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ABSTRAK

Saluran transmisi tegangan tinggi tidak lepas akan potensi terjadinya berbagai jenis
gangguan. Proses mengenali karakteristik gangguan tersebut seringkali masih memerlukan
interpretasi manual yang membutuhkan waktu lama. Guna meningkatkan efisiensi dalam
proses pemulihan sistem serta mempercepat waktu yang dibutuhkan untuk mengetahui
jenis gangguan yang terjadi, maka pada tugas akhir ini diusulkan implementasi dari
jaringan Multi-Layer Perceptron (MLP). Sistem kecerdasan buatan ini dirancang untuk
membaca karakteristik arus, tegangan, dan karakteristik lainnya ketika gangguan terjadi
sehingga dapat melakukan klasifikasi jenis gangguan secara efisien.

Prinsip dari penelitian ini diawali dengan membangkitkan 1188 sampel data untuk 11
jenis gangguan melalui simulasi MATLAB. Kemudian sinyal gangguan mentah diproses
dan dilakukan ekstraksi fitur menggunakan pendekatan Discrete Wavelet Transform
(DWT) untuk menghasilkan delapan fitur yang akan digunakan sebagai input MLP.
Arsitektur dari jaringan MLP ini memiliki konfigurasi final dengan susunan 8 neuron input,
22 neuron pada hidden layer pertama, 10 neuron pada hidden layer kedua, dan 11 neuron
output.

Hasil penelitian menunjukkan bahwa implementasi model Multi-Layer: Perceptron
final mampu mengklasifikasikan 11 jenis gangguan dengan akurasi rata-rata scbesar
96,18% dan standar deviasi yang rendah yaitu 1,05%. Kinerja ini merupakan hasil dari
serangkaian proses optimasi dari performa awal model dengan akurasi 74,

Kata Kunci: Gangguan saluran transmisi, kecerdasan buatan, multi-layer perceptron,
MATLAB, Discrete Wavelet Transform
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BABI
PENDAHULUAN

1.1 Latar belakang

Sistem transmisi yang andal merupakan pondasi vital bagi keberlangsungan
penyaluran energi listrik ke seluruh pusat-pusat beban di Indonesia. Stabilitas
Saluran Udara Tegangan Tinggi dan Ekstra Tinggi (SUTT/SUTET) menjadi salah
satu infrastruktur utama yang memegang peranan krusial meskipun dalam
operasionalnya tidak terlepas dari potensi terjadinya gangguan (faul/t). Gangguan
ini merupakan suatu kondisi abnormal pada saluran yang dapat menghentikan aliran
daya, merusak peralatan, bahkan membuka potensi bahaya pada area di sekitar
jaringan transmisi.

Dalam menangani gangguan, sistem proteksi modern seperti relai digital telah
digunakan secara luas dan mampu mengisolasi gangguan dengan cepat. Akan
tetapi, proses analisis pasca-gangguan untuk menentukan secara pasti jenis dan
karakteristik gangguan masih memerlukan interpretasi manual oleh engineer
proteksi [1]. Analisis manual ini membutuhkan waktu dan keahlian khusus,
sehingga berpotensi mengurangi efisiensi dalam proses pemulihan sistem.

Seiring dengan pesatnya perkembangan teknologi, pemanfaatan kecerdasan
buatan (Artificial Intelligence) membuka peluang untuk meningkatkan efisiensi
pada proses analisis tersebut. Tugas akhir ini mengusulkan implementasi Jaringan
Multi-Layer Perceptron (MLP) yang merupakan salah satu bentuk jaringan saraf
tiruan untuk melakukan klasifikasi gangguan secara otomatis berbasis analisis
sinyal digital. Proses perancangan model sistem transmisi dan data gangguan untuk
pelatihan model akan direalisasikan menggunakan simulasi MATLAB dan toolbox
Simulink. Sistem klasifikasi otomatis ini diharapkan dapat mengidentifikasi jenis
gangguan dengan cepat dan akurat, sehingga mampu menjadi alat pendukung dalam
proses pemulihan sistem. Dengan demikian, efektivitas dan keandalan jaringan

transmisi dapat ditingkatkan.



1.2 Rumusan Masalah

Berdasarkan latar belakang yang telah dijelaskan diatas, maka dapat diambil

perumusan masalah sebagai berikut:

1.

Bagaimana merancang model sistem saluran transmisi pendek untuk
merepresentasikan karakteristik data sinyal gangguan yang umum terjadi
pada saluran transmisi tegangan tinggi?

Bagaimana penentuan dan ekstraksi fitur-fitur sinyal yang paling relevan
untuk digunakan sebagai input Multi-Layer Perceptron dalam klasifikasi
gangguan transmisi?

Bagaimana merancang arsitektur Multi-Layer Perceptron yang memadai
untuk melakukan klasifikasi jenis gangguan transmisi tegangan tinggi?
Bagaimana performa dan akurasi model Multi-Layer Perceptron yang

telah dilatih dalam klasifikasi berbagai jenis gangguan?

1.3 Batasan Masalah

Batasan masalah dalam tugas akhir ini adalah sebagai berikut:

1.

Pembahasan hanya berfokus pada penentuan jenis gangguan, tanpa
menyertakan analisis lokasi maupun penyebab gangguan.

Sumber data utama untuk pelatihan dan pengujian model adalah hasil dari
simulasi menggunakan MATLAB Simulink.

Software yang digunakan adalah MATLAB R2025a, Simulink, Deep
Learning Toolbox, Signal Processing.

Model saluran transmisi yang disimulasikan adalah model saluran
transmisi pendek (short transmission line) untuk level tegangan 150kV
dengan parameter yang disesuaikan.

Jenis gangguan yang akan diklasifikasikan mencakup: gangguan satu fasa
ke tanah (AG, BG, CG), antar fasa (AB, BC, CA), dua fasa ke tanah (ABG,
BCG, CAQG), dan tiga fasa (ABC, ABCG).

Untuk parameter yang tidak secara spesifik tersedia akan diestimasi

menggunakan nilai tipikal dan pendekatan teoritis. Pendekatan ini



mengacu pada rentang nilai yang umum digunakan dalam literatur

akademis dan penelitian relevan.

1.4 Tujuan Penelitian

Tujuan penelitian ini adalah:

1.

Merancang dan membangun model simulasi sistem saluran transmisi 150
kV yang dapat membangkitkan data sinyal tegangan dan arus untuk
berbagai skenario gangguan.

Mengimplementasikan arsitektur Jaringan Multi-Layer Perceptron (MLP)
dan melatihnya menggunakan data fitur yang telah dickstraksi.
Mengevaluasi  kinerja model = MLP  yang  dihasilkan  dalam

mengklasifikasikan jenis-jenis gangguan.

1.5 Manfaat Penelitian

Manfaat penelitian ini adalah sebagai berikut:

1.

Menambah pemahaman dan wawasan mengenai sistem saluran transmisi
tegangan tinggi, sistem proteksi dan gangguan pada saluran transmisi,
serta teknologi kecerdasan buatan khususnya Mul/ti-Layer Perceptron.
Menyajikan pengetahuan mengenai pemodelan gangguan pada saluran
transmisi tegangan tinggi menggunakan MATLAB Simulink.

Memberikan kontribusi dalam penerapan kecerdasan buatan . dalam
domain sistem tenaga listrik.

Menghasilkan sebuah prototipe sistem cerdas yang berpotensi untuk
dikembangkan dan digunakan pada aplikasi industrial dan aktual sebagai

instrumen pendukung bagi engineer untuk efisiensi analisis gangguan.

1.6 Sistematika Penelitian

Sistematika penulisan dari penelitian ini adalah sebagai berikut:
BABI : PENDAHULUAN



BABII :

BABIII :

BABIV:

BABYV :

Bab ini membahas tentang latar belakang masalah, rumusan
masalah, batasan masalah, tujuan, manfaat, metode penelitian dan
penulisan sistematis penelitian yang akan dilakukan.

TINJAUAN PUSTAKA DAN LANDASAN TEORI

Bab ini membahas secara umum tentang sistem transmisi tenaga
listrik, gangguan transmisi, Neural Network serta dasar teori dan
prinsip yang melandasi pembuatan Tugas Akhir ini.
METODOLOGI PENELITIAN

Berisi tentang model penelitian, alat dan bahan yang digunakan
berupa sofiware maupun hardware sebagai media pendukung,
menjelaskan prosedur penelitian, melakukan pemodelan serta
simulasi untuk mendapatkan hasil penelitian yang dibutuhkan.
HASIL DAN ANALISIS

Bab ini membahas data simulasi gangguan, pelatihan model Multi-
Layer Perceptron serta analisis evaluasi kinerja model dalam
menentukan berbagai jenis gangguan.

PENUTUP

Bab ini berisi kesimpulan dan saran dari hasil penelitian Tugas

Akhir ini.



BABII
TINJAUAN PUSTAKA DAN LANDASAN TEORI

2.1 Tinjauan Pustaka

Menurut Raj Jain dalam The Art of Computer Systems Performance Analysis,
terdapat tiga teknik utama untuk evaluasi kinerja sistem: pemodelan analitis,
simulasi, dan pengukuran. Salah satu pertimbangan kunci yang penulis tekankan
adalah pada tahap apa sistem tersebut berada (life-cycle stage). Dengan kata lain,
pemilihan teknik sangat bergantung pada tujuan dan konteks dari evaluasi yang
dilakukan. Ketika tujuannya adalah perancangan atau konsep baru yang belum
tersedia secara fisik, maka pemodelan analitis dan simulasi menjadi satu-satunya
teknik yang dapat dipilih. Lebih jauh lagi, simulasi seringkali mampu memberikan
hasil yang lebih mendekati kondisi nyata dibandingkan pemodelan analitis karena
simulasi dapat mengakomodasi lebih banyak detail dan memerlukan lebih sedikit
asumsi penyederhanaan [2].

