran transmisi dapat dimodelkan 

secara matematis. Pada tugas akhir ini, digunakan model saluran transmisi pendek 

(short transmission line) yang relevan untuk saluran dengan panjang kurang dari 

80 km [1]. Rangkaian ekuivalen satu fasa untuk model ini diilustrasikan pada 

Gambar 2.4. 

 

Gambar 2.4 Model Saluran Transmisi Pendek 

Pada model pada Gambar 2.5, Vs dan Is merepresentasikan tegangan dan arus 

pada sisi pengirim (sending end). Adapun Vr dan Ir adalah tegangan dan arus pada 

sisi penerima (receiving end). Keseluruhan saluran transmisi direpresentasikan oleh 

sebuah impedansi seri tunggal Z, yang terdiri dari resistansi total R dan reaktansi 

induktif X [1]. 
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Nilai reaktansi induktif (X) muncul akibat medan magnet di sekitar konduktor 

yang nilainya bergantung pada frekuensi sis tem (f) serta induktansi (L) saluran 

sesuai dengan persamaan: 

𝑋 = 2𝜋𝑓𝐿    (2.4) 

Model ini menyederhanakan representasi saluran dengan hanya 

memperhitungkan impedansi seri (resistansi dan induktansi) dan mengabaikan 

kapasitansi shunt yang tidak signifikan. Penyederhanaan ini dapat digunakan 

karena efek kapasitansi pada saluran pendek sangat kecil dan tidak signifikan 

memengaruhi hasil analisis gangguan hubung singkat. 

 

2.2.2 Analisis Sinyal Digital 

Ketika gangguan terjadi pada saluran transmisi, bentuk gelombang tegangan 

dan arus akan mengalami perubahan drastis dari kondisi normalnya. Sinyal analog 

ini dapat diubah menjadi data digital melalui proses sampling untuk dianalisis lebih 

lanjut. Analisis sinyal digital (Digital Signal Processing/DSP) adalah teknik yang 

digunakan untuk mengekstraksi informasi atau fitur-fitur penting dari sinyal digital 

tersebut. Dalam konteks klasifikasi gangguan, fitur-fitur ini dapat berupa amplitudo  

puncak, komponen frekuensi, atau parameter statistik lainnya yang unik untuk 

setiap jenis gangguan. Ekstraksi fitur yang tepat merupakan langkah fundamental 

sebelum data dimasukkan ke dalam model neural network klasifikasi gangguan. 

 

2.2.3 Transformasi Wavelet 

Transformasi Wavelet merupakan metode dekomposisi data yang mampu 

mengidentifikasi komponen frekuensi yang berbeda dari sebuah sinyal. 

Kemampuan identifikasi ini menjadikan transformasi wavelet sangat efektif untuk 

menganalisis sinyal non-stasioner, seperti gangguan pada sistem tenaga. 

 

1. Discrete Wavelet Transform (DWT) dan Dekomposisi Sinyal 

Discrete Wavelet Transform (DWT) adalah teknik analisis sinyal yang sering 

digunakan dalam analisis gangguan sistem tenaga, khususnya untuk mendeteksi 

transisi atau perubahan mendadak pada suatu sinyal. Berbeda dengan metode lain 
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yang memiliki resolusi frekuensi yang sama di semua pita, DWT memungkinkan 

untuk menganalisis sinyal dengan lebih detail pada berbagai skala. Di antara mother 

wavelet yang paling sering digunakan adalah Morlet dan Daubechies. Daubechies 

memiliki bentuk yang menyerupai segitiga, sehingga meskipun interpretasinya 

lebih sulit, tetapi memiliki beberapa sifat matematis yang sangat berguna [12]. 

Proses inti dari DWT adalah dekomposisi sinyal secara multiresolusi. Proses 

ini dimulai dengan memecah sinyal masukan menjadi dua komponen: komponen 

berfrekuensi rendah dan komponen berfrekuensi tinggi. Pemecahan ini dilakukan 

dengan melewatkan sinyal melalui sepasang filter digital, yaitu low-pass filter dan 

high-pass filter. Selanjutnya, komponen berfrekuensi rendah yang dihasilkan 

kemudian dipecah lebih lanjut dengan melewatkannya kembali ke pasangan filter 

yang sama. Proses ini diulang beberapa kali sesuai dengan jumlah level 

dekomposisi yang diinginkan untuk menghasilkan komponen sinyal yang 

dibutuhkan [12]. 

Secara matematis, proses dekomposisi ini didasarkan pada dua fungsi 

fundamental: scaling function ϕ(t) dan wavelet function w(t). Scaling function ϕ(t) 

berasosiasi dengan low-pass filter (h₀(k)), sementara wavelet function w(t) 

berasosiasi dengan high-pass filter (h₁(k)). Hubungan antara fungsi-fungsi ini 

dengan koefisien filter dijelaskan dalam persamaan berikut: 

𝜙(𝑡) = ∑ 2ℎ0(𝑘)𝜙(2𝑡 − 𝑘)𝑘   (2.5) 

𝜙(𝑡) = ∑ 2ℎ1(𝑘)𝜙(2𝑡 − 𝑘)𝑘   (2.6) 

[12] 

dengan, 

ϕ(t): Fungsi Skala (Scaling Function). 

w(t): Fungsi Wavelet (Mother Wavelet). 

h₀(k): Koefisien filter low-pass. 

h₁(k): Koefisien filter high-pass. 

t: Variabel waktu kontinu. 

k: Indeks pergeseran waktu (integer). 

 

2. Koefisien Aproksimasi (A) dan Detail (D) 
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Hasil dari proses dekomposisi sinyal menggunakan Discrete Wavelet 

Transform (DWT) pada setiap levelnya adalah dua set koefisien. Koefisien yang 

dihasilkan oleh low-pass filter disebut sebagai Koefisien Aproksimasi (A). 

Koefisien ini merepresentasikan komponen sinyal berfrekuensi rendah, atau bisa 

dianggap sebagai versi sinyal yang lebih "kasar" (coarse). Koefisien Aproksimasi 

dari satu level dekomposisi kemudian menjadi sinyal masukan untuk proses 

dekomposisi di level selanjutnya. 

Di sisi lain, koefisien yang dihasilkan oleh high-pass filter disebut sebagai 

Koefisien Detail (D). Koefisien inilah yang paling penting dalam konteks deteksi 

gangguan, karena komponen transien dari sebuah sinyal diekstraksi sebagai 

keluaran dari high-pass filter. Koefisien Detail menangkap informasi berfrekuensi 

tinggi, seperti lonjakan tajam, osilasi, dan diskontinuitas lainnya yang menjadi ciri 

khas dari sebuah sinyal gangguan. Oleh karena itu, analisis terhadap Koefisien 

Detail menjadi kunci untuk mengidentifikasi gangguan pada saluran transmisi. 

 

3. Aplikasi Discrete Wavelet Transform (DWT) untuk Ekstraksi Fitur  

Gangguan 

Kemampuan DWT dalam memisahkan komponen sinyal menjadikannya 

sebagai alat yang sangat efektif dan telah umum digunakan untuk tahap ekstraksi 

fitur dalam berbagai penelitian klasifikasi gangguan [6,7,9]. Dengan menganalisis 

koefisien-koefisien hasil dekomposisi, ciri atau karakteristik dari setiap sinyal 

gangguan dapat diekstraksi secara kuantitatif. Nilai ini kemudian dapat dijadikan 

masukan untuk model klasifikasi cerdas. 

Dalam analisis sinyal, penghitungan energi merupakan salah satu metode 

yang sudah umum digunakan. Secara formal, energi dari sebuah sinyal waktu 

diskrit didefinisikan sebagai jumlah dari kuadrat magnitudo setiap sampelnya [13]. 

Prinsip ini kemudian diterapkan secara konsisten dalam analisis wavelet. Dalam 

konteks ini, energi wavelet pada skala tertentu diestimasi dengan menjumlahkan 

kuadrat magnitudo dari koefisien-koefisien wavelet seperti pada persamaan: 

𝐸𝑥 = ∑|𝑥[𝑛]|2  (2.7) 

[13] 
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di mana, 

𝐸𝑥: Energi total dari sebuah sinyal diskrit 

x[n]: Properti dari suatu sinyal 

Nilai energi ini dapat berfungsi sebagai fitur tunggal yang ringkas dan informatif 

untuk merepresentasikan karakteristik sinyal gangguan. 

 

4. Jaringan Saraf Tiruan 

Jaringan Saraf Tiruan (JST) atau Artificial Neural Network (ANN) adalah 

sebuah model komputasi yang terinspirasi dari struktur dan cara kerja jaringan saraf 

biologis di otak. Penggunaan metode JST dalam rekayasa dipilih karena 

kemampuannya yang unggul dalam mempelajari pola-pola kompleks dan non-

linear langsung dari data, tanpa memerlukan model matematis eksplisit dari sistem 

yang dianalisis. Kemampuan ini dijelaskan oleh Haykin sebagai berikut: 

Neural Network adalah sekumpulan prosesor yang tersebar secara luas, 

tersusun dari unit-unit pemrosesan sederhana, dan memiliki kecenderungan alami 

untuk menyimpan informasi dari pengalaman. Neural Network menyerupai cara 

kerja otak manusia dalam dua hal: 

1. Pengetahuan diperoleh dari lingkungan melalui proses belajar. 

2. Kekuatan dari Neuron yang saling terhubung (synaptic weights) digunakan 

untuk menyimpan pengetahuan yang telah didapat [14]. 

Beberapa kelebihan utama dari JST adalah kemampuannya untuk belajar dari 

contoh (training data), melakukan generalisasi terhadap data baru yang belum 

pernah dilihat, serta memiliki toleransi terhadap data yang tidak lengkap atau 

mengandung noise. 

 

 

2.2.5 Multi-Layer Perceptron 



17 
 

 
 

 

Gambar 2.5 Arsitektur Multi-layer Perceptron 

Multi-Layer Perceptron (MLP) adalah salah satu arsitektur JST jenis 

feedforward yang paling umum digunakan. Struktur MLP dasar seperti pada 

Gambar 2.6 terdiri dari setidaknya tiga lapisan neuron: satu lapisan masukan (input 

layer), satu atau lebih lapisan tersembunyi (hidden layers), dan satu lapisan 

keluaran (output layer). Setiap neuron pada satu lapisan terhubung dengan semua 

neuron di lapisan berikutnya. Lapisan masukan menerima data fitur hasil ekstraksi 

sinyal, lapisan tersembunyi bertugas untuk memproses dan mentransformasi data 

tersebut, dan lapisan keluaran menghasilkan hasil klasifikasi akhir misalnya, jenis 

gangguan. 

 

1. Arsitektur Multi-Layer Perceptron 

Arsitektur Multi-Layer Perceptron secara klasik terdiri dari tiga jenis lapisan 

(layer): 

a. Lapisan Input (Input Layer): 

Lapisan ini berfungsi sebagai pintu gerbang atau titik masuk bagi data ke dalam 

jaringan. Input layer terdiri dari sejumlah neuron yang disebut sebagai source 

nodes. Jumlah neuron pada lapisan ini akan sama dengan jumlah fitur dalam 

dataset. Sebagai contoh, untuk dataset dengan 8 fitur, maka input layer akan 

memiliki 8 neuron. 
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Setiap neuron pada input layer MLP dirancang untuk menerima satu nilai fitur 

tunggal (skalar). Data input untuk MLP bisa berupa sebuah vektor datar 

(misalnya, 1x8), di mana setiap elemen dari vektor itu akan menjadi masukan 

untuk satu neuron. Hal ini berbeda dengan arsitektur JST yang lebih modern 

(seperti Convolutional Neural Network) yang mampu memproses data dalam 

bentuk matriks atau tensor secara langsung pada unit inputnya [15]. 

b. Lapisan Tersembunyi (Hidden Layer):  

Hidden Layer merupakan lapisan komputasi yang terletak di antara lapisan 

input dan output. Suatu jaringan MLP bisa memiliki satu atau lebih lapisan 

tersembunyi. Di lapisan ini proses "belajar" pola-pola kompleks terjadi. Setiap 

neuron di lapisan ini terhubung sepenuhnya (fully connected) ke semua neuron 

di lapisan sebelumnya [15]. 

c. Lapisan Output (Output Layer):  

Bagian ini merupakan lapisan terakhir yang menghasilkan respon akhir dari 

jaringan terhadap pola aktivasi yang diberikan oleh source nodes pada input 

layer pertama. Jumlah neuron pada lapisan ini ditentukan oleh jenis masalah 

yang akan diprediksi [15]. Sebagai contoh, untuk mengklasifikasikan 11 jenis 

gangguan, maka output layer akan memiliki 11 neuron yang mewakili setiap 

jenis gangguan. 

 

2. Neuron dan Fungsi Aktivasi 

Lapisan-lapisan dalam arsitektur Multi-layer Perceptron tersusun dari unit-unit 

komputasi dasar yang disebut neuron. Sebagaimana dijelaskan oleh Haykin (2009), 

sebuah neuron adalah unit pemrosesan informasi fundamental yang menjadi dasar 

dari cara kerja sebuah jaringan saraf. Operasi yang terjadi di dalam sebuah neuron 

dapat dipecah menjadi beberapa elemen dasar: 

a. Penjumlah Linear (Linear Combiner) 

Setiap sinyal masukan (x) yang diterima neuron terhubung melalui sebuah 

synapse yang memiliki bobot (weight) atau "kekuatan" koneksi. Langkah 

pertama adalah mengalikan setiap sinyal masukan dengan bobotnya masing-

masing. Selanjutnya semua hasil perkalian itu akan dijumlahkan. 
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b. Penambahan Bias 

Setelah hasil dari penjumlahan didapatkan, sebuah parameter yang disebut 

“bias” (bk) ditambahkan. Sesuai dengan Gambar 2.7 fungsi dari bias adalah 

untuk menaikkan atau menurunkan total sinyal masukan sebelum diproses 

lebih lanjut. 