Prinsip yang dipaparkan Raj Jain menjadi sangat relevan dalam konteks
penelitian ini, di mana tujuannya adalah untuk melatih sebuah model Jaringan
Multi-Layer Perceptron untuk melakukan klasifikasi gangguan pada saluran
transmisi tegangan tinggi. Keberhasilan model terscbut sangat bergantung pada
ketersediaan dataset yang besar dan beragam, yang mencakup berbagai jenis dan
lokasi gangguan. Membangkitkan skenario-skenario gangguan secara fisik pada
sistem transmisi yang sesungguhnya bukan hanya tidak praktis dan memerlukan
biaya tinggi, tetapi juga berbahaya. Oleh karena itu, penggunaan simulasi untuk
membangkitkan data (data generating) menjadi metode yang valid dan efektif
untuk menyediakan bahan penelitian yang dibutuhkan dalam tugas akhir ini.

Pemanfaatan Jaringan Saraf Tiruan (JST) untuk klasifikasi gangguan pada
sistem transmisi merupakan bidang riset yang telah banyak dieksplorasi. Salah satu
penelitian yang relevan adalah tesis Md. Chayon Ali (2023) yang meneliti metode
deteksi dan klasifikasi gangguan menggunakan kombinasi Wavelet Transform dan
Jaringan Saraf Tiruan (JST). Untuk keperluan penelitian ini, sebuah model sistem

transmisi 230 kV  disimulasikan secara menyeluruh menggunakan



MATLAB/Simulink. Proses pembangkitan data dilakukan dengan menciptakan
berbagai skenario gangguan yang meliputi variasi pada jenis gangguan, lokasi
gangguan di sepanjang saluran, dan nilai resistansi gangguan. Sinyal arus dari setiap
simulasi kemudian dianalisis menggunakan Discrete Wavelet Transform (DWT)
yang selanjutnya digunakan sebagai masukan untuk melatih model ANN [3].
Dalam penelitian yang dilakukan oleh Rao, Kumar, dan Kesava Rao (2017),
diusulkan sebuah pendekatan untuk klasifikasi gangguan pada saluran transmisi
menggunakan kombinasi antara Wavelet Multi-Resolution Analysis dan Jaringan
Saraf Tiruan. Untuk mendapatkan data penelitian, mereka merancang dan
mensimulasikan sebuah model sistem tenaga 220 kV sepanjang 300 km
menggunakan MATLAB Simulink. Melalui simulasi ini dibangkitkan berbagai
skenario gangguan untuk menghasilkan sinyal arus tiga fasa. Sinyal-sinyal ini
kemudian dianalisis menggunakan Discrete Wavelet Transform (DWT), yang
selanjutnya digunakan sebagai masukan untuk melatih Jaringan Saraf Tiruan dalam

mengklasifikasikan jenis gangguan [4].

Gambar 2.1 Model Saluran Transmisi yang digunakan oleh peneliti Rao, Kumar, dan Kesava Rao
(2017)

Penelitian lain yang relevan dilakukan oleh Li et al. (2021) mengembangkan
sebuah metode klasifikasi gangguan hubung singkat ke tanah pada jaringan
transmisi menggunakan Convolutional Neural Network (CNN). Selanjutnya suatu
simulasi terukur dilakukan pada perangkat lunak PSCAD/EMTDC menggunakan

model grid new England 10 machine 39 nodes. Proses pembangkitan data



dilakukan dengan menciptakan 5000 set sampel gangguan yang berbeda. Data
mentah berupa bentuk gelombang arus, tegangan, sudut phasa dan daya beban
kemudian diproses dengan metode Z-score standardization. Setelah data diproses
kemudian data dibagi menjadi training set dan test set untuk jaringan CNN yang
memiliki lima convolutional layers, tiga max-pooling layers, satu concatenate
layer, satu dropout layer, satu fully connected layer, dan satu Sofimax classifier [5].

Selanjutnya, Tunio et al. (2024) menyajikan sebuah metode deteksi dan
klasifikasi gangguan menggunakan Discrete Wavelet Transform (DWT) yang
dikombinasikan dengan Temporal Convolutional Neural Network (TCN) Penelitian
ini juga bergantung pada simulasi yang dibangun menggunakan MATLAB untuk
membuat model sistem transmisi 500 kV Jamshoro-New Karachi di Sindh,
Pakistan [6].

Menindaklanjuti keberhasilan konsep tersebut, maka pada tugas akhir ini akan
dilakukan penelitian serupa. Sebuah model Multi-Layer Perceptron (MLP) akan
dirancang untuk menjadi sistem klasifikasi gangguan di mana input untuk model
akan diperoleh dari hasil analisis sinyal digital yang dibangkitkan melalui simulasi

komputasi.

2.2 Dasar Teori

2.2.1 Sistem Tenaga Listrik

Sistem tenaga listrik merupakan sebuah jaringan kompleks dan saling
terhubung. Sistem ini terdiri dari pusat-pusat pembangkit, saluran transmisi, dan
jaringan distribusi yang mengalirkan listrik sampai ke konsumen [1]. Keandalan
dan stabilitas sistem tenaga listrik menjadi faktor krusial, karena setiap gangguan
yang terjadi dapat menyebabkan pemadaman listrik yang merugikan secara

ekonomi dan sosial.
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Gambar 2.2 Dasar Konfigurasi Sistem Tenaga Listrik

Gambar 2.2 menunjukkan konfigurasi umum dari sistem tenaga listrik yang secara
sederhana terdiri dari pembangkit kemudian disalurkan melalui transmisi dengan
berbagai level tegangan sebelum berakhir di konsumen.

1. Saluran Transmisi Tegangan Tinggi
Saluran transmisi tegangan tinggi merupakan komponen vital dan menjadi
tulang punggung dalam penyaluran energi listrik dari pusat pembangkit ke pusat
beban. Di Indonesia, sistem transmisi ini secara umum diklasifikasikan berdasarkan
level tegangannya, yaitu Saluran Udara Tegangan Tinggi (SUTT) yang beroperasi
pada tegangan 70 kV-150 kV dan Saluran Udara Tegangan Ekstra Tinggi (SUTET)



pada tegangan 275 kV-500 kV. Pemilihan level tegangan yang tinggi ini ditujukan
untuk mengurangi rugi-rugi daya selama transmisi jarak jauh. Hal ini didasarkan
pada prinsip bahwa besarnya arus yang mempengaruhi rugi daya akan berbanding

terbalik dengan besarnya tegangan. dinyatakan sebagai berikut:

Piosses = 3-12.R 2.1
dan

P = y3.V.I.cos(¢) (2.2)
Di mana,

Plosses = rugi-rugi daya (Watt)
V = Tegangan (Volt)

1 =Arus (4)

R = Tahanan kondukstor (12)
cos(¢) = Faktor Daya

2. Gangguan Pada Saluran Transmisi

Meskipun dirancang untuk tingkat keandalan tinggi, saluran transmisi masih
rentan terhadap berbagai jenis gangguan (faults). Gangguan adalah suatu kondisi
abnormal yang mengganggu kestabilan sistem dan menyebabkan aliran arus besar
ke peralatan listrik [7]. Secara umum, gangguan ini dapat diklasifikasikan menjadi
dua kategori utama: gangguan simetris berupa hubung singkat tiga fasa dan
gangguan tidak simetris [1]. Gangguan tidak simetris merupakan jenis yang paling
sering terjadi, meliputi gangguan hubung singkat satu fasa ke tanah (single line-to-
ground), hubung singkat antar fasa (line-to-line), dan hubung singkat dua fasa ke
tanah (double line-to-ground). Oleh karena itu, deteksi dan klasifikasi jenis
gangguan secara cepat dan akurat sangat penting untuk mengisolasi area yang

terganggu dan mempercepat proses pemulihan sistem.
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Gambar 2.3 Contoh kondisi sistem ketika gangguan fasa a ke ground

Gambar 2.3 Menunjukkan contoh kondisi sistem ketika terjadi gangguan Fasa a
ke tanah. Sistem yang sebelumnya seimbang kini terdapat arus yang mengalir ke
tanah melalui impedansi gangguan Zf.

3. DC Offset Transient

Pada rangkaian daya yang didominasi induktansi (R—L), arus gangguan sesaat
setelah fault terdiri dari dua komponen: komponen AC kondisi tunak (simetris) dan
komponen DC offset (asimetri) yang memiliki decay rate proporsional terhadap
R/L. Nilai awal komponen DC ini ditentukan oleh sudut penutupan/terjadinya

gangguan (o) berdasarkan persamaan,

lge = — 1\/5 sin (a — @) e_% (2.3)
dengan,

igc = Komponen arus DC offset (asimetris)

I =Arus RMS

a = Sudut terjadinya gangguan (fault inception angle)

@ = Sudut fasa arus relatif terhadap tegangan sumber

R = Resistansi ekuivalen dari sistem dari titik gangguan.
L = Induktansi ekuivalen dari sistem dari titik gangguan.

t = Waktu setelah terjadinya gangguan [8].
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Secara spesifik, besarnya offset ini bervariasi dari nilai minimum 0 ketika
gangguan terjadi pada sudut @ = 6, hingga mencapai nilai maksimum V2 x lac
yang setara dengan nilai puncak arus AC ketika gangguan terjadi pada sudut ¢ =
(6 + m/2). Oleh karena itu, tergantung pada waktu terjadinya gangguan bentuk
gelombang arus gangguan yang dihasilkan dapat bersifat simetris (dengan DC
offset minimal) atau sangat asimetris (dengan DC offset maksimal). Fenomena ini

secara fundamental mempengaruhi karakteristik sinyal transien secara keseluruhan

[9].