 

Gambar 2.6 Model non-linear dari sebuah neuron dengan label k 

 

c. Fungsi Aktivasi (Activation Function) 

Langkah terakhir yaitu penerapan fungsi aktivasi yang ditulis sebagai φ. Hasil 

dari penjumlahan bobot dan bias (𝑢𝑘+𝑏𝑘) dilewatkan ke fungsi aktivasi untuk 

menghasilkan output akhir dari neuron (𝑦𝑘). Secara matematis dapat ditulis 

sebagai: 

𝑢𝑘 = ∑𝑚
𝑗=1 𝑤𝑘𝑗 . 𝑥𝑗  (2.8) 

dan 

𝑦𝑘 = 𝜑(𝑢𝑘+𝑏𝑘)  (2.9) 

𝑦𝑘 = Sinyal keluaran dari neuron ke-k. 

φ = Fungsi aktivasi. 

𝑢𝑘 = Hasil penjumlahan terbobot untuk neuron ke-k. 

𝑏𝑘 = Nilai bias untuk neuron ke-k. 

𝑤𝑘𝑗 . = Bobot koneksi dari neuron ke-j (lapisan sebelumnya) ke neuron 

ke-k. 
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𝑥𝑗 = Sinyal masukan ke-j. 

m = Jumlah total sinyal masukan. 

k = Indeks untuk neuron pada lapisan saat ini. 

j = Indeks untuk sinyal masukan dari lapisan sebelumnya. 

Fungsi aktivasi bertujuan untuk membatasi amplitudo dari output neuron 

dengan "menekan" (squashing) nilainya ke dalam rentang tertentu. Keberadaan 

fungsi ini memungkinkan jaringan untuk mempelajari pola-pola yang 

kompleks [14]. 

 

2.2.6 Pelatihan Jaringan Saraf Tiruan 

1. Backpropagation 

Algoritma Backpropagation adalah mekanisme standar untuk melatih model 

Multi-layer Perceptron dalam supervised learning. Algoritma ini memungkinkan 

informasi dari fungsi cost yang mengukur besaran error antara prediksi dan target 

sebenarnya untuk berjalan mundur melalui jaringan guna menghitung gradien [15]. 

Secara sederhana, algoritma ini bekerja dalam dua tahap: forward pass untuk 

menghasilkan prediksi dan menghitung error, kemudian dilanjutkan dengan 

backward pass di mana error tersebut digunakan untuk memperbarui seluruh bobot 

secara iteratif. Tujuan akhirnya adalah untuk meminimalkan error hingga model 

mencapai tingkat akurasi yang diinginkan [15]. 

 

2. Epoch 

Pada proses pelatihan sebuah jaringan saraf, pembaruan bobot-bobot sinaptik 

dilakukan secara iteratif untuk meminimalkan error dan meningkatkan akurasi 

model. Akan tetapi, proses pembelajaran ini tidak berjalan tanpa henti, melainkan 

diorganisir ke dalam unit-unit terstruktur yang disebut sebagai epoch. 

Satu epoch didefinisikan sebagai satu siklus lengkap di mana algoritma 

pembelajaran telah "melihat" atau dipresentasikan dengan seluruh sampel yang ada 

di dalam set data latih. Dengan kata lain, penyesuaian terhadap bobot-bobot sinaptik 

pada Multi-layer Perceptron dilakukan secara epoch-by-epoch. Proses pelatihan 

dilakukan hingga model mencapai tingkat konvergensi yang memuaskan. Pada 
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setiap epoch, urutan data latih dapat diacak (shuffled) untuk meningkatkan 

kemampuan generalisasi model [15]. 

 

3. Overfitting dan Underfitting 

Tujuan dari proses pelatihan sebuah jaringan saraf tidak hanya untuk 

memetakan relasi input-output dari data yang ada, melainkan juga memastikan 

model tersebut mampu melakukan generalisasi dengan baik. Akan tetapi, dalam 

mencapai kemampuan generalisasi ini, terdapat dua tantangan praktis yang 

seringkali muncul, yaitu overfitting dan underfitting. 

Overfitting, atau terkadang disebut overtraining, adalah sebuah fenomena yang 

terjadi ketika model yang dilatih menjadi terlalu bergantung pada data latih. Dalam 

kondisi ini, model tidak hanya mempelajari pola-pola fundamental dari data, tetapi 

juga mulai "menghafal" detail-detail yang tidak relevan, termasuk noise atau 

anomali yang hanya ada pada sampel data latih. Akibat dari fenomena ini adalah 

model akan menunjukkan performa yang sangat tinggi pada data latih, namun 

performanya akan menurun drastis ketika dihadapkan pada data baru yang belum 

pernah dilihat sebelumnya. Pada dasarnya, ketika sebuah jaringan mengalami 

overfitting, ia kehilangan kemampuan esensialnya dalam melakukan generalisasi 

[15]. 

Sebaliknya, underfitting terjadi ketika proses pelatihan belum cukup untuk 

model dapat menangkap pola fundamental dari data. Akibatnya, model akan 

menunjukkan performa yang buruk baik pada data latih maupun data baru. Hal ini 

merupakan indikasi bahwa model belum cukup "belajar" dan belum mampu 

mengambil pola dari masalah yang ada. 

Untuk mengatasi permasalahan ini, khususnya overfitting, pendekatan standar 

yang digunakan adalah dengan memvalidasi model secara berkala selama proses 

pelatihan. Hal ini dilakukan dengan mempartisi dataset yang tersedia menjadi 

beberapa bagian, salah satunya adalah set data validasi (validation subset). Data 

validasi digunakan secara khusus untuk menguji dan memvalidasi kemampuan 

generalisasi model pada data yang tidak ikut serta dalam proses pembaruan bobot 

[15]. 
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4. Confusion Matrix dan Evaluasi Model 

Salah satu metode visualisasi dan analisis kinerja model kecerdasan buatan 

yang paling fundamental dalam machine learning adalah Confusion Matrix. 

Sebagaimana dipaparkan oleh Fawcett (2006), confusion matrix adalah sebuah 

tabel yang dirancang untuk menyajikan visualisasi performa dari sebuah model 

klasifikasi. Struktur dasarnya membandingkan antara Kelas Aktual (True Class) 

atau label yang sebenarnya dari data, dengan Kelas Prediksi (Predicted Class) atau 

label yang diprediksi oleh model [16].  

Cara kerja confusion matrix adalah dengan menghitung dan mengkategorikan 

setiap prediksi yang dibuat oleh model pada data uji. Angka-angka di sepanjang 

diagonal utama dari matriks ini merepresentasikan jumlah total prediksi yang benar, 

di mana Kelas Prediksi (Predicted Class) sama dengan Kelas Aktual (True Class). 

Sebaliknya, semua angka yang berada di luar diagonal utama merepresentasikan 

total kesalahan atau "kebingungan" (confusion) yang dibuat oleh model, di mana 

Kelas Prediksi tidak sesuai dengan Kelas Aktual [16]. Meskipun seringkali 

diilustrasikan dalam bentuk matriks 2x2 untuk masalah klasifikasi biner, konsep ini 

dapat diperluas secara langsung untuk klasifikasi dengan jumlah kelas yang lebih 

besar. Pada penelitian ini, menghasilkan matriks berukuran N×N (misalnya, 

11×11). 
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Gambar 2.7 Contoh Confusion Matrix  

Gambar 2.8 menunjukkan contoh dari suatu confusion matrix di mana blok diagonal 

berwarna biru adalah kelas yang berhasil diprediksi dengan benar 

 

Akurasi model secara keseluruhan juga dapat dihitung dari confusion matrix. 

Akurasi ini merupakan rasio antara jumlah total prediksi yang benar terhadap 

jumlah total seluruh sampel data yang diuji. Akurasi dihitung menggunakan rumus 

berikut:  

𝐴𝑘𝑢𝑟𝑎𝑠𝑖 =  
𝐽𝑢𝑚𝑙𝑎ℎ 𝑃𝑟𝑒𝑑𝑖𝑘𝑠𝑖 𝐵𝑒𝑛𝑎𝑟

𝑇𝑜𝑡𝑎𝑙 𝐽𝑢𝑚𝑙𝑎ℎ 𝐷𝑎𝑡𝑎 𝑈𝑗𝑖
× 100%   (2.9) 

 

Evaluasi model seringkali dilakukan secara berulang untuk mendapatkan 

gambaran kinerja yang lebih stabil dan tidak bias oleh fluktuasi karena pembagian 

data yang acak. Oleh karena itu beberapa fungsi statistik dasar juga disertakan. 

Rata-rata digunakan untuk menentukan nilai tengah dari serangkaian percobaan, 

dihitung dengan rumus: 

𝑥 ̄ =
∑𝑛

𝑖=1 𝑥𝑖

𝑛
   (2.10) 

[17] 

Sementara itu, standar deviasi digunakan untuk mengukur tingkat sebaran atau 

fluktuasi dari serangkaian hasil uji. Karena pengujian berulang ini dianggap 
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sebagai sampel dari semua kemungkinan hasil, maka digunakan rumus Standar 

Deviasi Sampel. Nilai yang rendah mengindikasikan kinerja model yang 

konsisten. Standar deviasi dihitung sebagai berikut: 

𝑠 =  √
∑𝑛

𝑖=1 (𝑥𝑖−𝑥̄)2

𝑛−1
  (2.11) 

[17] 

Di mana, 

x̄ : nilai rata-rata 

s : standar deviasi sampel 

xi : akurasi pada pengujian ke-i 

n : jumlah total pengujian. 

 

 

2.2.7 MATLAB 

MATLAB (Matrix Laboratory) adalah sebuah environment komputasi numerik 

dan bahasa pemrograman tingkat tinggi yang dikembangkan oleh MathWorks. 

Perangkat lunak ini banyak digunakan dalam bidang rekayasa dan sains untuk 

analisis data, pengembangan algoritma, dan pembuatan model. 
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Gambar 2.8 Tampilan awal MATLAB R2025a 

Gambar 2.9 merupakan tangkapan layar dari tampilan awal MATLAB R2025a 

 

1. Simulink 

Simulink adalah sebuah environment berbasis grafis yang terintegrasi di dalam 

MATLAB untuk pemodelan, simulasi, dan analisis sistem dinamis. Dalam tugas 

akhir ini, Simulink digunakan untuk membangun model sistem tenaga listrik, 

termasuk saluran transmisi, dan untuk mensimulasikan berbagai skenario 

gangguan. 

 

2. Deep Learning Toolbox 

Deep Learning Toolbox adalah salah satu fitur di dalam MATLAB untuk 

merancang, melatih, dan menganalisis model jaringan saraf tiruan, termasuk Multi-

Layer Perceptron (MLP). Toolbox ini memfasilitasi implementasi arsitektur 

jaringan, pengaturan parameter pelatihan seperti algoritma backpropagation, dan 

evaluasi performa model MLP yang sedang dirancang. 

3. Signal Processing Toolbox 

Signal Processing Toolbox menyediakan fungsi-fungsi untuk melakukan 

analisis sinyal digital. Dalam penelitian ini, toolbox tersebut dimanfaatkan untuk 

memproses data sinyal tegangan dan arus hasil simulasi Simulink, serta untuk 

mengekstraksi fitur-fitur relevan yang akan digunakan sebagai masukan untuk 

model MLP. 

 

4. Pemrograman MATLAB 

MATLAB sendiri sebenarnya adalah suatu bahasa pemrograman tingkat tinggi 

yang memungkinkan engineer dan peneliti melakukan pengembangan berbagai 

aplikasi berskala besar. Salah satu penggunaan pemrograman di MATLAB yang 

umum digunakan adalah penulisan skrip yang merupakan rangkaian perintah 

(sequences of commands). Skrip disimpan dan dijalankan dalam bentuk file 

berkestensi .m yang memungkinkan pengguna untuk menjalankan fungsi custom, 

pemakaian ulang suatu code blocks, atau melakukan berbagai otomatisasi lainnya. 
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Berikut adalah daftar fungsi dan konsep sintaks fundamental yang digunakan: 

a. Manajemen Workspace dan Variabel 

− clear : Menghapus semua variabel dari workspace saat ini untuk 

memastikan tidak ada data sisa dari eksekusi sebelumnya. 

− clc : Membersihkan teks pada Command Window untuk memudahkan 

pembacaan output. 

− [...] : Sintaks untuk membuat matriks atau vektor numerik, yang merupakan 

tipe data dasar di MATLAB. 

− {...} : Sintaks untuk membuat Cell Array, sebuah tipe data fleksibel yang 

dapat menyimpan elemen dengan tipe yang berbeda (misalnya, teks dan 

angka) dalam satu variabel. 

b. Struktur Kontrol dan Iterasi 

− for ... end : Struktur looping fundamental yang digunakan untuk 

mengeksekusi blok kode secara berulang. 

− length(A) : Mengembalikan jumlah elemen dalam dimensi terpanjang dari 

sebuah array A. 

− size(A, dim) : Mengembalikan jumlah elemen pada dimensi (dim) tertentu 

dari matriks A. 

c. Interaksi dengan Model Simulink 

− set_param(...) : Mengatur atau mengubah nilai parameter dari sebuah blok 

di dalam model Simulink. Fungsi ini memerlukan tiga argumen utama: path 

ke blok, nama parameter yang akan diubah, dan nilai baru yang akan 

diberikan. 

− sim(...) : Memulai dan menjalankan simulasi pada model Simulink yang 

namanya dijadikan sebagai argumen. 

d. Analisis dan Manipulasi Data 

− find(...) : Mencari indeks dari elemen-elemen dalam sebuah array yang 

memenuhi kondisi tertentu. Sangat berguna untuk proses windowing atau 

memotong sinyal berdasarkan kriteria waktu. 

Commented [ik3]: Memperbaiki bullet 
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− dwt(...) : Melakukan dekomposisi Discrete Wavelet Transform pada sebuah 

sinyal, yang digunakan untuk ekstraksi fitur di domain waktu-frekuensi. 

− sum(A) : Menjumlahkan semua elemen dalam sebuah vektor A. 

e. Fungsi Utilitas dan I/O (Input/Output) 

− num2str(...) : Mengkonversi sebuah nilai numerik menjadi format string 

(teks). Seringkali diperlukan saat menggunakan set_param karena beberapa 

parameter di blok Simulink memerlukan input dalam bentuk string. 

− fprintf(...) : Menampilkan teks atau data yang terformat pada Command 

Window 

− save(...) : Menyimpan variabel dari workspace MATLAB ke dalam sebuah 

file biner (.mat) untuk penggunaan di masa mendatang. 

f. Contoh Implementasi dalam Skrip 

Sebagai contoh, potongan kode berikut akan melakukan iterasi untuk setiap 

variasi sudut awal gangguan, mengatur parameter di Simulink, dan 

menjalankan simulasi. 

 

for sudut_idx = 1:length(sudut_list_deg) 

sudut = sudut_list_deg(sudut_idx); 

set_param(namafile_simulink/Three-Phase Source, 'PhaseAngle', 

num2str(sudut)); 

simout = sim(model_name); 

 

Dalam contoh ini fungsi loop for memastikan bahwa blok kode di dalamnya akan 

dieksekusi sebanyak jumlah elemen dalam sudut_list_deg. Pada setiap iterasi, 

fungsi set_param secara dinamis memperbarui nilai PhaseAngle pada blok sesuai 

path namafile_simulink/Three-Phase Source menjadi nilai yang tersimpan di 

dalam variabel sudut. Kemudian fungsi sim digunakan untuk menjalankan 

simulasi. Alur kerja seperti ini memungkinkan pembangkitan dataset yang 

komprehensif secara efisien.
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BAB III 

METODOLOGI PENELITIAN 

 

3.1 Model Penelitian 

Penelitian ini merupakan studi berbasis simulasi komputasi yang sepenuhnya 

dilakukan menggunakan perangkat lunak pada komputer. Oleh karena itu, 

penelitian ini tidak terikat pada lokasi fisik tertentu seperti laboratorium atau gardu 

induk. Seluruh proses, mulai dari perancangan sistem, simulasi gangguan, ekstraksi 

data, hingga perancangan model kecerdasan buatan, akan dilaksanakan secara 

virtual. 

 

3.2 Alat dan Bahan 

Alat dan bahan yang digunakan dalam penelitian ini terbagi menjadi perangkat 

keras (hardware), perangkat lunak (software), dan bahan penelitian (data). 

1. Software MATLAB R2025a 

MATLAB R2025a digunakan sebagai software komputasi teknis utama dalam 

penyusunan tugas akhir ini. MATLAB mencakup beberapa toolbox esensial yang 

akan digunakan secara terintegrasi: 

a. Simulink: Digunakan untuk merancang model sistem transmisi tenaga listrik 

dan melakukan simulasi dinamis untuk berbagai skenario gangguan. 
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Gambar 3.1 Simulasi Saluran Transmisi Menggunakan Simulink 

Gambar 3.1 menunjukkan contoh rangkaian simulasi yang bisa dibuat 

menggunakan MATLAB Simulink. 

b. Deep Learning Toolbox: Digunakan untuk keseluruhan siklus kerja kecerdasan 

buatan. Toolbox ini akan dimanfaatkan untuk merancang arsitektur, melatih, 

melakukan validasi, dan mengevaluasi kinerja model Multi-Layer Perceptron 

(MLP). 

c. Signal Processing Toolbox: Digunakan untuk melakukan analisis sinyal digital 

dan ekstraksi fitur dari data mentah hasil simulasi. Fungsi-fungsi dalam toolbox 

ini akan diaplikasikan untuk menghitung parameter penting seperti Total 

Harmonic Distortion (THD) dan komponen sinyal lainnya yang akan menjadi 

masukan bagi model. 

d. Wavelet Toolbox: Digunakan untuk melakukan transformasi wavelet pada fitur 

sinyal digital yang akan digunakan sebagai input pelatihan model MLP 

e. Statistics and Machine Learning Toolbox: Digunakan untuk melakukan 

perhitungan statistik dan membuat plot yang membantu analisis model yang 

sedang dirancang. 
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2. Komputer 

Perangkat keras utama yang digunakan adalah satu unit windows laptop dan 

monitor dengan spesifikasi sebagai berikut: 

− Prosesor: Ryzen 7 6800U 

− RAM: 16 GB 

− Penyimpanan: 1 TB SSD 

− Monitor: 34” ultrawide 

 

3.3 Prosedur Penelitian 

Penelitian ini merupakan studi berbasis simulasi komputasi yang sepenuhnya 

dilakukan menggunakan perangkat lunak pada komputer. Seluruh proses, mulai 

dari perancangan sistem, simulasi gangguan, ekstraksi data, hingga perancangan 

model kecerdasan buatan, akan memanfaatkan berbagai fitur dan toolbox dalam 

aplikasi MATLAB. 

Proses perancangan simulasi, pengumpulan data, hingga pembuatan model 

kecerdasan buatan dilaksanakan dengan beberapa prosedur yang sistematis sebagai 

berikut: 

 

3.3.1 Perancangan dan Simulasi Sistem di Simulink 

Perancangan model simulasi saluran transmisi pendek dalam penelitian ini 

menggunakan acuan penghantar SUTT 150kV Batang - Pekalongan 1. Saluran 

transmisi tersebut beroperasi pada tegangan nominal 150 kV dengan menggunakan 

konduktor jenis ACCC/TW LISBON 1x310 mm, yang memiliki Kapasitas Hantar 

Arus (KHA) sebesar 1285 A dan membentang sepanjang 13,16 km.  

Komponen simetris yang dimiliki penghantar yaitu sebagai berikut: 

1. Impedansi Urutan Positif 

−     X1 (ohm/km): 0,4000 

−     R1 (ohm/km): 0,0930 

−     Z1 (ohm): 5,4056 

−     Sudut Line (deg): 76,91 
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2. Impedansi Urutan Nol 

−     X0 (ohm/km): 1,2000 

−     R0 (ohm/km): 0,2430 

−     Z0 (ohm): 16,1162 

−     Sudut Line (deg): 78,55         

Karena saluran transmisi merupakan komponen statis, impedansi urutan negatif 

(Z2) memiliki nilai yang sama dengan urutan positif (Z2 = Z1), dengan perbedaan 

hanya pada urutan fasa arusnya. 

Untuk parameter lain yang diperlukan dalam model simulasi di MATLAB 

Simulink dan tidak secara spesifik tersedia akan diestimasi menggunakan nilai 

tipikal dan pendekatan teoritis. Pendekatan ini mengacu pada rentang nilai yang 

umum digunakan dalam literatur akademis dan penelitian relevan. 

 

1. Blok Simulink yang digunakan 

Saluran transmisi tegangan tinggi ini kemudian dimodelkan menggunakan 

MATLAB Simulink menggunakan beberapa blok sebagai berikut: 

a. Three-Phase Source 

 

Gambar 3.2 Blok Three-Phase Source 

  

Blok pada Gambar 3.2 mewakili sumber daya yang akan menyuplai saluran 

transmisi. Untuk keperluan simulasi digunakan frekuensi 50 Hz sesuai standar PLN 

dan nilai tegangan tipikal 152 kV untuk mengkompensasi drop tegangan di 

sepanjang saluran. 

b. Three-Phase Series RLC Load 
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Gambar 3.3 Blok Three-Phase Series RLC Load 

 

Blok pada Gambar 3.3 mewakili beban yang mengalir sepanjang penghantar. 

Pada model ini digunakan acuan nilai rata-rata beban puncak harian pada 

penghantar SUTT Batang - Pekalongan 1. 

c. Three-Phase Pi Section Line 

 

Gambar 3.4 Blok Three-Phase  Pi Section Line 

 

Blok pada Gambar 3.4 merepresentasikan saluran transmisi sepanjang 13,5 km 

dengan nilai kapasitansi yang diabaikan. 

Untuk parameter resistansi urutan positif dan urutan nol diambil dari data teknik 

penghantar PLN yaitu R1 = 0,0930 dan R0 = 0,2430. 

Untuk parameter induktansi dapat dikalkulasi sebagai berikut: 

Diketahui X1 = 0,4; X0 = 1,2 (data teknik penghantar PLN) 

maka menggunakan persamaan (2.4) L1 dan L0 dapat dihitung sebagai , 

𝑋1 =  2𝜋𝑓𝐿1 

0,4 =  2𝜋. 50. 𝐿1 

0,4 =  314,159. 𝐿1 
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𝐿1 =  
0,4

314,159
 

𝐿1 = 0,001273 𝛺/𝑘𝑚 tan 

dan 

𝑋0 =  2𝜋𝑓𝐿0 

1,2 =  2𝜋. 50. 𝐿0 

1,2 =  314,159. 𝐿0 

𝐿1 =  
1,2

314,159
 

𝐿0 = 0,003820 𝛺/𝑘𝑚  

dengan 

X1 = Reaktansi urutan positif 

X0 = Reaktansi urutan nol 

L1 = Induktansi urutan positif 

L0 = Induktansi urutan nol 

f = Frekuensi sistem (50 Hz) 

Pada model ini digunakan dua Blok Three-Phase Pi Section Line untuk 

mensimulasikan variasi gangguan yang berada di satu rentang saluran transmisi 

Batang - Pekalongan 1. Detail akan dijelaskan pada bagian rangkaian dan arsitektur 

simulasi. 

d. Three-Phase Fault 

 

Gambar 3.5 Blok Three-Phase  Fault 
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Blok pada Gambar 3.5 yaitu Three-Phase Fault akan mensimulasikan 

gangguan yang terjadi di fasa A, B, C, dan Ground. Waktu switching dan resistansi 

gangguan dapat diatur untuk menghasilkan model yang dikehendaki seperti 3,5 

e. Three-Phase V-I Measurement 

 

Gambar 3.6 Blok Three-Phase V-I Measurement 

 

Blok pada Gambar 3.6 digunakan untuk melakukan pengukuran arus dan 

tegangan tiga fasa di titik yang dikehendaki. Arus dan tegangan dari sistem akan 

diproses untuk menjadi input bagi model Multi-Layer Perceptron. 

f. Sequence Analyzer  

 

Gambar 3.7 Blok Sequence Analyzer 

Blok pada Gambar 3.7 yaitu Sequence Analyzer digunakan untuk mengambil 

komponen positif, negatif, dan nol dari suatu sinyal tiga fasa. Pada model ini yang 

dipakai adalah komponen arus urutan nol (I0). 

g. To Workspace 
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Gambar 3.8 Blok To Workspace 

Blok pada Gambar 3.8 digunakan untuk menyimpan hasil pengukuran arus dan 

tegangan ke dalam Workspace MATLAB 

 

h. Powergui 

 

Gambar 3.9 Blok Powergui 

 

Blok pada Gambar 3.9 berfungsi mengatur metode numerik yang digunakan 

untuk menjalankan simulasi di Simulink. Pada model ini digunakan pengaturan 

Discrete Simulation Type dengan sample time 5e-5. Artinya ketika simulasi 

dijalankan solver akan melakukan sampling data tiap 5e-5 s atau 50 mikrosekon.
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2. Rangkaian dan Arsitektur Simulasi 

 

 

Gambar 3.10 Rangkaian Simulasi Transmisi di Simulink

Commented [ik4]: Dibuat landscape 
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Rangkaian yang digunakan dalam simulasi ini ditunjukkan pada Gambar 3.10 

Model ini merepresentasikan sebuah sistem transmisi tenaga listrik sederhana yang 

terdiri dari sebuah sumber tegangan tiga fasa menggunakan blok Three-Phase 

Source pada sisi pengirim dan sebuah beban seri menggunakan blok Three-Phase 

Series RLC Load pada sisi penerima. Sistem ini secara umum merepresentasikan 

karakteristik sistem transmisi tegangan tinggi. 

Saluran transmisi di sini dimodelkan menggunakan dua buah blok Pi Section 

yang dihubungkan secara seri. Di antara kedua blok tersebut, ditempatkan sebuah 

blok gangguan tiga fasa (Three-Phase Fault). Arsitektur ini dirancang secara 

spesifik untuk memungkinkan simulasi gangguan pada berbagai titik di sepanjang 

saluran transmisi. Proses variasi lokasi ini diotomatisasi sepenuhnya melalui sebuah 

skrip MATLAB eksternal yang mengendalikan parameter di dalam blok Pi Section 

secara dinamis. Skrip tersebut melakukan iterasi pada sebuah list yang berisi daftar 

lokasi gangguan dalam satuan persen dari total panjang saluran. 

Untuk setiap nilai persentase lokasi, skrip akan menghitung panjang masing-

masing blok Pi Section secara proporsional. Berdasarkan Hukum Tegangan 

Kirchhoff (KVL) pada rangkaian AC, impedansi ekuivalen (Z_total) dari 

komponen yang terhubung seri adalah hasil penjumlahan fasor dari masing-masing 

impedansinya (Z_total = Z1 + Z2). Oleh karena itu, pada rangkaian ini panjang 

seksi pertama ( dideklarasikan sebagai variabel ‘L1_length’) dihitung sebagai 

persentase lokasi dikalikan dengan total panjang saluran (13.5 km), sementara 

panjang seksi kedua (dideklarasikan sebagai variabel ‘L2_length’) dihitung sebagai 

sisa dari total panjang saluran tersebut. 

Sebagai contoh, untuk mensimulasikan gangguan yang terjadi tepat di tengah 

saluran (50%), skrip akan mengatur L1_length menjadi: 

𝐿1_𝑙𝑒𝑛𝑔𝑡ℎ =  0.5 ∗  13.5 𝑘𝑚 =  6.75 𝑘𝑚.  