4. Analisis Transien

Analisis transien adalah metode investigasi fenomena kelistrikan yang diambil
ketika suatu sistem mengalami gangguan seperti hubung singkat. Ketika gangguan
terjadi, perubahan drastis pada tegangan dan ‘arus di titik  gangguan -akan
membangkitkan gelombang elektromagnetik berfrekuensi tinggi yang dikenal
sebagai traveling wave. Gelombang ini merambat di sepanjang saluran transmisi ke
kedua arah dari titik gangguan dengan kecepatan mendekati kecepatan cahaya [10].
Analisis transien berfokus pada pendeteksian dan interpretasi “ledakan” sinyal-
sinyal gangguan non-stasioner. Transien terjadi dalam beberapa milidetik pertama
sebelum sistem mencapai kondisi stabil baru atau kembali normal

Pendekatan investigasi transien ini secara fundamental berbeda dengan analisis
steady-state konvensional. Analisis steady-state mengamati perilaku sistem setelah
semua komponen transien mereda dan sinyal mencapai bentuk stabil yang baru
(steady state).Sebaliknya, analisis transien justru memanfaatkan "kekacauan" awal
pasca-gangguan. Analisis pada sinyal yang kaya informasi ini selaras dengan
kebutuhan untuk deteksi gangguan yang cepat di sistem tenaga modern saat ini [11].

Validitas penggunaan analisis transien untuk diagnosis gangguan terletak pada
fakta bahwa sinyal transien yang dihasilkan oleh gangguan bersifat unik dan
informatif. Sinyal-sinyal ini dapat memberikan informasi ekstensif mengenai tipe
gangguan, deteksi, lokasi, arah, dan durasinya [10]. Kehadiran komponen frekuensi
tinggi yang tiba-tiba muncul pada sinyal tegangan dan arus merupakan indikator

yang sangat jelas bahwa sebuah anomali telah terjadi. Karena sinyal ini muncul
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seketika dan dapat dibedakan dengan jelas dari kondisi operasi normal, analisisnya
menjadi dasar yang kuat untuk merancang sistem proteksi yang cepat dan akurat.
Oleh karena itu, pemanfaatan analisis transien menjadi landasan penting dalam
pengembangan skema proteksi modern yang menuntut kecepatan dan keandalan.
Dengan menganalisis sinyal pada jendela waktu yang sangat singkat sesaat setelah
gangguan terdeteksi, dimungkinkan untuk mengekstraksi fitur-fitur kunci sebelum
sinyal tersebut terdistorsi oleh respons sistem lainnya. Pendekatan ini tidak hanya
mempercepat waktu deteksi secara drastis tetapi juga meningkatkan akurasi
klasifikasi gangguan. Analisis ini menjadi metode yang sangat relevan dan

fundamental untuk penelitian ini.

5. Model Saluran Transmisi Pendek

Untuk keperluan analisis dan simulasi, saluran transmisi dapat dimodelkan
secara matematis. Pada tugas akhir ini, digunakan model saluran transmisi pendek
(short transmission line) yang relevan untuk saluran dengan panjang kurang dari
80 km [1]. Rangkaian ekuivalen satu fasa untuk model ini diilustrasikan pada

Gambar 2.4.

Gambar 2.4 Model Saluran Transmisi Pendek

Pada model pada Gambar 2.5, Vs dan Is merepresentasikan tegangan dan arus
pada sisi pengirim (sending end). Adapun Vr dan Ir adalah tegangan dan arus pada
sisi penerima (receiving end). Keseluruhan saluran transmisi direpresentasikan oleh
sebuah impedansi seri tunggal Z, yang terdiri dari resistansi total R dan reaktansi

induktif X [1].
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Nilai reaktansi induktif (X) muncul akibat medan magnet di sekitar konduktor
yang nilainya bergantung pada frekuensi sis tem (f) serta induktansi (L) saluran
sesuai dengan persamaan:

X = 2nfL (2.4)

Model ini menyederhanakan representasi saluran dengan hanya
memperhitungkan impedansi seri (resistansi dan induktansi) dan mengabaikan
kapasitansi shunt yang tidak signifikan. Penyederhanaan ini dapat digunakan
karena efek kapasitansi pada saluran pendek sangat kecil dan tidak signifikan

memengaruhi hasil analisis gangguan hubung singkat.

2.2.2 Analisis Sinyal Digital

Ketika gangguan terjadi pada saluran transmisi, bentuk gelombang tegangan
dan arus akan mengalami perubahan drastis dari kondisi normalnya. Sinyal analog
ini dapat diubah menjadi data digital melalui proses sampling untuk dianalisis lebih
lanjut. Analisis sinyal digital (Digital Signal Processing/DSP) adalah teknik yang
digunakan untuk mengekstraksi informasi atau fitur-fitur penting dari sinyal digital
tersebut. Dalam konteks klasifikasi gangguan, fitur-fitur ini dapat berupa amplitudo
puncak, komponen frekuensi, atau parameter statistik lainnya yang unik untuk
setiap jenis gangguan. Ekstraksi fitur yang tepat merupakan langkah fundamental

sebelum data dimasukkan ke dalam model neural network klasifikasi gangguan.

2.2.3 Transformasi Wavelet

Transformasi Wavelet merupakan metode dekomposisi data yang mampu
mengidentifikasi komponen frekuensi yang berbeda dari sebuah sinyal.
Kemampuan identifikasi ini menjadikan transformasi wavelet sangat efektif untuk

menganalisis sinyal non-stasioner, seperti gangguan pada sistem tenaga.

1. Discrete Wavelet Transform (DWT) dan Dekomposisi Sinyal
Discrete Wavelet Transform (DWT) adalah teknik analisis sinyal yang sering
digunakan dalam analisis gangguan sistem tenaga, khususnya untuk mendeteksi

transisi atau perubahan mendadak pada suatu sinyal. Berbeda dengan metode lain
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yang memiliki resolusi frekuensi yang sama di semua pita, DWT memungkinkan
untuk menganalisis sinyal dengan lebih detail pada berbagai skala. Di antara mother
wavelet yang paling sering digunakan adalah Morlet dan Daubechies. Daubechies
memiliki bentuk yang menyerupai segitiga, sehingga meskipun interpretasinya
lebih sulit, tetapi memiliki beberapa sifat matematis yang sangat berguna [12].

Proses inti dari DWT adalah dekomposisi sinyal secara multiresolusi. Proses
ini dimulai dengan memecah sinyal masukan menjadi dua komponen: komponen
berfrekuensi rendah dan komponen berfrekuensi tinggi. Pemecahan ini dilakukan
dengan melewatkan sinyal melalui sepasang filter digital, yaitu low-pass filter dan
high-pass filter. Selanjutnya, komponen berfrekuensi rendah yang dihasilkan
kemudian dipecah lebih lanjut dengan melewatkannya kembali ke pasangan filter
yang sama. Proses ini diulang beberapa kali sesuai dengan jumlah. level
dekomposisi yang diinginkan untuk menghasilkan komponen sinyal yang
dibutuhkan [12].

Secara matematis, proses dekomposisi ini didasarkan pada dua fungsi
fundamental: scaling function ¢(t) dan wavelet function w(t). Scaling finction ¢(t)
berasosiasi dengan low-pass filter (ho(k)), sementara wavelet fiinction w(t)
berasosiasi dengan high-pass filter (hi(k)). Hubungan antara fungsi-fungsi ini

dengan koefisien filter dijelaskan dalam persamaan berikut:

() = Xk 2ho (k)P (2t — k) 2.5)
¢(t) = X 2h ()b (2t — k) (2:6)
[12]

dengan,

@(t): Fungsi Skala (Scaling Function).
w(t): Fungsi Wavelet (Mother Wavelet).
hy(k): Koefisien filter low-pass.

hy (k): Koefisien filter high-pass.

t: Variabel waktu kontinu.

k: Indeks pergeseran waktu (integer).

2. Koefisien Aproksimasi (A) dan Detail (D)
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Hasil dari proses dekomposisi sinyal menggunakan Discrete Wavelet
Transform (DWT) pada setiap levelnya adalah dua set koefisien. Koefisien yang
dihasilkan oleh low-pass filter disebut sebagai Koefisien Aproksimasi (A).
Koefisien ini merepresentasikan komponen sinyal berfrekuensi rendah, atau bisa
dianggap sebagai versi sinyal yang lebih "kasar" (coarse). Koefisien Aproksimasi
dari satu level dekomposisi kemudian menjadi sinyal masukan untuk proses
dekomposisi di level selanjutnya.

Di sisi lain, koefisien yang dihasilkan oleh high-pass filter disebut sebagai
Koefisien Detail (D). Koefisien inilah yang paling penting dalam konteks deteksi
gangguan, karena komponen transien dari sebuah sinyal diekstraksi sebagai
keluaran dari high-pass filter. Koefisien Detail menangkap informasi berfrekuensi
tinggi, seperti lonjakan tajam, osilasi, dan diskontinuitas lainnya yang menjadi ciri
khas dari sebuah sinyal gangguan. Oleh karena itu, analisis terhadap Koefisien

Detail menjadi kunci untuk mengidentifikasi gangguan pada saluran transmisi.

3. Aplikasi Discrete Wavelet Transform (DWT) untuk Ekstraksi Fitur

Gangguan

Kemampuan DWT dalam memisahkan komponen sinyal menjadikannya
sebagai alat yang sangat efektif dan telah umum digunakan untuk tahap ekstraksi
fitur dalam berbagai penelitian klasifikasi gangguan [6,7,9]. Dengan menganalisis
koefisien-koefisien hasil dekomposisi, ciri atau karakteristik dari setiap sinyal
gangguan dapat diekstraksi secara kuantitatif. Nilai ini kemudian dapat dijadikan
masukan untuk model klasifikasi cerdas.

Dalam analisis sinyal, penghitungan energi merupakan salah satu metode
yang sudah umum digunakan. Secara formal, energi dari sebuah sinyal waktu
diskrit didefinisikan sebagai jumlah dari kuadrat magnitudo setiap sampelnya [13].
Prinsip ini kemudian diterapkan secara konsisten dalam analisis wavelet. Dalam
konteks ini, energi wavelet pada skala tertentu diestimasi dengan menjumlahkan
kuadrat magnitudo dari koefisien-koefisien wavelet seperti pada persamaan:

Ex = Y|x[n]|? 2.7
[13]
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di mana,
Ex: Energi total dari sebuah sinyal diskrit
x[n]: Properti dari suatu sinyal
Nilai energi ini dapat berfungsi sebagai fitur tunggal yang ringkas dan informatif

untuk merepresentasikan karakteristik sinyal gangguan.