Maka L2_length dihitung sebagai: 

𝐿2_𝑙𝑒𝑛𝑔𝑡ℎ =  13.5 𝑘𝑚 − 𝐿1_𝑙𝑒𝑛𝑔𝑡ℎ 

𝐿2_𝑙𝑒𝑛𝑔𝑡ℎ =  13.5 𝑘𝑚 −  6.75 𝑘𝑚 =  6.75 𝑘𝑚.  
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Dengan cara ini, blok gangguan yang terletak di antara kedua seksi tersebut akan 

terletak pada jarak 6.75 km dari sisi pengirim. Metode ini memungkinkan untuk 

pembuatan dataset dalam skala besar secara efisien tanpa perlu mengubah 

parameter lokasi secara manual untuk setiap skenario lokasi gangguan. 

Seluruh pengukuran sinyal tegangan (Vabc) dan arus (Iabc) dilakukan pada sisi 

pengirim (sending end). Pemilihan titik pengukuran ini didasarkan pada praktik 

umum sistem proteksi, di mana relai proteksi dan perangkat pemantauan umumnya 

ditempatkan di gardu induk pada pangkal saluran transmisi untuk mendeteksi 

gangguan secepat mungkin. Untuk mengekstrak fitur arus urutan nol (I0), yang 

merupakan indikator penting untuk gangguan yang melibatkan tanah, sinyal arus 

tiga fasa dihubungkan ke sebuah blok Sequence Analyzer yang dikonfigurasi untuk 

mengeluarkan nilai magnitudo dari komponen urutan nol. 

Untuk proses agregasi data, total tujuh sinyal yang terdiri dari tiga sinyal 

tegangan (Vabc), tiga sinyal arus (Iabc), dan satu sinyal magnitudo arus urutan nol 

(I0) diumpankan ke dalam sebuah blok Mux. Blok ini menggabungkan ketujuh 

sinyal tersebut kemudian disimpan ke workspace MATLAB menggunakan blok To 

Workspace dengan nama out.mlp_input. 

 

3.3.1 Menjalankan Simulasi dan Generasi Dataset 

Setelah setiap blok dihubungkan dan diberikan parameter yang sesuai, langkah 

selanjutnya adalah menjalankan simulasi secara berulang untuk 11 jenis gangguan 

utama yaitu gangguan satu fasa ke tanah (AG, BG, CG), antar fasa (AB, BC, CA), 

dua fasa ke tanah (ABG, BCG, CAG), dan tiga fasa (ABC, ABCG). 

 

1. Parameter untuk Generasi Dataset 

Untuk memastikan model Multi-Layer Perceptron yang akan dilatih bersifat 

andal dan mampu melakukan klasifikasi dengan baik, diperlukan dataset yang 

beragam dan informatif. Oleh karena itu, setiap jenis gangguan akan dijalankan 

berulang kali dengan melakukan perubahan terhadap beberapa parameter 

operasional inti setiap kali simulasi dilakukan. Variasi ini bertujuan agar model 
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‘belajar’ mengenali pola dari spektrum kondisi yang lebih luas. Parameter yang 

divariasikan adalah sebagai berikut: 

 

a. Tahanan Gangguan (Fault Resistance):  

Untuk mencakup spektrum kondisi gangguan yang lebih luas digunakan dua 

nilai resistansi yaitu 0.001 Ω dan 15 Ω . Nilai 0.001 Ω merepresentasikan 

kondisi gangguan solid (bolted fault) dengan impedansi mendekati nol. 

Sementara itu, pemilihan nilai 15 Ω sebagai representasi gangguan 

berimpedansi tinggi didasarkan pada sebuah studi oleh Virgilio dan Elmer pada 

tahun 2015 mengenai rentang tipikal resistansi busur api (arc resistance) pada 

sistem transmisi. Penelitian menunjukkan bahwa untuk sistem dengan level 

tegangan 115kV-230kV, nilai resistansi gangguan 15 Ω merupakan nilai yang 

representatif dan umum dijumpai terutama untuk skema proteksi dengan waktu 

tunda [18]. Dengan mencakup kedua skenario ini, model dilatih untuk 

mengenali gangguan baik yang bersifat solid (resistansi rendah)  maupun yang 

berimpedansi tinggi. 

 

b. Lokasi Gangguan (Fault Location):  

Pada satu seksi saluran transmisi tegangan tinggi yang bisa membentang 

hingga puluhan kilometer, lokasi kemungkinan terjadinya gangguan bisa 

sangat acak dan tidak bisa diprediksi. 

Oleh karena hal tersebut, sembilan titik lokasi diskrit digunakan, yaitu pada 

titik 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, dan 90% dari total panjang 

saluran. Pemilihan rentang ini memberikan cakupan yang lebih luas resolusi 

yang memadai di sepanjang saluran transmisi dan memberikan kesempatan 

model untuk mempelajari bagaimana karakteristik sinyal (seperti magnitudo 

dan fasa) berubah seiring dengan perubahan jarak gangguan dari titik 

pengukuran. 

 

c. Sudut Awal Gangguan (Fault Inception Angle):  
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Sebagaimana titik lokasi gangguan, waktu terjadinya gangguan juga bersifat 

acak dan dapat terjadi pada titik mana pun dalam satu siklus gelombang AC. 

Untuk merepresentasikan hal ini, tiga nilai sudut fasa tegangan yang 

representatif digunakan dalam simulasi yaitu: 0°, 45°, dan 90°. Pemilihan 

parameter ini sangat krusial karena sudut awal gangguan memiliki pengaruh 

fundamental terhadap karakteristik sinyal transien sebagaimana dijelaskan 

pada bagian 2.2.1.3 tentang DC Offset Transient. 

Besarnya komponen DC offset ini dipengaruhi secara langsung oleh nilai 

sesaat dari arus pada momen terjadinya gangguan. 

    Pada sudut 0° gangguan terjadi tepat saat tegangan melintasi titik nol, 

artinya arus gangguan berada pada nilai puncaknya. Pada kondisi ini sistem 

akan membangkitkan komponen DC offset dengan magnitudo maksimum. 

Hasilnya adalah sebuah gelombang arus yang sangat asimetris, di mana puncak 

positif dan negatifnya tidak seimbang. 

    Pada sudut 90° gangguan terjadi pada puncak gelombang tegangan ketika 

arus tunak melintasi titik nol, akibat nya transisi terjadi dengan mulus. 

Komponen DC offset yang dihasilkan akan bernilai minimal atau bahkan nol. 

Kondisi ini menghasilkan gelombang arus gangguan yang simetris [8]. 

    Sudut 45° juga digunakan untuk merepresentasikan kondisi di antara 

kedua kondisi tersebut, menghasilkan komponen DC offset dan tingkat 

asimetri gelombang yang moderat. 

Dengan memberikan variasi terhadap sudut awal gangguan, dataset yang 

dihasilkan akan mencakup sinyal-sinyal dengan berbagai tingkat distorsi 

transien. Hal ini memaksa model kecerdasan buatan untuk tidak hanya 

menghafal satu bentuk gelombang ideal, tetapi untuk mempelajari berbagai 

pola-pola fundamental yang berubah tergantung momen saat terjadinya 

gangguan. Kemampuan ini sangat penting untuk memastikan model yang 

dibangun bersifat andal (robust) dan mampu melakukan klasifikasi dengan 

baik pada kondisi dunia nyata yang tidak dapat diprediksi. 

 

d. Tingkat Pembebanan (Load Level) 
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Dua kondisi beban digunakan, yaitu beban tinggi (146 MW, 41 MVAR) dan 

beban rendah (46.7 MW, 18.6 MVAR). Kedua nilai ini diambil dari tipikal 

beban puncak harian di Gardu Induk 150 kV Batang pada bulan Desember 

2024 yang ditunjukkan pada Lampiran 7. Hal ini ditujukan agar performa 

klasifikasi model tidak sensitif terhadap kondisi operasional sistem sebelum 

terjadinya gangguan.  

Selanjutnya seluruh proses pembangkitan data termasuk iterasi untuk 

setiap jenis gangguan, tahanan, lokasi, sudut, dan beban diotomatisasi 

sepenuhnya menggunakan sebuah skrip MATLAB. Skrip ini akan secara 

dinamis mengatur parameter-parameter pada blok-blok yang diperlukan di 

dalam model Simulink. Skrip otomatisasi ini memungkinkan untuk 

menjalankan simulasi secara berulang sesuai kombinasi parameter yang unik. 

Kemudian sebagaimana dijelaskan pada 3.3.1.2 tentang arsitektur simulasi, 

skrip akan menyimpan pembacaan tiga sinyal tegangan (Vabc), tiga sinyal arus 

(Iabc), dan satu sinyal magnitudo arus urutan nol (I0)  ke dalam bentuk matriks 

dataset akhir di dalam workspace MATLAB. 

 

2. Penjelasan Skrip Generasi Dataset 

Untuk proses generasi dataset ini, dibuat sebuah skrip yang bertanggung jawab 

untuk mengatur parameter, menjalankan model Simulink secara berulang, 

mengekstraksi fitur, dan menyimpan data. Cara kerja skrip ini dapat dibagi menjadi 

beberapa tahapan utama sebagai berikut: 

 

a. Inisialisasi dan Definisi Path 

Pada awal eksekusi, skrip melakukan pembersihan workspace. 

Selanjutnya, didefinisikan variabel-variabel string yang berisi nama model 

Simulink dan path spesifik menuju blok-blok utama yang parameternya akan 

diubah secara dinamis selama simulasi. Pendekatan ini membuat skrip lebih 

modular dan mudah dibaca. 

cuplikan skrip MATLAB: 
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% Membersihkan workspace dan command window   

clear; clc;   

   

% Mendefinisikan nama model dan path ke blok-blok utama   

model_name = 'pake_pi_section_sudutv3';   

fault_block_path = [model_name, '/Three-Phase Fault'];   

source_block_path = [model_name, '/Three-Phase Source'];    

load_block_path = [model_name, '/Three-Phase Series RLC Load'];    

 

b. Deklarasi Variabel untuk Parameter yang akan divariasikan 

Seluruh parameter yang akan divariasikan dideklarasikan dalam bentuk 

vektor atau matriks. Hal Ini mencakup list untuk lokasi gangguan 

(lokasi_persen), tahanan gangguan (ron_list), sudut awal gangguan 

(sudut_list_deg), dan tingkat pembebanan (beban_list). Adapun untuk 

switching berbagai kondisi gangguan disimpan dalam sebuah cell array 

bernama jenis_gangguan_db. Cell ini memetakan nama setiap jenis 

gangguan (misalnya, 'AG') ke konfigurasi parameter 'on'/'off' yang sesuai pada 

blok Three-Phase Fault di Simulink. 

cuplikan skrip MATLAB: 

 

% Daftar parameter yang akan diiterasi   

beban_list = [146e6,41e6; 46.7e6,18.6e6]; 

sudut_list_deg = [0, 45, 90];   

lokasi_persen = 0.1:0.1:0.9;   

ron_list = [0.001, 15];   

   

% Basis data untuk konfigurasi jenis gangguan   

jenis_gangguan_db = { ...   

    'AG',   {'on', 'off', 'off', 'on'}; ...   

    'BG',   {'off', 'on', 'off', 'on'}; ...   

'ABC',  {'on', 'on', 'on', 'off'}; ... 
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    % ... dan seterusnya untuk 11 jenis gangguan   

};   

 

c. Proses Iterasi Simulasi Menggunakan Nested Loops 

Inti dari skrip ini adalah serangkaian lima loop for yang tersarang (nested). 

Struktur ini dirancang untuk menjalankan simulasi pada setiap kemungkinan 

kombinasi dari parameter yang telah dideklarasikan. Alur kerjanya adalah 

sebagai berikut: 

 

− Loop terluar akan mengiterasi setiap lokasi gangguan.. 

− Di dalamnya, loop kedua mengiterasi setiap nilai tahanan gangguan. 

− Loop ketiga mengiterasi setiap jenis gangguan. 

− Loop keempat mengiterasi setiap tingkat pembebanan. 

− Loop kelima mengiterasi setiap sudut gangguan. 

 

Di dalam loop kelima ini skrip menggunakan fungsi set_param untuk 

mengatur semua parameter di model Simulink yang disebutkan pada bagian 

3.3.2.1. Selanjutnya simulasi akan berjalan dengan perintah sim(model_name), 

dan terakhir mengekstraksi fitur dari data mentah yang dihasilkan. 

cuplikan skrip MATLAB: 

% Struktur nested loop untuk iterasi semua kombinasi parameter   

for loc_idx = 1:length(lokasi_persen)   

    % ... (perhitungan L1_length dan L2_length)   

    for res_idx = 1:length(ron_list)   

        for ggn_idx = 1:length(ggn_jenis)   

            for beban_idx = 1:size(beban_list, 1)   

                for sudut_idx = 1:length(sudut_list_deg)   

                       

% 1. Menginject semua parameter yang ingin diubah di Simulink 

set_param(...)   

set_param(...)  
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 . . . 

 % 2. Menjalankan simulasi via sim(...)   

% 3. Melakukan ekstraksi fitur dari hasil simulasi   

                       

                end   

            end   

        end   

    end   

end 

 

d. Pemantauan Progres Simulasi 

Untuk memudahkan pengamatan selama proses simulasi berjalan, skrip 

dilengkapi dengan feedback visual yang dapat terlihat di bagian console 

MATLAB. Di bagian loop paling dalam ditambahkan fungsi disp untuk 

menampilkan status progres pada Command Window. Status ini mencakup 

informasi mengenai nomor simulasi saat ini, total simulasi yang akan 

dijalankan, serta detail kombinasi parameter yang sedang diuji. 

cuplikan skrip MATLAB: 

  

disp(['[' num2str(sim_idx) '/' num2str(total_simulasi) '] ' ...   

      'Loc ' num2str(current_lokasi*100) '%, ' ...   

      'Ron ' num2str(current_ron) ' Ohm, ' ...   

      % ... dan seterusnya untuk parameter lain   

      ]);   

 

e. Akumulasi dan Penyimpanan Data 

Sebelum loop dimulai, dua variabel kosong (dataset_fitur dan 

dataset_label) diinisialisasi untuk digunakan menampung pembacaan hasil 

simulasi. Setelah setiap simulasi dan proses ekstraksi fitur selesai, baris fitur 

yang baru dihasilkan beserta labelnya ditambahkan ke dalam kedua variabel 

tersebut. Untuk mencegah kehilangan data jika terjadi interupsi, skrip 
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melakukan penyimpanan sementara (checkpoint) menggunakan save di setiap 

akhir iterasi. Setelah semua loop selesai, data yang telah terkumpul secara 

lengkap disimpan ke dalam sebuah file .mat final. 

cuplikan skrip MATLAB: 

 

dataset_fitur = [dataset_fitur; baris_fitur_sekarang];   

dataset_label = [dataset_label; label_gangguan];   

   

% Menyimpan checkpoint sementara untuk keamanan data   

save('checkpoint_data.mat', 'dataset_fitur', 'dataset_label'); 

. . . 

% Menyimpan data akhir setelah semua simulasi selesai 

save('Dataset_Final_hasil.mat', 'dataset_fitur', 'dataset_label', 

'data_mentah'); 

 

3. Menjalankan Skrip 

Setelah Skrip selesai dibuat, buka model Simulink yang akan dijalankan kemudian 

klik tombol Run di MATLAB. Skrip akan mulai berjalan dan tunggu hingga proses selesai. 

 

Gambar 3.11 Skrip Generating Data sedang berjalan 

 

Gambar 3.12 Skrip selesai dijalankan 

Gambar 3.11 dan 2.12 menunjukkan tampilan ketika skrip sedang berjalan 

hingga selesai. Setelah proses selesai maka akan muncul beberapa item di 

workspace.  
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Gambar 3.133 Item yang muncul di Workspace 

Di antaranya yaitu dua matriks utama dengan nama dataset_fitur dan dataset_label 

yang ditunjukkan pada gambar 3.13. 

 

3.3.3 Ekstraksi Fitur dan Pembentukan Dataset 

Sebelum diproses lebih lanjut, data mentah hasil simulasi perlu diubah menjadi 

sebuah set fitur yang ringkas sekaligus informatif. Proses ini sangat krusial karena 

meskipun lengkap, data mentah tidak efisien dan tidak optimal untuk digunakan 

secara langsung dalam pelatihan model Jaringan Saraf Tiruan (JST). 

1. Analisis Data Mentah Hasil Simulasi 

Setiap eksekusi simulasi menghasilkan sebuah objek simout yang di dalamnya 

terdapat variabel mlp_input. Data sinyal mentah tersimpan dalam 

simout.mlp_input.signals.values berupa sebuah matriks numerik berjenis double 

dengan dimensi 10041 baris × 7 kolom. Setiap kolom pada matriks ini 

merepresentasikan satu sinyal pengukuran (Vabc, Iabc, dan I0), dan setiap barisnya 

merupakan seluruh pembacaan nilai sinyal tersebut pada satu titik waktu diskrit. 
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Gambar 3.14 Contoh cuplikan data mentah hasil simulasi 

Data seperti pada Gambar 3.14 tidak dapat digunakan secara langsung untuk 

pelatihan model JST karena beberapa alasan fundamental: 

a. Dimensionalitas yang Sangat Tinggi: 10041 adalah banyaknya seluruh titik 

pengukuran selama simulasi berjalan, baik sebelum, saat, maupun setelah 

terjadi gangguan. Menggunakan 10041 titik data untuk setiap sinyal sebagai 



48 
 

 
 

input akan menciptakan model dengan jumlah parameter yang terlalu besar 

dan memerlukan data dalam jumlah jutaan untuk dilatih dan sangat rentan 

terhadap overfitting. 

b. Informasi yang Berulang (Redundant): Sebagian besar titik data dalam 

sinyal (terutama sebelum dan jauh setelah gangguan) tidak mengandung 

informasi yang relevan untuk klasifikasi. 

c. Banyaknya noise dan kurang representatif: Bentuk gelombang mentah 

sangat sensitif terhadap noise. Oleh karena itu diperlukan data yang lebih 

stabil untuk merepresentasikan masing-masing bentuk gangguan secara jelas. 

2. Ekstraksi Fitur Energi Menggunakan Discrete Wavelet Transform (DWT) 

Untuk mengatasi masalah di atas, dilakukan proses ekstraksi fitur untuk 

mereduksi dimensi dan menangkap esensi dari sinyal gangguan dengan tahapan 

berikut: 

a. Mengambil Jendela Transien: Langkah pertama adalah mengisolasi bagian 

sinyal tertentu yang paling kaya akan informasi, untuk kemudian diproses 

menjadi bentuk informasi yang lebih representatif. Dalam hal ini digunakan 

sinyal saat transien gangguan terjadi. Digunakan jendela waktu (time window) 

sepanjang 0.02 detik (setara dengan satu siklus penuh pada frekuensi 50 Hz) 

yang dimulai tepat pada saat gangguan terjadi (fault_inception_time = 0.2 

detik) hingga 0.22 detik. Pemilihan jendela satu siklus ini bertujuan untuk 

menangkap seluruh fenomena transien awal sebagaimana telah dibahas pada 

bab 2 tentang dc offset dan analisis transien. 

 

b. Melakukan Transformasi Wavelet: Pada setiap sinyal di dalam jendela 

transien tersebut dilakukan transormasi wavelet menggunakan mother wavelet 

Daubechies 4 (db4). Sebagaimana telah dibahas pada Bab 2, Discrete Wavelet 

Transform (DWT) sangat efektif dalam menganalisis sinyal non-stasioner 

seperti sinyal gangguan karena kemampuannya memisahkan komponen 

frekuensi tinggi (yang merepresentasikan transien) dari frekuensi rendah. 

Proses ini diimplementasikan dalam skrip sebagai berikut: 
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 % Mengambil jendela transien dari data mentah 

start_index = find(simout.tout >= fault_inception_time, 1, 'first'); 

end_index = find(simout.tout >= (fault_inception_time + 

window_duration), 1, 'first'); 

jendela_transien = data_mentah(start_index:end_index, :); 

 

% Loop untuk setiap sinyal (Vabc, Iabc, I0) 

for sinyal_idx = 1:size(jendela_transien, 2) 

    satu_sinyal = jendela_transien(:, sinyal_idx); 

    % Menerapkan DWT dan mengambil koefisien detail (cD) 

    [~, cD] = dwt(satu_sinyal, 'db4'); 

    % Menghitung energi dari koefisien detail 

    energi = sum(cD.^2); 

    baris_fitur_dwt(sinyal_idx) = energi; 

end 

Hasil dari DWT adalah koefisien detail (cD) yang merepresentasikan komponen 

frekuensi tinggi dari sinyal. Sebagaimana telah dipaparkan pada bagian 2.2.3.3 

tentang Aplikasi DWT, nilai ini akan diubah menjadi satu nilai energi dari 

koefisien tersebut. Energi didapatkan dengan menjumlahkan kuadrat dari 

koefisien detail (sum(cD.^2)) menggunakan persamaan (2.7). Proses ini 

menghasilkan 7 fitur energi untuk setiap sampel data. 

3. Ekstraksi Fitur Tambahan Arus Urutan Nol (I0) 

Untuk memperkuat kemampuan klasifikasi model pada gangguan yang 

melibatkan tanah, ditambahkan satu fitur yang mengambil data dari pembacaan arus 

I0.  
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Gambar 3.15 Pembacaan Arus I0 pada gangguan AG, BG, ABG 

Dilakukan observasi pada bentuk gelombang arus I0 untuk berbagai macam 

jenis gangguan. Observasi ini menemukan bahwa ketika terjadi gangguan, arus 

urutan nol (I0) akan mulai mengalir pada rentang antara 0.3 hingga 0.33 detik 

seperti beberapa sampel pada Gambar 3.15. Berdasarkan temuan ini, kemudian 

diambil jendela waktu dalam rentang waktu tersebut. 

Fitur ini dihitung dengan menjumlahkan total amplitudo dari sinyal I0 dalam 

jendela waktu yang telah ditentukan. Selanjutnya, nilai total ini dikalikan dengan 

faktor 100. Penskalaan ini bertujuan untuk mengamplifikasi nilai fitur terutama 

pada kasus ketika arus I0 sangat kecil (mendekati nol). Dengan demikian, 

perbedaan nilai antara kondisi "ada arus I0" dan "tidak ada arus I0" menjadi lebih 

signifikan. Perhitungan ini diimplementasikan dalam cuplikan program berikut: 

sumi0 = sum(abs(sinyali0)) * 100; 
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4. Pembentukan Dataset Final 

 

Gambar 3.16 Ilustrasi pembentukan dataset fitur 

 

Gambar 3.177 Hasil dataset_fitur di Workspace MATLAB 
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Setiap satu kali simulasi selesai dijalankan, delapan fitur yang telah diekstraksi 

(tujuh fitur energi + satu fitur jumlah I0) disusun menjadi satu baris data baru. 

Ilustrasi pada Gambar 3.16 menunjukkan bahwa proses ini diulangi untuk seluruh 

1188 skenario simulasi gangguan atau hingga simulasi ke-n. Kemudian hasilnya 

diakumulasi menjadi sebuah matriks dataset_fitur dengan dimensi 1188 × 8. Setiap 

baris dalam matriks ini merepresentasikan satu sampel data dari setiap simulasi, dan 

setiap kolom merepresentasikan satu fitur digunakan model dalam proses pelatihan. 

Hasil akhir proses ini ditunjukkan pada Gambar 3.17. 

 

Gambar 3 18 Hasil dataset_label di Workspace MATLAB 

Secara paralel, menunjukkan untuk setiap skenario simulasi yang dijalankan, 

label kelas yang sesuai dengan jenis gangguan (misalnya, 'AG', 'BCG') juga 

ditambahkan. Akumulasi dari seluruh 1188 simulasi ini kemudian membentuk 

sebuah matriks dataset_label di workspace MATLAB dengan dimensi 1188 ×1 

seperti pada cuplikan pada Gambar 3.18. Data ini berfungsi sebagai target atau 

"kunci jawaban" yang bersesuaian langsung dengan setiap baris pada dataset_fitur 

dan akan digunakan oleh model selama proses pelatihan. 
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3.3.4 Persiapan Data untuk Pelatihan Model 

Sebelum dapat digunakan untuk melatih model, data harus disesuaikan dengan 

environment yang dibutuhkan di MATLAB. Tahap ini mencakup dua proses utama: 

encoding label target dan transposisi matriks data. 

Model Multi-Layer Perceptron tidak dapat memproses data target yang masih 

dalam format teks (misalnya, 'AG', 'BCG'). Oleh karena itu, format ini diubah 

menjadi numerik menggunakan teknik One Hot Encoding. Proses ini mengubah 

setiap label kelas menjadi sebuah vektor biner yang panjangnya sama dengan 

jumlah total kelas (11). Vektor ini akan berisi nilai 0 di semua posisi kecuali pada 

satu indeks yang merepresentasikan kelas tersebut akan bernilai 1. 

Sebagai contoh, label 'AG' akan dipetakan ke indeks 1, kemudian 

menghasilkan bentuk  One Hot [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Proses ini dieksekusi 

dengan cuplikan program berikut: 

for i = 1:jumlah_sampel 

    label = dataset_label{i}; 

    label_nomor = 0; 

    % indexing dari 1 - 11 

    switch label 

        case 'AG' 

            label_nomor = 1; 

        case 'BG' 

            label_nomor = 2; 

   (dan seterusnya hingga indeks 11) 

 if label_nomor > 0 

one_hot = zeros(1, jumlah_kelas); 

one_hot(label_nomor) = 1; 

dataset_label_encoded(i, :) = one_hot; 

Fungsi pelatihan MATLAB mensyaratkan data masukan harus dalam format 

[jumlah fitur × jumlah sampel] dan data target [jumlah kelas × jumlah sampel]. 
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Oleh karena itu dilakukan transposisi matrik sesuai dengan cuplikan program 

berikut: 

Y = dataset_label_encoded';   

X = dataset_fitur';   

Hasil dari proses ini adalah dua matriks final yang sudah sesuai dengan dimensi 

yang diperlukan untuk pelatihan model: 

− X: Matriks input dengan dimensi 8 × 1188. 

− Y: Matriks target dengan dimensi 11 × 1188. 

3.3.5 Pelatihan Model Multi-Layer Perceptron 

Setelah data yang diperlukan sudah siap dalam format yang sesuai, tahap 

selanjutnya adalah proses pelatihan dan validasi model Multi-Layer Perceptron 

(MLP). Tahapan ini mencakup pembagian dataset, konfigurasi arsitektur dan 

parameter pelatihan, serta evaluasi kinerja model yang sudah terlatih. 

 

1. Pembagian Dataset (Latih, Validasi, dan Uji) 

Sesuai dengan praktik standar pelatihan model kecerdasan buatan yang telah 

diuraikan pada Bab 2, dataset dibagi menjadi tiga bagian yaitu: 70% untuk data latih 

(Training Set), 15% untuk data validasi (Validation Set), dan 15% untuk data uji 

(Test Set). 

Proses pembagian acak ini diimplementasikan menggunakan fungsi divideParam 

sesuai dengan cuplikan program berikut: 

 

% split data 

net.divideParam.trainRatio = 0.70; 

net.divideParam.valRatio   = 0.15; 

net.divideParam.testRatio  = 0.15; 

 

2. Konfigurasi Arsitektur Jaringan dan Parameter Pelatihan 
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Jaringan Multi-Layer Perceptron dalam penelitian ini dibangun menggunakan 

perintah net = feedforwardnet(). Arsitektur yang digunakan adalah sebagai 

berikut: 

a. Input Layer: Jumlah neuron pada lapisan ini ditentukan berdasarkan 

dimensi matriks input X. Dalam penelitian ini, input layer akan memiliki 

8 neuron. 

b. Hidden Layers: Digunakan dua lapisan tersembunyi (hidden layers) pada 

jaringan ini. Lapisan pertama memiliki 22 neuron, dan lapisan tersembunyi 

kedua memiliki 10 neuron. 

c. Output Layer: Sama seperti input layer, jumlah neuron pada lapisan ini 

juga ditentukan berdasarkan dimensi matriks target Y. Dalam penelitian 

ini, digunakan 11 neuron. 