4. Jaringan Saraf Tiruan

Jaringan Saraf Tiruan (JST) atau Artificial Neural Network (ANN) adalah
sebuah model komputasi yang terinspirasi dari struktur dan cara kerja jaringan saraf
biologis di otak. Penggunaan metode JST dalam rekayasa dipilih karena
kemampuannya yang unggul dalam mempelajari pola-pola kompleks dan non-
linear langsung dari data, tanpa memerlukan model matematis eksplisit dari sistem
yang dianalisis. Kemampuan ini dijelaskan oleh Haykin sebagai berikut:

Neural Network adalah sckumpulan prosesor yang tersebar secara luas,
tersusun dari unit-unit pemrosesan sederhana, dan memiliki kecenderungan alami
untuk menyimpan informasi dari pengalaman. Neural Network menyerupai cara
kerja otak manusia dalam dua hal:

1. Pengetahuan diperoleh dari lingkungan melalui proses belajar.
2. Kekuatan dari Neuron yang saling terhubung (synaptic weights) digunakan

untuk menyimpan pengetahuan yang telah didapat [14].

Beberapa kelebihan utama dari JST adalah kemampuannya untuk belajar dari
contoh (training data), melakukan generalisasi terhadap data baru yang belum
pernah dilihat, serta memiliki toleransi terhadap data yang tidak lengkap atau

mengandung noise.

2.2.5 Multi-Layer Perceptron
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Gambar 2.5 Arsitektur Multi-layer Perceptron

Multi-Layer Perceptron (MLP) adalah salah satu arsitektur JST jenis
feedforward yang paling umum digunakan. Struktur MLP ‘dasar seperti pada
Gambear 2.6 terdiri dari setidaknya tiga lapisan neuron: satu lapisan masukan (input
layer), satu atau lebih lapisan tersembunyi (hidden layers), dan satu lapisan
keluaran (output layer). Setiap neuron pada satu lapisan terhubung dengan semua
neuron di lapisan berikutnya. Lapisan masukan menerima data fitur hasil ekstraksi
sinyal, lapisan tersembunyi bertugas untuk memproses dan mentransformasi data
tersebut, dan lapisan keluaran menghasilkan hasil klasifikasi akhir misalnya, jenis

gangguan.

1. Arsitektur Multi-Layer Perceptron
Arsitektur Multi-Layer Perceptron secara klasik terdiri dari tiga jenis lapisan
(layer):
a. Lapisan Input (Input Layer):
Lapisan ini berfungsi sebagai pintu gerbang atau titik masuk bagi data ke dalam
jaringan. Input layer terdiri dari sejumlah neuron yang disebut sebagai source
nodes. Jumlah neuron pada lapisan ini akan sama dengan jumlah fitur dalam
dataset. Sebagai contoh, untuk dataset dengan 8 fitur, maka input layer akan

memiliki 8 neuron.
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Setiap neuron pada input layer MLP dirancang untuk menerima satu nilai fitur
tunggal (skalar). Data input untuk MLP bisa berupa sebuah vektor datar
(misalnya, 1x8), di mana setiap elemen dari vektor itu akan menjadi masukan
untuk satu neuron. Hal ini berbeda dengan arsitektur JST yang lebih modern
(seperti Convolutional Neural Network) yang mampu memproses data dalam
bentuk matriks atau tensor secara langsung pada unit inputnya [15].

Lapisan Tersembunyi (Hidden Layer):

Hidden Layer merupakan lapisan komputasi yang terletak di antara lapisan
input dan output. Suatu jaringan MLP bisa memiliki satu atau lebih lapisan
tersembunyi. Di lapisan ini proses "belajar" pola-pola kompleks terjadi. Setiap
neuron di lapisan ini terhubung sepenuhnya (fi:/ly connected) ke semua neuron
di lapisan sebelumnya [15].

Lapisan Output (Qutput Layer):

Bagian ini merupakan lapisan terakhir yang menghasilkan respon akhir dari
jaringan terhadap pola aktivasi yang diberikan oleh source nodes pada input
layer pertama. Jumlah neuron pada lapisan ini ditentukan oleh jenis masalah
yang akan diprediksi [15]. Sebagai contoh, untuk mengklasifikasikan 11 jenis
gangguan, maka output layer akan memiliki 11 neuron yang mewakili setiap

jenis gangguan.

Neuron dan Fungsi Aktivasi

Lapisan-lapisan dalam arsitektur Multi-layer Perceptron tersusun dari unit-unit

komputasi dasar yang disebut neuron. Sebagaimana dijelaskan oleh Haykin (2009),

sebuah neuron adalah unit pemrosesan informasi fundamental yang menjadi dasar

dari cara kerja sebuah jaringan saraf. Operasi yang terjadi di dalam sebuah neuron

dapat dipecah menjadi beberapa elemen dasar:

a.

Penjumlah Linear (Linear Combiner)

Setiap sinyal masukan (x) yang diterima neuron terhubung melalui sebuah
synapse yang memiliki bobot (weight) atau "kekuatan" koneksi. Langkah
pertama adalah mengalikan setiap sinyal masukan dengan bobotnya masing-

masing. Selanjutnya semua hasil perkalian itu akan dijumlahkan.
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Penambahan Bias

Setelah hasil dari penjumlahan didapatkan, sebuah parameter yang disebut
“bias” (bx) ditambahkan. Sesuai dengan Gambar 2.7 fungsi dari bias adalah
untuk menaikkan atau menurunkan total sinyal masukan sebelum diproses

lebih lanjut.

Activation
function

@+ ) [—

Summing
junction

Synaptic
weights

Gambar 2.6 Model non-linear dari sebuah neuron dengan label k

Fungsi Aktivasi (Activation Function)
Langkah terakhir yaitu penerapan fungsi aktivasi yang ditulis sebagai ¢. Hasil
dari penjumlahan bobot dan bias (u;+by) dilewatkan ke fungsi aktivasi untuk

menghasilkan output akhir dari neuron (y;). Secara matematis dapat ditulis

sebagai:
we =YL wi.x; (28
dan
Yie = ¢ (uy +by) (2.9)

YV = Sinyal keluaran dari neuron ke-k.

@ = Fungsi aktivasi.

uy, = Hasil penjumlahan terbobot untuk neuron ke-k.

by, = Nilai bias untuk neuron ke-k.

wyj. = Bobot koneksi dari neuron ke~ (lapisan sebelumnya) ke neuron

ke-k.
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x; = Sinyal masukan ke-j.

m = Jumlah total sinyal masukan.

k = Indeks untuk neuron pada lapisan saat ini.

J = Indeks untuk sinyal masukan dari lapisan sebelumnya.
Fungsi aktivasi bertujuan untuk membatasi amplitudo dari output neuron
dengan "menekan" (squashing) nilainya ke dalam rentang tertentu. Keberadaan
fungsi ini memungkinkan jaringan untuk mempelajari pola-pola yang

kompleks [14].

2.2.6 Pelatihan Jaringan Saraf Tiruan
1. Backpropagation

Algoritma Backpropagation adalah mekanisme standar untuk melatih model
Multi-layer Perceptron dalam supervised learning. Algoritma ini memungkinkan
informasi dari fungsi cost yang mengukur besaran error antara prediksi dan target
sebenarnya untuk berjalan mundur melalui jaringan guna menghitung gradien [15].
Secara sederhana, algoritma ini bekerja. dalam dua tahap: forward pass untuk
menghasilkan prediksi dan menghitung error, kemudian dilanjutkan dengan
backward pass di mana error tersebut digunakan untuk memperbarui seluruh bobot
secara iteratif. Tujuan akhirnya adalah untuk meminimalkan error hingga model

mencapai tingkat akurasi yang diinginkan [15].

2. Epoch

Pada proses pelatihan sebuah jaringan saraf, pembaruan bobot-bobot sinaptik
dilakukan secara iteratif untuk meminimalkan error dan meningkatkan akurasi
model. Akan tetapi, proses pembelajaran ini tidak berjalan tanpa henti, melainkan
diorganisir ke dalam unit-unit terstruktur yang disebut sebagai epoch.

Satu epoch didefinisikan sebagai satu siklus lengkap di mana algoritma
pembelajaran telah "melihat" atau dipresentasikan dengan seluruh sampel yang ada
di dalam set data latih. Dengan kata lain, penyesuaian terhadap bobot-bobot sinaptik
pada Multi-layer Perceptron dilakukan secara epoch-by-epoch. Proses pelatihan

dilakukan hingga model mencapai tingkat konvergensi yang memuaskan. Pada
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setiap epoch, urutan data latih dapat diacak (shuffled) untuk meningkatkan

kemampuan generalisasi model [15].

3. Overfitting dan Underfitting

Tujuan dari proses pelatihan sebuah jaringan saraf tidak hanya untuk
memetakan relasi input-output dari data yang ada, melainkan juga memastikan
model tersebut mampu melakukan generalisasi dengan baik. Akan tetapi, dalam
mencapai kemampuan generalisasi ini, terdapat dua tantangan praktis yang
seringkali muncul, yaitu overfitting dan underfitting.

Overfitting, atau terkadang disebut overtraining, adalah sebuah fenomena yang
terjadi ketika model yang dilatih menjadi terlalu bergantung pada data latih. Dalam
kondisi ini, model tidak hanya mempelajari pola-pola fundamental dari data, tetapi
juga mulai "menghafal" detail-detail yang tidak relevan, termasuk noise atau
anomali yang hanya ada pada sampel data latih. Akibat dari fenomena ini adalah
model akan menunjukkan performa yang sangat tinggi pada data latih, namun
performanya akan menurun drastis ketika dihadapkan pada data baru yang belum
pernah dilihat sebelumnya. Pada dasarnya, ketika sebuah jaringan mengalami
overfitting, ia kehilangan kemampuan esensialnya dalam melakukan generalisasi
[15].