 

Adapun beberapa parameter dan algoritma untuk pelatihan model 

menggunakan pengaturan default dari Deep Learning Toolbox, sebagai berikut: 

a. Fungsi Aktivasi: Hyperbolic Tangent Sigmoid (tansig) untuk hidden layer, 

dan Linear (purelin) untuk output layer. 

b. Algoritma Pelatihan: Levenberg-Marquardt (trainlm).     

c. Fungsi Kinerja (Loss Function): Mean Squared Error (MSE) 

d. Jumlah Epoch Maksimal: 1000 epoch. 
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Gambar 3.19 Beberapa parameter, fungsi dan algoritma yang digunakan jaringan 

Beberapa parameter, fungsi dan algoritma yang digunakan jaringan ditunjukkan 

pada Gambar 3.19. 

3. Proses Pelatihan dan Validasi Model 

Selanjutnya, proses pelatihan model diinisiasi menggunakan fungsi train dari 

MATLAB. 

% Inisiasi proses pelatihan   

[net, tr] = train(net, X, Y);   
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Gambar 3.20 Proses pelatihan model sedang berjalan 

Fungsi ini menjalankan proses pelatihan secara iteratif yang berjalan epoch-by-

epoch. Dalam setiap epoch, model akan secara aktif belajar dengan menggunakan 

data latih. Error yang dihitung dari data ini digunakan oleh algoritma 

backpropagation untuk memperbarui dan mengoptimalkan seluruh bobot sinaptik 

(synaptic weight) di dalam jaringan. Proses ini bertujuan meminimalkan kesalahan 

prediksi pada data yang sedang dipelajari. Pelatihan yang sedang berjalan 

ditunjukkan pada Gambar 3.20. 

Setelah bobot diperbarui, performa model dievaluasi menggunakan data 

validasi. Error dari data ini tidak digunakan untuk mengubah bobot, melainkan 

hanya untuk memonitor kemampuan generalisasi. Jika performa pada data validasi 

tidak mengalami peningkatan atau mulai menurun, mekanisme early stopping akan 

berjalan. Hal ini bertujuan untuk mencegah overfitting dan menyimpan versi model 

dengan performa validasi terbaik. Fungsi train menghasilkan dua output penting 

yang tersimpan di workspace MATLAB: 

a. net: Objek jaringan Multi-Layer Perceptron yang sudah terlatih dengan semua 

bobot sinaptik final yang telah dioptimalkan. 
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b. tr: Sebuah training record yang berisi semua informasi historis dari proses 

pelatihan 

 

Gambar 3.21 Hasil dari Jaringan yang telah dilatih dengan bias dan weight yang optimal 

Gambar 3.22 hasil dari Jaringan yang telah dilatih dengan bias dan weight yang 

telah disesuaikan dengan target prediksi dari model. 

Selanjutnya, dilakukan tahap evaluasi menggunakan data uji yang belum 

pernah dilihat oleh model. Pertama, data uji diekstraksi dari matriks X dan Y 

menggunakan indeks yang tersimpan di tr.testInd. Kemudian, model net yang telah 

terlatih digunakan untuk membuat prediksi pada data uji tersebut. Proses ini 

diimplementasikan sesuai cuplikan program berikut: 

% Ekstraksi data uji dan pembuatan prediksi   

idxTest = tr.testInd;   

XTest = X(:, idxTest);   

YTest_onehot = Y(:, idxTest);   
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% Melatih jaringan yang sudah terlatih dengan data uji 

Y_pred_onehot = net(XTest); 

 

4. Evaluasi Kinerja Model 

 

Gambar 3.23 Contoh Confusion Matrix 

Untuk mengukur performa model secara kuantitatif digunakan akurasi, yang 

dihitung dari Confusion Matrix seperti pada Gambar 3.22. Confusion Matrix adalah 

sebuah tabel yang memvisualisasikan kinerja model dengan membandingkan antara 

kelas aktual dari data uji (True Class) dan kelas yang diprediksi oleh model 

(Predicted Class). Diagonal utama dari matriks ini menunjukkan jumlah prediksi 

yang benar, sementara elemen di luar diagonal menunjukkan kesalahan klasifikasi 

yang dilakukan oleh model. 

Adapun akurasi mengukur persentase total prediksi yang benar dari 

keseluruhan data uji. Akurasi dihitung dengan rumus pada persamaan (2.3) . 

    𝐴𝑘𝑢𝑟𝑎𝑠𝑖 =  
𝐽𝑢𝑚𝑙𝑎ℎ 𝑃𝑟𝑒𝑑𝑖𝑘𝑠𝑖 𝐵𝑒𝑛𝑎𝑟

𝑇𝑜𝑡𝑎𝑙 𝐽𝑢𝑚𝑙𝑎ℎ 𝐷𝑎𝑡𝑎 𝑈𝑗𝑖
× 100% 

Akurasi ini akan menjadi tolok ukur utama untuk menentukan keberhasilan model 

dalam mengklasifikasikan jenis gangguan secara tepat. Proses evaluasi kinerja 

model ini diimplementasikan menggunakan cuplikan program berikut: 
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% Hitung akurasi 

correct_predictions = sum(Y_pred == YTest_labels);  

total_samples = numel(YTest_labels); 

accuracy = (correct_predictions / total_samples) * 100; 

% Plot confusion matrix 

confusionchart(YTest_cat_from_labels, Y_pred_cat); 
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3.4 Diagram Alir Penelitian 

Penelitian dilaksanakan dalam beberapa tahapan yang ditunjukkan pada tiga 

diagram alir berikut: 

a. Pembuatan Simulasi dan Pembentukan Dataset Awal 

 

Gambar 3.24 Diagram alir pembentukan dataset mentah 

Tahap ini menghasilkan outuput berupa dataset awal yang akan diproses 

lebih lanjut. 

 

Commented [ik5]: Menambahkan narasi untuk flow chart 
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b. Ekstraksi Fitur dan Pemrosesan Data 

 

Gambar 3.24 Diagram alir ekstraksi fitur 

Data mentah dari tahap sebelumnya diproses menggunakan energi wavelet untuk 

menghasilkan output akhir berupa dua buah dataset final 
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c. Pelatihan, Evaluasi, dan Optimasi Model 

 

Gambar 3.25 Diagram alir pelatihan model MLP 

Pada tahap ini, dataset final dari proses sebelumnya digunakan lebih lanjut untuk melatih 

model Multi-Layer Perceptron hingga menghasilkan model yang optimal. 
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BAB IV 

HASIL DAN ANALISIS 

 

4.1 Hasil Simulasi 

Pada sub-bab ini, disajikan hasil dari beberapa sampel simulasi sistem tenaga 

yang telah dirancang sesuai dengan metodologi pada Bab III. Hasil yang 

ditampilkan adalah bentuk gelombang sinyal mentah dari tegangan (Vabc), arus 

(Iabc), dan arus residual (I0) untuk berbagai skenario.  

 

Gambar 4.1 Panduan representasi warna untuk gelombang tiga fasa ABC 

Untuk mempermudah identifikasi visual pada seluruh gambar sinyal, Fasa A 

direpresentasikan oleh warna kuning, Fasa B oleh warna biru, dan Fasa C oleh 

warna oranye sebagaimana ditunjukkan pada Gambar 4.1. 

4.1.1 Sinyal Kondisi Sistem Normal 

 

Gambar 4.2 Sinyal Kondisi Sistem Normal (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus 

I0 
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Analisis sinyal pada Gambar 4.2 menunjukkan sistem yang beroperasi dalam 

kondisi normal dan seimbang. Sinyal tegangan dan arus tiga fasa menunjukkan 

bentuk gelombang sinusoidal yang sempurna, dengan magnitudo yang identik dan 

pergeseran fasa sebesar 120 derajat antara satu sama lain. Karakteristik dari kondisi 

sistem normal ini divalidasi oleh sinyal arus I0 yang bernilai nol. Hal 

inimengkonfirmasi bahwa tidak ada ketidakseimbangan atau jalur arus bocor ke 

tanah pada sistem. 

4.1.2 Sinyal Gangguan Satu Fasa ke Tanah 

a. Gangguan Fasa A ke Tanah (A-G) 

 

Gambar 4.3 Sinyal Gangguan Fasa A-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus I0 
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Analisis sinyal tegangan pada Gambar 4.3 menunjukkan sistem yang awalnya 

beroperasi dalam kondisi seimbang dengan ketiga fasa memiliki magnitudo yang 

identik. Saat gangguan terjadi, terjadi penurunan tegangan yang sangat drastis pada 

Fasa A. Fenomena ini merupakan karakteristik dari hubung singkat yaitu impedansi 

yang sangat rendah pada titik gangguan menyebabkan tegangan pada fasa tersebut 

jatuh. Sementara itu, fasa B dan C tetap mengalami distorsi sebagai akibat dari 

ketidakseimbangan yang terjadi pada sistem. 

Sejalan dengan jatuhnya tegangan, sinyal arus pada fasa A menunjukkan 

lonjakan magnitudo yang sangat besar dan disertai dengan distorsi transien. 

Fenomena ketidakseimbangan ini juga divalidasi oleh adanya aliran arus I0. Hal ini 

mengkonfirmasi bahwa gangguan yang terjadi bersifat asimetris dan memiliki jalur 

hubung singkat ke tanah. 

 

b. Gangguan Fasa B ke Tanah (B-G) 
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Gambar 4.4 Sinyal Gangguan Fasa B-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus I0 

 

Analisis sinyal tegangan pada Gambar 4.4 menunjukkan sistem yang awalnya 

beroperasi dalam kondisi normal dan seimbang. Ketika gangguan terjadi, sistem 

mengalami jatuh tegangan (voltage sag) yang signifikan pada Fasa B. Fenomena 

ini merupakan karakteristik dari hubung singkat yaitu impedansi yang rendah pada 

titik gangguan menyebabkan tegangan pada fasa tersebut jatuh. Sebagai 

dampaknya, fasa A dan C  juga ikut mengalami distorsi akibat ketidakseimbangan 

sistem. 

Bersamaan dengan penurunan tegangan tersebut, sinyal arus pada Fasa B 

mengalami lonjakan magnitudo yang masif dan disertai distorsi transien. Validasi 

bahwa gangguan ini melibatkan tanah diperkuat oleh munculnya aliran arus I0 yang 
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sebelumnya bernilai nol. Kombinasi fenomena ini mengkonfirmasi bahwa 

gangguan yang terjadi bersifat asimetris dan memiliki jalur hubung singkat ke 

tanah. 

 

c. Gangguan Fasa C ke Tanah (C-G) 

 

Gambar 4.5 Sinyal Gangguan Fasa B-C (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus I0 

Analisis sinyal tegangan pada Gambar 4.5 menunjukkan sistem yang pada 

awalnya berjalan seimbang. Saat gangguan terjadi, Fasa C secara spesifik 

mengalami jatuh tegangan yang drastis. Penurunan tegangan ini adalah ciri khas 

dari gangguan hubung singkat, di mana impedansi rendah pada titik gangguan 

menyebabkan tegangan pada fasa tersebut turun secara signifikan. Sementara itu, 

ketidakseimbangan ini juga menyebabkan distorsi pada fasa A dan B. 
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Sebagai konsekuensinya, sinyal arus pada Fasa C menunjukkan lonjakan 

magnitudo yang sangat besar disertai distorsi transien. Fenomena 

ketidakseimbangan ini divalidasi oleh kemunculan arus I0, yang secara definitif 

mengkonfirmasi bahwa gangguan ini bersifat asimetris dan memiliki jalur hubung 

singkat ke tanah. 

 

4.1.3 Sinyal Gangguan Dua Fasa ke Tanah 

a. Gangguan Fasa AB ke Tanah (A-B-G) 

 

Gambar 4.6 Sinyal Gangguan Fasa A-B-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus 

I0 

 

Analisis sinyal tegangan pada Gambar 4.6 menunjukkan sistem yang pada 

awalnya beroperasi dalam kondisi seimbang. Ketika gangguan terjadi, Fasa A dan 
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Fasa B secara bersamaan mengalami penurunan tegangan yang sangat drastis. 

Fenomena ini merupakan karakteristik hubung singkat, di mana impedansi yang 

sangat rendah pada titik gangguan menyebabkan tegangan pada kedua fasa tersebut 

jatuh. Sementara itu, Fasa C mengalami distorsi akibat ketidakseimbangan yang 

terjadi pada sistem. 

Sejalan dengan jatuhnya tegangan, sinyal arus pada Fasa A dan Fasa B 

menunjukkan lonjakan magnitudo yang sangat besar, disertai dengan distorsi 

transien. Adanya aliran arus I0 yang signifikan juga memvalidasi bahwa gangguan 

yang terjadi melibatkan hubung singkat ke tanah. 

b. Gangguan Fasa AC ke Tanah (A-C-G) 

 

Gambar 4.7 Sinyal Gangguan Fasa A-C-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus 

I0 
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Analisis sinyal tegangan pada Gambar 4.7 menunjukkan sistem yang pada 

awalnya beroperasi dalam kondisi seimbang. Ketika gangguan terjadi, Fasa A dan 

Fasa C secara bersamaan mengalami penurunan tegangan yang sangat drastis. 

Fenomena ini merupakan karakteristik hubung singkat, di mana impedansi yang 

sangat rendah pada titik gangguan menyebabkan tegangan pada kedua fasa tersebut 

jatuh. Sementara itu, Fasa B mengalami distorsi akibat ketidakseimbangan yang 

terjadi pada sistem. 

Sejalan dengan jatuhnya tegangan, sinyal arus pada Fasa A dan Fasa C 

menunjukkan lonjakan magnitudo yang sangat besar, disertai dengan distorsi 

transien. Adanya aliran arus I0 yang signifikan juga memvalidasi bahwa gangguan 

yang terjadi melibatkan hubung singkat ke tanah. 
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c. Gangguan Fasa BC ke Tanah (B-C-G) 

 

Gambar 4.8 Sinyal Gangguan Fasa B-C-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus 

I0 

 

Analisis sinyal tegangan pada Gambar 4.8 menunjukkan sistem yang pada 

awalnya beroperasi dalam kondisi seimbang. Ketika gangguan terjadi, Fasa B dan 

Fasa C secara bersamaan mengalami penurunan tegangan yang sangat drastis. 

Fenomena ini merupakan karakteristik hubung singkat, di mana impedansi yang 

sangat rendah pada titik gangguan menyebabkan tegangan pada kedua fasa tersebut 

jatuh. Selain itu, Fasa A yang tidak langsung terhubung dengan gangguan juga 

mengalami distorsi akibat ketidakseimbangan yang terjadi pada sistem. 

Sejalan dengan jatuhnya tegangan, sinyal arus pada Fasa A dan Fasa B 

menunjukkan lonjakan magnitudo yang sangat besar, disertai dengan distorsi 
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transien. Adanya aliran arus I0 yang signifikan juga memvalidasi bahwa gangguan 

yang terjadi melibatkan hubung singkat ke tanah. 

 

4.1.4 Sinyal Gangguan Tiga Fasa ke Tanah (A-B-C-G) 

 

Gambar 4.9 Sinyal Gangguan Fasa A-B-C-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal 

Arus I0 

 

Analisis sinyal tegangan pada Gambar 4.9 menunjukkan sistem yang awalnya 

beroperasi dalam kondisi seimbang. Saat gangguan terjadi, ketiga fasa (A, B, dan 

C) secara serentak mengalami penurunan magnitudo tegangan yang signifikan. 

Fenomena ini merupakan ciri khas dari gangguan simetris, di mana hubung singkat 



74 
 

 
 

terjadi pada seluruh fasa secara bersamaan sehingga sistem yang terganggu masih 

berada pada kondisi yang relatif seimbang. 

Sejalan dengan penurunan tegangan, sinyal arus pada ketiga fasa menunjukkan 

lonjakan magnitudo yang sangat besar. Pembeda utama dari gangguan ini adalah 

adanya aliran arus I0 residual meski magnitudonya tidak sebesar gangguan 

asimetris lainnya. Hal ini menunjukkan bahwa fenomena yang terjadi adalah 

gangguan tiga fasa ke tanah. 

 

4.1.5 Sinyal Gangguan Fasa ke Fasa 

a. Gangguan Fasa A-B 

 

Gambar 4.10 Sinyal Gangguan Fasa A-B (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus I0 
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Analisis sinyal tegangan pada Gambar 4.10 menunjukkan sistem yang pada 

awalnya beroperasi dalam kondisi seimbang. Saat gangguan terjadi, Fasa A dan 

Fasa B mengalami penurunan tegangan yang signifikan. Sementara itu, Fasa C yang 

tidak terlibat langsung dalam gangguan, cenderung mempertahankan magnitudo 

tegangannya meskipun turut mengalami distorsi akibat ketidakseimbangan sistem. 

Sejalan dengan perubahan tegangan, sinyal arus pada Fasa A dan Fasa B 

menunjukkan lonjakan magnitudo yang sangat besar. Karakteristik paling penting 

dari gangguan ini adalah tidak adanya aliran arus I0 yang mengkonfirmasi bahwa 

gangguan terjadi karena hubungan antar fasa dan tidak memiliki jalur langsung ke 

tanah. 

b. Gangguan Fasa A-C 

 

Gambar 4.11 Sinyal Gangguan Fasa A-C (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus I0 
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Analisis sinyal tegangan pada Gambar 4.11 menunjukkan sistem yang pada 

awalnya beroperasi dalam kondisi seimbang. Saat gangguan terjadi, Fasa A dan 

Fasa C mengalami penurunan tegangan yang signifikan. Sementara itu, Fasa B yang 

tidak terlibat langsung dalam gangguan, cenderung mempertahankan magnitudo 

tegangannya meskipun turut mengalami distorsi akibat ketidakseimbangan sistem. 

Sejalan dengan perubahan tegangan, sinyal arus pada Fasa A dan Fasa C 

menunjukkan lonjakan magnitudo yang sangat besar. Karakteristik paling penting 

dari gangguan ini adalah tidak adanya aliran arus I0 yang mengkonfirmasi bahwa 

gangguan terjadi karena hubungan antar fasa dan tidak memiliki jalur langsung ke 

tanah. 
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c. Gangguan Fasa B-C 

 

Gambar 4.12 Sinyal Gangguan Fasa B-C (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus I0 

 

Analisis sinyal tegangan pada Gambar 4.12 menunjukkan sistem yang pada 

awalnya beroperasi dalam kondisi seimbang. Saat gangguan terjadi, Fasa B dan 

Fasa C mengalami penurunan tegangan yang signifikan. Sementara itu, Fasa A 

yang tidak terlibat langsung dalam gangguan, cenderung mempertahankan 

magnitudo tegangannya meskipun turut mengalami distorsi akibat 

ketidakseimbangan sistem. 

Sejalan dengan perubahan tegangan, sinyal arus pada Fasa B dan Fasa C 

menunjukkan lonjakan magnitudo yang sangat besar. Karakteristik paling penting 

dari gangguan ini adalah tidak adanya aliran arus I0 yang mengkonfirmasi bahwa 
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gangguan terjadi karena hubungan antar fasa dan tidak memiliki jalur langsung ke 

tanah. 

 

d. Gangguan Fasa A-B-C 

 

Gambar 4.13 Sinyal Gangguan Fasa A-B-C (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus 

I0 

Analisis sinyal tegangan pada Gambar menunjukkan sistem yang awalnya 

beroperasi dalam kondisi seimbang. Saat gangguan terjadi, ketiga fasa (A, B, dan 

C) secara serentak mengalami penurunan magnitudo tegangan yang signifikan. 

Meskipun terjadi penurunan, sistem tetap berada dalam kondisi simetris selama 

gangguan, yang merupakan ciri khas dari gangguan tiga fasa. 
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Sejalan dengan penurunan tegangan, sinyal arus pada ketiga fasa menunjukkan 

lonjakan magnitudo yang sangat besar. Karakteristik utama pada gangguan ini 

adalah tidak adanya aliran arus I0 yang muncul. Hal ini secara definitif 

mengkonfirmasi bahwa gangguan yang terjadi bersifat simetris dan hanya 

melibatkan ketiga fasa tanpa hubungan langsung ke tanah. 

 

4.2 Hasil Dataset dan Pemrosesan Data 

Pada sub-bab sebelumnya telah ditampilkan hasil simulasi dalam bentuk 

sinyal visual. Bagian ini akan menyajikan hasil dari pemrosesan sinyal tersebut ke 

dalam bentuk data numerik di workspace MATLAB. Data numerik inilah yang 

menjadi representasi aktual dari setiap skenario gangguan dan akan digunakan 

secara langsung oleh model Multi-Layer Perceptron pada tugas akhir ini untuk 

proses pelatihan dan klasifikasi.  

4.2.1 Tujuh Fitur Energi Hasil Dekomposisi DWT 

Sesuai metode pada bagian 3.3.3.2 tentang ekstraksi fitur menggunakan 

DWT, tujuh sinyal (Iabc, Vabc, I0) diproses untuk menghasilkan nilai yang lebih 

sederhana dan representatif.  

Hasil tujuh fitur energi tersebut ditampilkan dalam gambar berikut: 
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Gambar 4.14 Hasil tujuh fitur energi 

 

Kolom 1-7 pada Gambar 4.14 secara berurutan menunjukkan energi dari sinyal Vabc 

(kolom 1-3), Iabc (kolom 4-6), dan I0 (kolom 7). 

 

4.2.2 Satu Fitur Arus Tambahan Hasil dari Magnitudo Total I0 



81 
 

 
 

 

Gambar 4.15 Hasil satu fitur tambahan total magnitudo I0 

Sesuai metode pada bagian 3.3.3.3, selain diambil energi DWT nya, sinyal I0 

juga dihitung nilai magnitudo totalnya agar menjadi fitur yang lebih diskriminatif. 

Hasil satu fitur tambahan tersebut ditampilkan pada gambar 4.15. 

 

4.2.3 Dataset Fitur dan Dataset Label Final 

Hasil dari tujuh fitur pada 4.2.1 dan satu fitur pada bagian 4.2.2 digabungkan 

menjadi satu Dataset Fitur Final yang terdiri dari total delapan fitur yang diwakili 

oleh masing-masing kolom seperti pada Gambar 4.16. 
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Gambar 4.16 Dataset Fitur Final 

 

Di sisi lain, sebagaimana proses pada bagian 3.3.3.4 dan 3.3.4, label jenis gangguan 

yang sudah dikonversi kedalam format one-hot encoding ditampilkan pada Gambar 

4.17. 
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Gambar 4.17 Dataset Label Final 

Dari kedua gambar tersebut, diketahui bahwa dataset_fitur memiliki dimensi 

1188x8, sementara dataset_label_encoded memiliki dimensi 1188x11. Jumlah 

baris menunjukkan banyaknya sampel sementara jumlah kolom merepresentasikan 

banyaknya fitur yang digunakan (8 fitur), dan jumlah kelas gangguan (11 

gangguan). 

 

4.2.4 Matriks Input (X) dan Target (Y) untuk Pelatihan 
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Sesuai metode pada bagian 3.3.4 , Matriks Input (X) dan Target/Output (Y) 

yang telah disesuaikan dengan kebutuhan MATLAB ditunjukkan oleh Gambar 4.18. 

 

Gambar 4.18 (a) Hasil Matriks Input (X); (b) Matriks Target (Y) 

 

Hasil akhir data yang telah disesuaikan yaitu matriks input (X) memiliki dimensi 

8x1188 dan matriks target (Y) memiliki dimensi 11x1188 
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4.3 Kinerja Model dan Optimasi 

Pada sub-bab ini, akan disajikan secara bertahap hasil dari model dasar, analisis 

kelemahannya, hingga serangkaian proses optimasi yang dilakukan untuk 

meningkatkan akurasi dan kestabilan kinerja model dalam melakukan klasifikasi. 

Sebagaimana langkah pada bagian 3.3.4 tentang penyesuaian data untuk 

pelatihan, setiap jenis gangguan direpresentasikan oleh label numerik. Konversi 

dari label jenis gangguan yang digunakan di seluruh sub-bab ini adalah sebagai 

berikut: 

Kelas 1: AG 

Kelas 2: BG 

Kelas 3: CG 

Kelas 4: AB 

Kelas 5: BC 

Kelas 6: CA 

Kelas 7: ABG 

Kelas 8: BCG 

Kelas 9: CAG 

Kelas 10: ABC 

Kelas 11: ABCG 

4.3.1 Model Dasar  

Model dasar yang dievaluasi pada percobaan awal menggunakan arsitektur 

Multi-Layer Perceptron (MLP) yang terdiri dari: 

− Sebuah input layer dengan 7 neuron, sesuai dengan jumlah fitur energi. 

− Hidden layer pertama dengan 20 neuron. 

− Hidden layer kedua dengan 10 neuron. 

− Sebuah output layer dengan 11 neuron, sesuai dengan jumlah kelas 

gangguan yang akan diklasifikasi. 

 

Model ini dilatih dan diuji menggunakan dataset yang terdiri dari 198 

sampel data. Dataset ini merupakan kombinasi dari 11 jenis gangguan yang 

disimulasikan pada 2 nilai resistansi, dan 9 lokasi berbeda. 
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Sesuai dengan metodologi yang dijelaskan pada Bab 3 bagian 3.3.5.3 

tentang Proses Pelatihan Model, setiap kali sesi latihan dijalankan menggunakan 

perintah train, maka set data latih termasuk data uji akan diacak menggunakan 

fungsi dividerand. Untuk mengevaluasi stabilitas dan konsistensi kinerja model, 

dilakukan serangkaian pengujian berulang sebanyak dua puluh kali Run sesi 

latihan. Hasil akurasi dari setiap pengujian disajikan sebagai berikut: 

Tabel 4.1 Hasil akurasi dua puluh kali run model dasar 

Run ke- Akurasi (%) 

1 73.33 

2 73.33 

3 76.67 

4 76.67 

5 70 

6 73.33 

7 76.67 

8 86.67 

9 80 

10 76.67 

11 66.67 

12 76.67 

13 70 

14 76.67 

15 73.33 

16 63.33 

17 76.67 

18 70 

19 83.33 

20 76 
.67 
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Dengan persamaan (2.4) dan (2.5) didapatkan, 

𝑥 ̄ =
∑𝑛

𝑖=1 𝑥𝑖

𝑛
 

𝑥 ̄ =
∑𝑛

𝑖=1 𝑥𝑖

20
 

𝑥 ̄ = 74,83 

dan 

𝑠 =  √
∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥 ̄)2

𝑛 − 1
 

𝑠 =  √
∑𝑛

𝑖=1 (𝑥𝑖 − 74,83)2

20 − 1
 

𝑠 =  5,35 

Akurasi pada Tabel 4.1 menghasilkan nilai rata-rata sebesar 74,83 dengan standar 

deviasi ±5,35%, menunjukkan bahwa sebaran data cukup stabil dan konsisten. 