Sebaliknya, underfitting terjadi ketika proses pelatihan belum cukup untuk
model dapat menangkap pola fundamental dari data. Akibatnya, model akan
menunjukkan performa yang buruk baik pada data latih maupun data baru. Hal ini
merupakan indikasi bahwa model belum cukup "belajar" dan belum mampu
mengambil pola dari masalah yang ada.

Untuk mengatasi permasalahan ini, khususnya overfitting, pendekatan standar
yang digunakan adalah dengan memvalidasi model secara berkala selama proses
pelatihan. Hal ini dilakukan dengan mempartisi dataset yang tersedia menjadi
beberapa bagian, salah satunya adalah set data validasi (validation subset). Data
validasi digunakan secara khusus untuk menguji dan memvalidasi kemampuan
generalisasi model pada data yang tidak ikut serta dalam proses pembaruan bobot
[15].
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4. Confusion Matrix dan Evaluasi Model

Salah satu metode visualisasi dan analisis kinerja model kecerdasan buatan
yang paling fundamental dalam machine learning adalah Confusion Matrix.
Sebagaimana dipaparkan oleh Fawcett (2006), confusion matrix adalah sebuah
tabel yang dirancang untuk menyajikan visualisasi performa dari sebuah model
klasifikasi. Struktur dasarnya membandingkan antara Kelas Aktual (7rue Class)
atau label yang sebenarnya dari data, dengan Kelas Prediksi (Predicted Class) atau
label yang diprediksi oleh model [16].

Cara kerja confusion matrix adalah dengan menghitung dan mengkategorikan
setiap prediksi yang dibuat oleh model pada data uji. Angka-angka di sepanjang
diagonal utama dari matriks ini merepresentasikan jumlah total prediksi yang benar,
di mana Kelas Prediksi (Predicted Class) sama dengan Kelas Aktual (True Class).
Sebaliknya, semua angka yang berada di luar diagonal utama merepresentasikan
total kesalahan atau "kebingungan" (confiision) yang dibuat oleh model, di mana
Kelas Prediksi tidak sesuai dengan Kelas Aktual [16]. Meskipun seringkali
diilustrasikan dalam bentuk matriks 2x2 untuk masalah klasifikasi biner, konsep ini
dapat diperluas secara langsung untuk klasifikasi dengan jumlah kelas yang lebih
besar. Pada penelitian ini, menghasilkan matriks berukuran NxN (misalnya,
11x11).
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Confusion Matrix - Akurasi Test: 73.33%

True Class
@

1 2 i 3 L

[ 7
Predicled Class

Gambar 2.7 Contoh Confusion Matrix

Gambar 2.8 menunjukkan contoh dari suatu confusion matrix di mana blok diagonal
berwarna biru adalah kelas yang berhasil diprediksi dengan benar

Akurasi model secara keseluruhan juga dapat dihitung dari confusion matrix.
Akurasi ini merupakan rasio antara jumlah total prediksi yang benar terhadap
jumlah total seluruh sampel data yang diuji. Akurasi dihitung menggunakan rumus
berikut:

. umlah Prediksi Benar
Akurasi = . 7 % 100% (2.9)
Total Jumlah Data Uji

Evaluasi model seringkali dilakukan secara berulang untuk mendapatkan
gambaran kinerja yang lebih stabil dan tidak bias oleh fluktuasi karena pembagian
data yang acak. Oleh karena itu beberapa fungsi statistik dasar juga disertakan.
Rata-rata digunakan untuk menentukan nilai tengah dari serangkaian percobaan,
dihitung dengan rumus:

x=isL X (2.10)

[17]

Sementara itu, standar deviasi digunakan untuk mengukur tingkat sebaran atau

fluktuasi dari serangkaian hasil uji. Karena pengujian berulang ini dianggap
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sebagai sampel dari semua kemungkinan hasil, maka digunakan rumus Standar
Deviasi Sampel. Nilai yang rendah mengindikasikan kinerja model yang
konsisten. Standar deviasi dihitung sebagai berikut:

n —)2
s= \[Z—m ) @.11)

n—I

[17]

Di mana,

X : nilai rata-rata
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Gambar 2.8 Tampilan awal MATLAB R2025a

Gambear 2.9 merupakan tangkapan layar dari tampilan awal MATLAB R2025a

1.  Simulink

Simulink adalah sebuah environment berbasis grafis yang terintegrasi di dalam
MATLAB untuk pemodelan, simulasi, dan analisis sistem dinamis. Dalam tugas
akhir ini, Simulink digunakan untuk membangun model sistem tenaga listrik,
termasuk saluran transmisi, dan untuk mensimulasikan berbagai skenario

gangguan.

2. Deep Learning Toolbox

Deep Learning Toolbox adalah salah satu fitur di dalam MATLAB untuk
merancang, melatih, dan menganalisis model jaringan saraf tiruan, termasuk Mu/ti-
Layer Perceptron (MLP). Toolbox ini memfasilitasi implementasi arsitektur
jaringan, pengaturan parameter pelatihan seperti algoritma backpropagation, dan
evaluasi performa model MLP yang sedang dirancang.
3. Signal Processing Toolbox

Signal Processing Toolbox menyediakan fungsi-fungsi untuk melakukan
analisis sinyal digital. Dalam penelitian ini, toolbox tersebut dimanfaatkan untuk
memproses data sinyal tegangan dan arus hasil simulasi Simulink, serta untuk
mengekstraksi fitur-fitur relevan yang akan digunakan sebagai masukan untuk

model MLP.

4. Pemrograman MATLAB

MATLAB sendiri sebenarnya adalah suatu bahasa pemrograman tingkat tinggi
yang memungkinkan engineer dan peneliti melakukan pengembangan berbagai
aplikasi berskala besar. Salah satu penggunaan pemrograman di MATLAB yang
umum digunakan adalah penulisan skrip yang merupakan rangkaian perintah
(sequences of commands). Skrip disimpan dan dijalankan dalam bentuk file
berkestensi .m yang memungkinkan pengguna untuk menjalankan fungsi custom,

pemakaian ulang suatu code blocks, atau melakukan berbagai otomatisasi lainnya.
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Berikut adalah daftar fungsi dan konsep sintaks fundamental yang digunakan:

a. Manajemen Workspace dan Variabel

[clear : Menghapus semua }variabel dari workspace saat ini untuk
memastikan tidak ada data sisa dari eksekusi sebelumnya.

clc : Membersihkan teks pada Command Window untuk memudahkan
pembacaan output.

[...] : Sintaks untuk membuat matriks atau vektor numerik, yang merupakan
tipe data dasar di MATLAB.

{...} : Sintaks untuk membuat Cell Array, sebuah tipe data fleksibel yang
dapat menyimpan elemen dengan tipe yang berbeda (misalnya, teks. dan

angka) dalam satu variabel.

b. Struktur Kontrol dan Iterasi

for ... end : Struktur looping fundamental yang digunakan untuk
mengeksekusi blok kode secara berulang.

length(A) : Mengembalikan jumlah eclemen dalam dimensi terpanjang dari
sebuah array A.

size(A, dim) : Mengembalikan jumlah elemen pada dimensi (dim) tertentu

dari matriks A.

c. Interaksi dengan Model Simulink

set_param(...) : Mengatur atau mengubah nilai parameter dari sebuah blok
di dalam model Simulink. Fungsi ini memerlukan tiga argumen utama: path
ke blok, nama parameter yang akan diubah, dan nilai baru yang akan
diberikan.

sim(...) : Memulai dan menjalankan simulasi pada model Simulink yang

namanya dijadikan sebagai argumen.

d. Analisis dan Manipulasi Data

find(...) : Mencari indeks dari elemen-elemen dalam sebuah array yang
memenuhi kondisi tertentu. Sangat berguna untuk proses windowing atau

memotong sinyal berdasarkan kriteria waktu.

{Commented [ik3]: Memperbaiki bullet
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— dwt(...) : Melakukan dekomposisi Discrete Wavelet Transform pada sebuah
sinyal, yang digunakan untuk ekstraksi fitur di domain waktu-frekuensi.

— sum(A) : Menjumlahkan semua elemen dalam sebuah vektor A.

e. Fungsi Utilitas dan I/O (Input/Output)

— num2str(...) : Mengkonversi sebuah nilai numerik menjadi format string
(teks). Seringkali diperlukan saat menggunakan set_param karena beberapa
parameter di blok Simulink memerlukan input dalam bentuk string.

— fprintf(...) : Menampilkan teks atau data yang terformat pada Command
Window

— save(...) : Menyimpan variabel dari workspace MATLAB ke dalam sebuah
file biner (.mat) untuk penggunaan di masa mendatang.

f. Contoh Implementasi dalam Skrip
Sebagai contoh, potongan kode berikut akan melakukan iterasi untuk setiap
variasi sudut awal gangguan, mengatur parameter di Simulink, dan

menjalankan simulasi.

for sudut _idx = 1:length(sudut list_deg)

sudut = sudut_list_deg(sudut_idx);
set_param(namafile_simulink/Three-Phase Source, 'PhaseAngle’,
num2str(sudut));

simout = sim(model_name);

Dalam contoh ini fungsi loop for memastikan bahwa blok kode di dalamnya akan
dieksekusi sebanyak jumlah elemen dalam sudut list deg. Pada setiap iterasi,
fungsi set_param secara dinamis memperbarui nilai Phase4Angle pada blok sesuai
path  namafile simulink/Three-Phase Source menjadi nilai yang tersimpan di
dalam variabel sudut. Kemudian fungsi sim digunakan untuk menjalankan
simulasi. Alur kerja seperti ini memungkinkan pembangkitan dataset yang

komprehensif secara efisien.



BAB III
METODOLOGI PENELITIAN

3.1 Model Penelitian

Penelitian ini merupakan studi berbasis simulasi komputasi yang sepenuhnya
dilakukan menggunakan perangkat lunak pada komputer. Oleh karena itu,
penelitian ini tidak terikat pada lokasi fisik tertentu seperti laboratorium atau gardu
induk. Seluruh proses, mulai dari perancangan sistem, simulasi gangguan, ekstraksi
data, hingga perancangan model kecerdasan buatan, akan dilaksanakan secara

virtual.

3.2 Alat dan Bahan

Alat dan bahan yang digunakan dalam penelitian ini terbagi menjadi perangkat
keras (hardware), perangkat lunak (software), dan bahan penelitian (data).
1. Software MATLAB R2025a

MATLAB R2025a digunakan sebagai software komputasi teknis utama dalam
penyusunan tugas akhir ini. MATLAB mencakup beberapa foolbox csensial yang
akan digunakan secara terintegrasi:
a. Simulink: Digunakan untuk merancang model sistem transmisi tenaga listrik

dan melakukan simulasi dinamis untuk berbagai skenario gangguan.

28
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* @

Gambar 3.1 Simulasi Saluran Transmisi Menggunakan Simulink

Gambar 3.1 menunjukkan contoh rangkaian simulasi yang bisa dibuat
menggunakan MATLAB Simulink.

Deep Learning Toolbox: Digunakan untuk keseluruhan siklus kerja kecerdasan
buatan. Toolbox ini akan dimanfaatkan untuk merancang arsitektur, melatih,
melakukan validasi, dan mengevaluasi kinerja model Muiti-Layer Perceptron
(MLP).

Signal Processing Toolbox: Digunakan untuk melakukan analisis sinyal digital
dan ekstraksi fitur dari data mentah hasil simulasi. Fungsi-fungsi dalam toolbox
ini akan diaplikasikan untuk menghitung parameter penting seperti- Total
Harmonic Distortion (THD) dan komponen sinyal lainnya yang akan menjadi
masukan bagi model.

Wavelet Toolbox: Digunakan untuk melakukan transformasi wavelet pada fitur
sinyal digital yang akan digunakan sebagai input pelatihan model MLP
Statistics and Machine Learning Toolbox: Digunakan untuk melakukan
perhitungan statistik dan membuat plot yang membantu analisis model yang

sedang dirancang.
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2. Komputer

Perangkat keras utama yang digunakan adalah satu unit windows laptop dan
monitor dengan spesifikasi sebagai berikut:

— Prosesor: Ryzen 7 6800U

- RAM: 16 GB

— Penyimpanan: 1 7B SSD

—  Monitor: 34” ultrawide

3.3 Prosedur Penelitian

Penelitian ini merupakan studi berbasis simulasi komputasi yang sepenuhnya
dilakukan menggunakan perangkat lunak pada komputer. Seluruh proses, mulai
dari perancangan sistem, simulasi gangguan, ekstraksi data, hingga perancangan
model kecerdasan buatan, akan memanfaatkan berbagai fitur dan toolbox dalam
aplikasi MATLAB.

Proses perancangan simulasi, pengumpulan data, hingga pembuatan model
kecerdasan buatan dilaksanakan dengan beberapa prosedur yang sistematis sebagai

berikut:

3.3.1 Perancangan dan Simulasi Sistem di Simulink

Perancangan model simulasi saluran transmisi pendek dalam penelitian ini
menggunakan acuan penghantar SUTT 150kV Batang - Pekalongan 1. Saluran
transmisi tersebut beroperasi pada tegangan nominal 150 kV dengan menggunakan
konduktor jenis ACCC/TW LISBON 1x310 mm, yang memiliki Kapasitas Hantar
Arus (KHA) sebesar 1285 A dan membentang sepanjang 13,16 km.

Komponen simetris yang dimiliki penghantar yaitu sebagai berikut:
1. Impedansi Urutan Positif

- X1 (ohm/km): 0,4000

- R1 (ohm/km): 0,0930

- Z1 (ohm): 5,4056

- Sudut Line (deg): 76,91
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2. Impedansi Urutan Nol

— X0 (ohm/km): 1,2000

— RO (ohm/km): 0,2430

—  Z0(ohm): 16,1162

—  Sudut Line (deg): 78,55
Karena saluran transmisi merupakan komponen statis, impedansi urutan negatif
(Z2) memiliki nilai yang sama dengan urutan positif (Z2 = Z1), dengan perbedaan
hanya pada urutan fasa arusnya.

Untuk parameter lain yang diperlukan dalam model simulasi di MATLAB
Simulink dan tidak secara spesifik tersedia akan diestimasi menggunakan nilai
tipikal dan pendekatan teoritis. Pendekatan ini mengacu pada rentang nilai yang

umum digunakan dalam literatur akademis dan penelitian relevan.

1. Blok Simulink yang digunakan
Saluran transmisi tegangan tinggi ini kemudian dimodelkan menggunakan
MATLAB Simulink menggunakan beberapa blok sebagai berikut:

a. Three-Phase Source

AR
O Tk
C

Three-Phase Source

Gambar 3.2 Blok Three-Phase Source

Blok pada Gambar 3.2 mewakili sumber daya yang akan menyuplai saluran
transmisi. Untuk keperluan simulasi digunakan frekuensi 50 Hz sesuai standar PLN
dan nilai tegangan tipikal 152 kV untuk mengkompensasi drop tegangan di
sepanjang saluran.

b.  Three-Phase Series RLC Load
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Gambar 3.3 Blok Three-Phase Series RLC Load

Blok pada Gambar 3.3 mewakili beban yang mengalir sepanjang penghantar.
Pada model ini digunakan acuan nilai rata-rata beban puncak harian pada
penghantar SUTT Batang - Pekalongan 1.

c. Three-Phase Pi Section Line

Three-Phase
Pl Sectior

Gambar 3.4 Blok Three-Phase Pi Section Line

Blok pada Gambar 3.4 merepresentasikan saluran transmisi sepanjang 13,5 km
dengan nilai kapasitansi yang diabaikan.
Untuk parameter resistansi urutan positif dan urutan nol diambil dari data teknik
penghantar PLN yaitu R1 =0,0930 dan RO = 0,2430.

Untuk parameter induktansi dapat dikalkulasi sebagai berikut:
Diketahui X1 = 0,4; X0 = 1,2 (data teknik penghantar PLN)
maka menggunakan persamaan (2.4) L1 dan L0 dapat dihitung sebagai ,
X1 = 2nfL1
0,4 = 2m.50.L1

0,4

314,159.L1
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simulasi.

d. Three-Phase Fault

Three-Phass Fault

Gambar 3.5 Blok Three-Phase Fault
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Blok pada Gambar 3.5 yaitu Three-Phase Fault akan mensimulasikan
gangguan yang terjadi di fasa A, B, C, dan Ground. Waktu switching dan resistansi
gangguan dapat diatur untuk menghasilkan model yang dikehendaki seperti 3,5

e. Three-Phase V-I Measurement

Three-Phase
W KlEasurement

Gambar 3.6 Blok Three-Phase V-I Measurement

Blok pada Gambar 3.6 digunakan untuk melakukan pengukuran arus dan
tegangan tiga fasa di titik yang dikehendaki. Arus dan tegangan dari sistem akan
diproses untuk menjadi input bagi- model Multi-Layer Perceptron.

f Sequence Analyzer

" Continuous |
mag

u

[i angle
L il
Sequence Analyzer
Gambar 3.7 Blok Sequence Analyzer
Blok pada Gambar 3.7 yaitu Sequence Analyzer digunakan untuk mengambil
komponen positif, negatif, dan nol dari suatu sinyal tiga fasa. Pada model ini yang
dipakai adalah komponen arus urutan nol (10).

g To Workspace



35

{ out.simout

To Workspace

Gambar 3.8 Blok To Workspace

Blok pada Gambar 3.8 digunakan untuk menyimpan hasil pengukuran arus dan
tegangan ke dalam Workspace MATLAB -

h. Powergui

untuk menjalankan sir

&g
UNISSULA
\\ Aeellal)|Zoalslolusinla




2. Rangkaian dan Arsitektur ]Simulasil /[ Commented [ik4]: Dibuat landscape

= =N 1
=i

Discrete
Se-05s.

Gambar 3.10 Rangkaian Simulasi Transmisi di Simulink
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Rangkaian yang digunakan dalam simulasi ini ditunjukkan pada Gambar 3.10
Model ini merepresentasikan sebuah sistem transmisi tenaga listrik sederhana yang
terdiri dari sebuah sumber tegangan tiga fasa menggunakan blok Three-Phase
Source pada sisi pengirim dan sebuah beban seri menggunakan blok Three-Phase
Series RLC Load pada sisi penerima. Sistem ini secara umum merepresentasikan
karakteristik sistem transmisi tegangan tinggi.

Saluran transmisi di sini dimodelkan menggunakan dua buah blok Pi Section
yang dihubungkan secara seri. Di antara kedua blok tersebut, ditempatkan sebuah
blok gangguan tiga fasa (Three-Phase Fault). Arsitektur ini dirancang secara
spesifik untuk memungkinkan simulasi gangguan pada berbagai titik di sepanjang
saluran transmisi. Proses variasi lokasi ini diotomatisasi sepenuhnya melalui sebuah
skrip MATLAB eksternal yang mengendalikan parameter di dalam blok Pi Section
secara dinamis. Skrip tersebut melakukan iterasi pada sebuah /ist yang berisi daftar
lokasi gangguan dalam satuan persen dari total panjang saluran.

Untuk setiap nilai persentase lokasi, skrip akan menghitung panjang masing-
masing blok Pi Section secara proporsional. Berdasarkan Hukum Tegangan
Kirchhoff (KVL) pada rangkaian AC, impedansi eckuivalen (Z total) dari
komponen yang terhubung seri adalah hasil penjumlahan fasor dari masing-masing
impedansinya (Z_total = Z1 + Z2). Oleh karena itu, pada rangkaian ini panjang
seksi pertama ( dideklarasikan sebagai variabel ‘L7 length’) dihitung sebagai
persentase lokasi dikalikan dengan total panjang saluran (13.5 km), sementara
panjang seksi kedua (dideklarasikan sebagai variabel ‘L2 length’) dihitung sebagai
sisa dari total panjang saluran tersebut.