 

Gambar 4.19 Sampel Confusion Matrix untuk akurasi 66.67% 
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Gambar 4.20 Sampel Confusion Matrix untuk akurasi 70% 

 

Serangkaian hasil pengujian yang dilakukan juga menunjukkan informasi 

secara umum mengenai kinerja model dalam melakukan klasifikasi. Gambar 4.19 

dan Gambar 4.20 merupakan sampel confusion matrix ketika model mencapai 

akurasi 66.67% dan 70%. Analisis menunjukkan pola kesalahan yang 

terkonsentrasi pada tiga kelas. Kelemahan utama terletak pada Kelas 5, yang 

seringkali salah diklasifikasikan sebagai Kelas 10 atau 11. Kesalahan ini bersifat 

dua arah, di mana Kelas 10 dan 11 juga saling tertukar satu sama lain atau terkadang 

diprediksi sebagai Kelas 5. Kelemahan fundamental dalam membedakan beberapa 

kelas inilah yang menjadi target utama perbaikan pada tahap optimasi selanjutnya. 

 

4.3.2 Optimasi Data Set 

Berdasarkan analisis pada model dasar, hipotesis yang diajukan adalah bahwa 

ketidakstabilan dan kesalahan klasifikasi terjadi disebabkan oleh jumlah data latih 

yang tidak memadai. Untuk itu dilakukan penambahan dataset yang lebih besar 
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sementara arsitektur model 7-20-10-11 tetap dipertahankan konstan. Langkah ini 

bertujuan untuk mengisolasi dan mengukur secara langsung dampak dari 

peningkatan volume data terhadap kemampuan model dalam mempelajari pola 

jenis gangguan dan meningkatkan akurasi. 

 Dataset yang digunakan terdiri dari 1188 sampel data. Penambahan sampel 

ini merupakan kombinasi dari 11 jenis gangguan yang disimulasikan pada 2 nilai 

resistansi, 9 lokasi, 2 kondisi pembebanan dan 3 sudut fasa yang berbeda. 

Seperti proses sebelumnya, dilakukan dua puluh kali Run sesi latihan untuk 

mendapatkan stabilitas dan konsistensi dari kinerja model. Hasil akurasi dari setiap 

pengujian disajikan sebagai berikut: 

Tabel 4.2 Hasil akurasi dua puluh kali run model setelah optimasi data 

Run ke- Akurasi (%) 

1 91.57 

2 88.2 

3 91.01 

4 88.2 

5 88.76 

6 90.45 

7 90.45 

8 89.89 

9 90.45 

10 88.76 

11 87.64 

12 88.2 

13 89.33 

14 89.89 

15 88.76 

16 89.89 

17 86.52 

18 88.2 
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19 88.2 

20 89.89 

 

Dengan persamaan (2.4) dan (2.5) didapatkan, 

𝑥 ̄ =
∑𝑛

𝑖=1 𝑥𝑖

𝑛
 

𝑥 ̄ =
∑𝑛

𝑖=1 𝑥𝑖

20
 

𝑥 ̄ = 89,21 

dan 

𝑠 =  √
∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥 ̄)2

𝑛 − 1
 

𝑠 =  √
∑𝑛

𝑖=1 (𝑥𝑖 − 89,21)2

20 − 1
 

𝑠 =  1,27 

Akurasi pada Tabel 4.2 menghasilkan nilai rata-rata sebesar 89,21 dengan standar 

deviasi ±1,27%, menunjukkan bahwa sebaran data cukup stabil dan konsisten. 

 

Gambar 4.21 Sampel Confusion Matrix untuk akurasi 88.76 % 



91 
 

 
 

 

 

Gambar 4.22 Sampel Confusion Matrix untuk akurasi 88.2 % 

Penambahan dataset menjadi 1188 sampel memberikan peningkatan kinerja 

yang signifikan, dengan akurasi model melonjak ke rentang 88-91%. Sampel 

confusion matrix representatif pada Gambar 4.21 dan Gambar 4.22 menunjukkan 

bahwa performa klasifikasi untuk Kelas 1 hingga 9 sudah sangat solid dengan 

tingkat kesalahan yang minimal. Kemajuan signifikan terlihat pada kemampuan 

klasifikasi untuk gangguan Kelas 5, di mana model tidak lagi menunjukkan 

kebingungan dengan Kelas 10 dan 11. Namun, sumber kesalahan utama kini 

terkonsentrasi dan terisolasi pada kebingungan dua arah antara Kelas 10 dan Kelas 

11. 

Peningkatan performa ini membuktikan bahwa penambahan data berhasil 

menyederhanakan masalah dari sebelumnya kebingungan antara  tiga kelas (5, 10, 

11) menjadi masalah yang lebih spesifik. Meskipun demikian, kelemahan model 

untuk membedakan antara Kelas 10 dan 11 belum terselesaikan dan akan menjadi 

target utama untuk optimasi selanjutnya. 

 

4.3.3 Analisis Kebingungan pada Gangguan Simetris (Kelas 10 dan 11) 
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Untuk memahami akar penyebab kebingungan dua arah antara Kelas 10 

(gangguan tiga fasa, ABC) dan Kelas 11 (gangguan tiga fasa ke tanah, ABCG), 

dilakukan analisis mendalam terhadap sinyal Vabc, Iabc, dan I0 untuk kedua tipe 

gangguan tersebut. Dilakukan perhitungan nilai rata-rata fitur dari matriks 

dataset_fitur untuk seluruh sampel gangguan ABC dan ABCG.  

 

 

Gambar 4.23 Grafik perbandingan rata-rata energi Iabc untuk gangguan ABC dan ABCG 
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Gambar 4.24 Grafik perbandingan rata-rata energi Vabc untuk gangguan ABC dan ABCG 

 

Gambar 4.25 Grafik perbandingan rata-rata energi I0 untuk gangguan ABC dan ABCG 

Gambar 4.24 dan 4.25 menunjukkan bahwa karakteristik sinyal dari gangguan 

ABC dan ABCG memiliki kemiripan yang sangat tinggi, baik dalam pembacaan 

arus maupun tegangan. Satu-satunya pembeda yang teramati pada Gambar 4.25 
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adalah munculnya arus residual I0 pada gangguan ABCG meskipun besarnya tidak 

signifikan.  

Fenomena ini sejalan dengan teori analisis gangguan sistem tenaga, di mana 

kedua jenis gangguan ini tergolong sebagai gangguan simetris. Kondisi simulasi 

yang ideal menyebabkan nilai fitur yang dihasilkan untuk kedua gangguan menjadi 

sangat mirip. Akibatnya, model mengalami kesulitan untuk menemukan pola 

pembeda yang jelas hanya dari fitur energi yang ada. 

Berdasarkan temuan tersebut, diajukan sebuah hipotesis penambahan fitur baru 

untuk mengamplifikasi perbedaan minor pada sinyal I0. Fitur baru ini dihitung 

menggunakan formula sum(abs(I0)) * 100. Perhitungan ini dilakukan pada jendela 

waktu spesifik di mana sinyal I0 terdeteksi muncul berdasarkan observasi langsung 

ketika gangguan ABCG terjadi. Tujuan dari fitur ini adalah untuk mengubah 

perbedaan magnitudo energi I0 antara Kelas 10 dan Kelas 11 yang sebelumnya 

tidak signifikan secara numerik menjadi sebuah fitur yang lebih diskriminatif bagi 

model. 

Total 1188 set data yang digunakan tetap dipertahankan. Kemudian hidden 

layer pertama sedikit diperlebar menjadi 22 neuron untuk mengakomodir 

penambahan fitur di layer input.  Pemilihan arsitektur tersebut didasarkan 

serangkaian proses trial and error berikut: 

Tabel 4.3 Percobaan arsitektur hidden layer 

No Arsitektur Hidden 

Layer 

Total Neuron Akurasi Rata-

Rata 

1 [20 10] 30 94,8% 

2 [22 10] 32 96,18% 

3 [22 11] 33 91,99% 

4 [30 15] 45 96,07% 

5 [31 14] 45 95,63% 

6 [40 20] 60 95,67% 

 

Arsitektur lengkap model terbaru setelah penambahan fitur ke-delapan adalah 

sebagai berikut: 

− Sebuah input layer dengan 8 neuron, sesuai dengan jumlah fitur energi + 

satu fitur sum I0. 
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− Hidden layer pertama dengan 22 neuron. 

− Hidden layer kedua dengan 10 neuron. 

− Sebuah output layer dengan 11 neuron, sesuai dengan jumlah kelas 

gangguan yang akan diklasifikasi. 

Setelah dilakukan dua puluh kali Run perulangan sesi latihan, model menunjukkan 

akurasi seperti pada tabel berikut: 

Tabel 4.4 Hasil akurasi dua puluh kali run model setelah optimasi data 

Run ke- Akurasi (%) 

1 96,63 

2 96,67 

3 96,63 

4 97,17 

5 97,19 

6 95,51 

7 96,63 

8 96,63 

9 97,19 

10 94,94 

11 96,63 

12 96,07 

13 96,07 

14 95,51 

15 93,82 

16 94,38 

17 95,51 

18 98,31 

19 95,51 

20 96,63 

Dengan persamaan (2.4) dan (2.5) didapatkan, 
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𝑥 ̄ =
∑𝑛

𝑖=1 𝑥𝑖

𝑛
 

𝑥 ̄ =
∑𝑛

𝑖=1 𝑥𝑖

20
 

𝑥 ̄ = 96,18 

dan 

𝑠 =  √
∑𝑛

𝑖=1 (𝑥𝑖 − 𝑥 ̄)2

𝑛 − 1
 

𝑠 =  √
∑𝑛

𝑖=1 (𝑥𝑖 − 72.5̄)2

20 − 1
 

𝑠 =  1,05 

 

Setelah dilakukan optimasi fitur, Tabel 4.4 menunjukkan sebaran data konsisten 

dengan akurasi rata-rata 96,18% dan standar deviasi 1,05%. 

 

4.3.4 Rekapitulasi Optimasi Kinerja Model 

Seluruh proses optimasi yang telah diuraikan pada sub-bab sebelumnya 

dirangkum dalam tabel berikut: 

Tabel 4.5 Rekapitulasi Optimasi Kinerja Model 

No Analisis Optimasi yang 

Dilakukan 

Hasil Kinerja Keterangan 

Akurasi 

(%) 

Standar 

Deviasi 

(%) 

1 - - 74,83 5,35 Model dasar 

2 Indikasi underfitting 

karena keterbatasan 

data latih (kekurangan 

data) 

Penambahan data 

dari 198 sampel 

menjadi 1188 

sampel 

89,21 1,27 Peningkatan 

akurasi ±14,38% 

3 Model mengalami 

peningkatan performa 

namun lemah dalam 

membedakan kelas 10 

dan kelas 11 

Penambahan fitur 

arus I0 dan 

memperlebar 

hidden layer 1 

menjadi 22 

neuron 

96,18 1,05 Peningkatan 

akurasi ±6,97% 

dan kebingungan 

antara kelas 10 

dan 11 

terselesaikan 
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BAB V 

PENUTUP 

 

5.1 Kesimpulan 

1. Model simulasi saluran transmisi tegangan tinggi 150 kV yang dibangun 

mampu membangkitkan 11 jenis gangguan dengan karakteristik sinyal arus 

dan tegangan yang konsisten dengan prinsip-prinsip dasar analisis gangguan 

sistem tenaga. 

2. Delapan fitur esensial, yang terdiri dari tujuh fitur energi DWT dan satu fitur 

magnitudo I0, telah berhasil diekstraksi dari sinyal mentah untuk membentuk 

1188 sampel data yang merepresentasikan karakteristik gangguan secara 

numerik. 

3. Arsitektur Multi-Layer Perceptron final yang digunakan dalam penelitian ini 

memiliki konfigurasi: 8 neuron input, 22 neuron pada hidden layer pertama, 10 

pada hidden layer kedua, dan 11 neuron output. Konfigurasi ini didapatkan dari 

hasil serangkaian proses optimasi dan perbaikan. 

4. Model Multi-Layer Perceptron akhir menunjukkan kemampuan klasifikasi 

dengan akurasi rata-rata sebesar 96,18% dan simpangan baku yang rendah 

(1,05%). Model final ini mampu mengklasifikasikan seluruh 11 jenis gangguan 

tanpa menunjukkan adanya kelemahan sistematis yang berulang. 

5.2 Saran 

1. Penelitian selanjutnya dapat mengembangkan model simulasi untuk mencakup 

dinamika sistem yang lebih luas, seperti efek kapasitansi atau anomali jaringan 

lainnya sehingga tidak terbatas pada satu ruas transmisi spesifik, 

2. Memperkenalkan model pada data yang mengandung sedikit noise untuk 

merepresentasikan anomali sistem. Tujuannya agar model yang dihasilkan 

tidak bergantung pada data simulasi yang terlalu ideal dan bersih. 

3. Melakukan validasi model menggunakan data rekaman gangguan riil untuk 

menguji kinerjanya dalam kondisi operasional yang sebenarnya. 

Commented [ik6]: Menyederhanakan kesimpulan 
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4. Melakukan pengujian dengan dataset dari sistem transmisi yang benar-benar 

independen dan terpisah untuk mengukur konsistensi dan generalisasi model 

secara lebih objektif. 

5. Memperluas skenario simulasi untuk mencakup variasi gangguan yang lebih 

kompleks dan lebih menekan batas kemampuan model. 

6. Penelitian lanjutan dapat melakukan studi dalam menentukan menentukan 

jumlah data minimal atau optimal secara lebih sistematis, tidak hanya 

berdasarkan pendekatan trial and error. 

7. Menggunakan metode ekstraksi fitur lain yang dapat menangkap informasi 

lebih luas dari sinyal mentah untuk mengurangi risiko kehilangan informasi 

yang berpotensi relevan bagi model. 

8. Mengeksplorasi arsitektur lain yang mampu memproses data secara end-to-end 

untuk mengurangi ketergantungan pada rekayasa fitur manual. 

9. Menggunakan metode pencarian hiperparameter yang lebih sistematis untuk 

menemukan konfigurasi arsitektur yang paling optimal secara terukur. 

10. Mengimplementasikan Explainable AI (XAI) untuk mengetahui secara aktual 

proses pengambilan keputusan internal yang dilakukan model. Teknik ini 

memungkinkan analisis dan pemahaman yang lebih mendalam terhadap 

kemampuan dan kekurangan model.
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