Sebagai contoh, untuk mensimulasikan gangguan yang terjadi tepat di tengah
saluran (50%), skrip akan mengatur L/_length menjadi:

L1 length = 0.5 * 13.5km = 6.75 km.

Maka L2 length dihitung sebagai:
L2 length = 13.5km — LI _length
L2 length = 13.5km — 6.75km = 6.75 km.

37



38

Dengan cara ini, blok gangguan yang terletak di antara kedua seksi tersebut akan
terletak pada jarak 6.75 km dari sisi pengirim. Metode ini memungkinkan untuk
pembuatan dataset dalam skala besar secara efisien tanpa perlu mengubah
parameter lokasi secara manual untuk setiap skenario lokasi gangguan.

Seluruh pengukuran sinyal tegangan (Vabc) dan arus (Iabc) dilakukan pada sisi
pengirim (sending end). Pemilihan titik pengukuran ini didasarkan pada praktik
umum sistem proteksi, di mana relai proteksi dan perangkat pemantauan umumnya
ditempatkan di gardu induk pada pangkal saluran transmisi untuk mendeteksi
gangguan secepat mungkin. Untuk mengekstrak fitur arus urutan nol (I0), yang
merupakan indikator penting untuk gangguan yang melibatkan tanah, sinyal arus
tiga fasa dihubungkan ke sebuah blok Sequence Analyzer yang dikonfigurasi untuk
mengeluarkan nilai magnitudo dari komponen urutan nol.

Untuk proses agregasi data, total tujuh sinyal yang terdiri dari tiga sinyal
tegangan (Vabc), tiga sinyal arus (Tabc), dan satu sinyal magnitudo arus urutan nol
(I0) diumpankan ke dalam sebuah blok Mux. Blok ini menggabungkan ketujuh
sinyal tersebut kemudian disimpan ke workspace MATLAB menggunakan blok 7o

Workspace dengan nama out.mlp_input.

3.3.1 Menjalankan Simulasi dan Generasi Dataset

Setelah setiap blok dihubungkan dan diberikan parameter yang sesuai, langkah
selanjutnya adalah menjalankan simulasi secara berulang untuk 11 jenis gangguan
utama yaitu gangguan satu fasa ke tanah (AG, BG, CG), antar fasa (AB, BC, CA),
dua fasa ke tanah (ABG, BCG, CAG), dan tiga fasa (ABC, ABCG).

1. Parameter untuk Generasi Dataset

Untuk memastikan model Multi-Layer Perceptron yang akan dilatih bersifat
andal dan mampu melakukan klasifikasi dengan baik, diperlukan dataset yang
beragam dan informatif. Oleh karena itu, setiap jenis gangguan akan dijalankan
berulang kali dengan melakukan perubahan terhadap beberapa parameter

operasional inti setiap kali simulasi dilakukan. Variasi ini bertujuan agar model
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‘belajar’ mengenali pola dari spektrum kondisi yang lebih luas. Parameter yang

divariasikan adalah sebagai berikut:

a.

Tahanan Gangguan (Fault Resistance):

Untuk mencakup spektrum kondisi gangguan yang lebih luas digunakan dua
nilai resistansi yaitu 0.001 Q dan 15 Q . Nilai 0.001 Q merepresentasikan
kondisi gangguan solid (bolted fault) dengan impedansi mendekati nol.
Sementara itu, pemilihan nilai 15 € sebagai representasi gangguan
berimpedansi tinggi didasarkan pada sebuah studi oleh Virgilio dan Elmer pada
tahun 2015 mengenai rentang tipikal resistansi busur api (arc resistance) pada
sistem transmisi. Penelitian menunjukkan bahwa untuk sistem dengan level
tegangan 115kV-230kV, nilai resistansi gangguan 15 Q merupakan nilai yang
representatif dan umum dijumpai terutama untuk skema proteksi dengan waktu
tunda [18]. Dengan mencakup kedua skenario ini, model dilatih untuk
mengenali gangguan baik yang bersifat solid (resistansi rendah) maupun yang

berimpedansi tinggi.

Lokasi Gangguan (Fault Location):

Pada satu seksi saluran transmisi tegangan tinggi yang bisa membentang
hingga puluhan kilometer, lokasi kemungkinan terjadinya gangguan bisa
sangat acak dan tidak bisa diprediksi.

Oleh karena hal tersebut, sembilan titik lokasi diskrit digunakan, yaitu pada
titik 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, dan 90% dari total panjang
saluran. Pemilihan rentang ini memberikan cakupan yang lebih luas resolusi
yang memadai di sepanjang saluran transmisi dan memberikan kesempatan
model untuk mempelajari bagaimana karakteristik sinyal (seperti magnitudo
dan fasa) berubah seiring dengan perubahan jarak gangguan dari titik

pengukuran.

Sudut Awal Gangguan (Fault Inception Angle):
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Sebagaimana titik lokasi gangguan, waktu terjadinya gangguan juga bersifat
acak dan dapat terjadi pada titik mana pun dalam satu siklus gelombang AC.
Untuk merepresentasikan hal ini, tiga nilai sudut fasa tegangan yang
representatif digunakan dalam simulasi yaitu: 0°, 45°, dan 90°. Pemilihan
parameter ini sangat krusial karena sudut awal gangguan memiliki pengaruh
fundamental terhadap karakteristik sinyal transien sebagaimana dijelaskan
pada bagian 2.2.1.3 tentang DC Offset Transient.

Besarnya komponen DC offset ini dipengaruhi secara langsung oleh nilai
sesaat dari arus pada momen terjadinya gangguan.

Pada sudut 0° gangguan terjadi tepat saat tegangan melintasi titik nol,
artinya arus gangguan berada pada nilai puncaknya. Pada kondisi ini sistem
akan membangkitkan komponen DC offset dengan magnitudo maksimum.
Hasilnya adalah sebuah gelombang arus yang sangat asimetris, di mana puncak
positif dan negatifnya tidak seimbang.

Pada sudut 90° gangguan terjadi pada puncak gelombang tegangan ketika
arus tunak melintasi titik nol, akibat nya transisi terjadi dengan mulus.
Komponen DC offset yang dihasilkan akan bernilai minimal atau bahkan nol.
Kondisi ini menghasilkan gelombang arus gangguan yang simetris [8].

Sudut 45° juga digunakan untuk merepresentasikan kondisi di antara
kedua kondisi tersebut, menghasilkan komponen DC offset dan tingkat
asimetri gelombang yang moderat.

Dengan memberikan variasi terhadap sudut awal gangguan, dataset yang
dihasilkan akan mencakup sinyal-sinyal dengan berbagai tingkat distorsi
transien. Hal ini memaksa model kecerdasan buatan untuk tidak hanya
menghafal satu bentuk gelombang ideal, tetapi untuk mempelajari berbagai
pola-pola fundamental yang berubah tergantung momen saat terjadinya
gangguan. Kemampuan ini sangat penting untuk memastikan model yang
dibangun bersifat andal (robust) dan mampu melakukan klasifikasi dengan

baik pada kondisi dunia nyata yang tidak dapat diprediksi.

Tingkat Pembebanan (Load Level)



41

Dua kondisi beban digunakan, yaitu beban tinggi (146 MW, 41 MVAR) dan
beban rendah (46.7 MW, 18.6 MVAR). Kedua nilai ini diambil dari tipikal
beban puncak harian di Gardu Induk 150 kV Batang pada bulan Desember
2024 yang ditunjukkan pada Lampiran 7. Hal ini ditujukan agar performa
klasifikasi model tidak sensitif terhadap kondisi operasional sistem sebelum
terjadinya gangguan.

Selanjutnya seluruh proses pembangkitan data-termasuk iterasi untuk
setiap jenis gangguan, tahanan, lokasi, sudut, dan beban diotomatisasi
sepenuhnya menggunakan sebuah skrip MATLAB. Skrip ini akan secara
dinamis mengatur parameter-parameter pada blok-blok yang diperlukan di
dalam model Simulink. Skrip otomatisasi ini memungkinkan untuk
menjalankan simulasi secara berulang sesuai kombinasi parameter yang unik.
Kemudian sebagaimana dijelaskan pada 3.3.1.2 tentang arsitektur simulasi,
skrip akan menyimpan pembacaan tiga sinyal tegangan (Vabc), tiga sinyal arus
(Iabc), dan satu sinyal magnitudo arus urutan nol (I0) ke dalam bentuk matriks

dataset akhir di dalam workspace MATLAB.

Penjelasan Skrip Generasi Dataset

Untuk proses generasi dataset ini, dibuat sebuah skrip yang bertanggung jawab

untuk mengatur parameter, menjalankan model Simulink secara berulang,

mengekstraksi fitur, dan menyimpan data. Cara kerja skrip ini dapat dibagi menjadi

beberapa tahapan utama sebagai berikut:

a.

Inisialisasi dan Definisi Path

Pada awal eksekusi, skrip melakukan pembersihan workspace.
Selanjutnya, didefinisikan variabel-variabel string yang berisi nama model
Simulink dan path spesifik menuju blok-blok utama yang parameternya akan
diubah secara dinamis selama simulasi. Pendekatan ini membuat skrip lebih
modular dan mudah dibaca.

cuplikan skrip MATLAB:
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% Membersihkan workspace dan command window

clear; clc;

% Mendefinisikan nama model dan path ke blok-blok utama
model name = 'pake pi_section_sudutv3';

fault _block path = [model name, "/Three-Phase Fault'];
source_block_path = [model _name, '/Three-Phase Source'];

load_block_path = [model _name, '/Three-Phase Series RLC Load'];

b. Deklarasi Variabel untuk Parameter yang akan divariasikan

Seluruh parameter yang akan divariasikan dideklarasikan dalam bentuk
vektor atau matriks. Hal Ini. mencakup /isz untuk lokasi gangguan
(lokasi_persen), ~tahanan gangguan (ron fist), sudut. awal gangguan
(sudut_list _deg), dan tingkat pembebanan (beban_list). Adapun untuk
switching berbagai kondisi gangguan disimpan dalam sebuah cell array
bernama jenis_gangguan_db. Cel// ini memetakan nama setiap jenis
gangguan (misalnya, 'AG") ke konfigurasi parameter ‘on’/'off’ yang sesuai pada
blok Three-Phase Fault di Simulink.
cuplikan skrip MATLAB:

% Daftar parameter yang akan diiterasi
beban_list = [146e6,41e6, 46.7¢6,18.6e6];
sudut list_deg = [0, 45, 90];
lokasi_persen = 0.1:0.1:0.9;

ron_list = [0.001, 15];

% Basis data untuk konfigurasi jenis gangguan
Jjenis_gangguan_db = { ...

'"AG’, {'on’, 'off", 'off’, 'on'}; ...

'‘BG', {'off’, 'on’, 'off’, 'on'};, ...
'"ABC', {'on’, 'on’, 'on’, 'off’}; ...
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% ... dan seterusnya untuk 11 jenis gangguan

)

Proses Iterasi Simulasi Menggunakan Nested Loops

Inti dari skrip ini adalah serangkaian lima loop for yang tersarang (nested).
Struktur ini dirancang untuk menjalankan simulasi pada setiap kemungkinan
kombinasi dari parameter yang telah dideklarasikan. Alur kerjanya adalah

sebagai berikut:

—  Loop terluar akan mengiterasi setiap lokasi gangguan..

— Di dalamnya, loop kedua mengiterasi setiap nilai tahanan gangguan.
—  Loop ketiga mengiterasi setiap jenis gangguan.

—  Loop keempat mengiterasi setiap tingkat pembebanan.

—  Loop kelima mengiterasi sctiap sudut gangguan.

Di dalam loop kelima ini skrip menggunakan fungsi set_param untuk
mengatur semua parameter-di-model Simulink yang disebutkan pada bagian
3.3.2.1. Selanjutnya simulasi akan berjalan dengan perintah sim(model_name),
dan terakhir mengekstraksi fitur dari data mentah yang dihasilkan.
cuplikan skrip MATLAB:

% Struktur nested loop untuk iterasi semua kombinasi parameter

for loc_idx = 1:length(lokasi_persen)

% ... (perhitungan L1 _length dan L2 length)
forres_idx = 1:length(ron_list)
for ggn_idx = 1:length(ggn_jenis)
for beban_idx = 1:size(beban_list, 1)
for sudut_idx = 1:length(sudut list_deg)

% 1. Menginject semua parameter yang ingin diubah di Simulink
set_param(...)
set_param(...)
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% 2. Menjalankan simulasi via sim(...)

% 3. Melakukan ekstraksi fitur dari hasil simulasi

end
end
end
end

end

Pemantauan Progres Simulasi

Untuk memudahkan pengamatan selama proses simulasi berjalan, skrip
dilengkapi dengan feedback visual yang dapat terlihat di bagian console
MATLAB. Di bagian loop paling dalam ditambahkan fungsi disp untuk
menampilkan status progres pada Command Window. Status ini-mencakup
informasi mengenai nomor simulasi saat ini, total simulasi yang akan
dijalankan, serta detail kombinasi parameter yang sedang diuji.

cuplikan skrip MATLAB:

disp(['[' num2str(sim_idx) /' num2str(total_simulasi) '] '...
'Loc " num2str(current_lokasi*100) '%, ...

'"Ron ' num2str(current ron) ' Ohm,

% ... dan seterusnya untuk parameter lain

1

Akumulasi dan Penyimpanan Data

Sebelum Joop dimulai, dua variabel kosong (dataset fitur dan
dataset label) diinisialisasi untuk digunakan menampung pembacaan hasil
simulasi. Setelah setiap simulasi dan proses ekstraksi fitur selesai, baris fitur
yang baru dihasilkan beserta labelnya ditambahkan ke dalam kedua variabel

tersebut. Untuk mencegah kehilangan data jika terjadi interupsi, skrip
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melakukan penyimpanan sementara (checkpoint) menggunakan save di setiap
akhir iterasi. Setelah semua loop selesai, data yang telah terkumpul secara
lengkap disimpan ke dalam sebuah file .mat final.

cuplikan skrip MATLAB:

dataset_fitur = [dataset fitur; baris_fitur_sekarang];

dataset_label = [dataset label; label gangguan];

% Menyimpan checkpoint sementara untuk keamanan data

save('checkpoint_data.mat', 'dataset_fitur', 'dataset label’);

% Menyimpan data akhir setelah semua simulasi selesai
save('Dataset_Final_hasil.mat’, 'dataset_fitur', 'dataset label’,

'data_mentah’);

3. Menjalankan Skrip
Setelah Skrip selesai dibuat, buka model Simulink yang akan dijalankan kemudian
klik tombol Run di MATLAB. Skrip akan mulai berjalan dan tunggu hingga proses selesai.

[979/1188] Loc 80%, Ron ©.9@L1 Ohm, Beban 146 MW / 41 kyar, Sudut @ deg, fault ABC.4..
selesai.

[988/1188] Loc 8@%, Ron @.8@1 Ohm, Beban 146 MW / 41 Mvar, Sudut 45 deg, fault ABC ...
selesai.

[981/1188] Loc 80%, Ron ©.881 Ohm, Beban 146 MW / 41 Mvar, Sudut 98 deg, fault ABC ...
selesai.

[982/1188] Loc 8@%, Ron @.8@1 Ohm, Beban 46.7 MW / 18.6 Mvar, Sudut @ dsg, fault ABC ...

Gambar 3.11 Skrip Generating Data sedang berjalan

|418//1188 | LOC Yok, KON 1> unm, oE0an 4b./ MW f 15.0 MVar, >udut &> 4€g, Tault ADLO ...
selesai.
[1188/1188] Loc 98X, Ron 15 Ohm, Beban 46.7 MW / 18.6 Mvar, Sudut 9@ deg, fault ABCG ...
selesai.

Alhamdulillah selesai! 1188 set data generated.
Total waktu: 5162.80 s.

Gambar 3.12 Skrip selesai dijalankan
Gambar 3.11 dan 2.12 menunjukkan tampilan ketika skrip sedang berjalan
hingga selesai. Setelah proses selesai maka akan muncul beberapa item di

workspace.
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Name Value
|£ dataset_fitur 1188=8 double -
|E dataset_label 1188=1 cell

Gambar 3.133 Item yang muncul di Workspace

Di antaranya yaitu dua matriks utama dengan nama dataset_fitur dan dataset label

yang ditunjukkan pada gambar 3.13.

3.3.3 Ekstraksi Fitur dan Pembentukan Dataset

Sebelum diproses lebih lanjut, data mentah hasil simulasi perlu diubah menjadi
sebuah set fitur yang ringkas sekaligus informatif. Proses ini sangat krusial karena
meskipun lengkap, data mentah tidak efisien dan tidak optimal untuk digunakan

secara langsung dalam pelatihan model Jaringan Saraf Tiruan (JST).

1. Analisis Data Mentah Hasil Simulasi

Setiap eksekusi simulasi menghasilkan sebuah objek simout yang di dalamnya
terdapat variabel mlp_input. ~Data - sinyal mentah tersimpan dalam
simout.mlp_input.signals.values berupa sebuah matriks numerik berjenis double
dengan dimensi 10041 baris x 7 kolom. Setiap kolom pada matriks ini
merepresentasikan satu sinyal pengukuran (Vabc, Iabe, dan10), dan setiap barisnya

merupakan seluruh pembacaan nilai sinyal tersebut pada satu titik waktu diskrit.



47

B ‘ simout > | simout mlp_input % | dataset_label x | simout. mip_input.signals.values x |
[ 100417 double

i 1 | 2 ‘ 3 | 4 | 3 ‘ 6 | 7

5922 | -3.9563e+04 -6.4428e+04 1.03909e+05 -4.0747e+03 -2.2380e+03 6.3127e+03  4.1678e-11
5823 | -3.8031e+04 -6.5721e+04 1.0375e+05 -3.9967e+03 -2.3319e+03 6.3286e+03  4.1762e-11
5924 | -36490e+04 -66999e+04 10349e+05 -39177e+03 -24252e+03 6.3429e+03  42533e-11
5925 | -3.493%e+04 -6.8260e+04 1.0320e+05 -3.8377e+03 -2.5180e+03 6.3557e+03  4.2125e-11
5026 | -3.3380e+04 -6.9505e+04  1.0288e+05 -3.7567e+03 -2.6101e+03 6.3668e+03  4.1820e-11
5827 | -31812e+04 -7.0732e+04 10254e+05 -3 6748e+03 -27016e+03 6.3764e+03  40831e-11
5928 | -3.0237e+04 -7.1942e+04 1.0218e+05 -35921e+03 -2.7924e+03 6.3845e+03  4.1131e-11
5929 | -2.8654e+04 -7.3134e+04 1.0179e+05 -3.5084e+03 -2.8826e+03 6.391 4.4365e-1
5830 | -27065e+04 -7.4307e+04 10137e+05 -3423%e+03 -29720e+03 3 w\d\%—ﬂghﬁ
5931 | -2.5468e+04 -7.5463e+04  1.0093e+05 -3.3385e+03 ; H

5932 | -2.3865e+04 -7.6600e+04 10047e+05 -32523e+03
5033 | -2.2256e+04 7.7718e+04 9.9974e+04 -3.1653e+03 -3
5034 | -2.0642e+04 -7.8817e+04 9.9459e+04 '#
5835 | -19023e+04 -7.9896e+04 9.8919e+04
5936 | -1.7399e+04 -8.0956e+04
5837 | -1.5771e+04 -8.1996e+04
5938 | -1413%e+04 -83015e+04
5939 | -1.2503e+04 -8.4014e+0
5840 | -1.0864e+04
5841 | -9.2230e+03
5942 | -7.5793e+03
5843 | -5.9336e+03 -8.7801e+0
5044 | -4.2866e+03
5045 | -2.6387e+03
58248 9899395 -9.0414e+04
5947 659151 79.12416*04.
5948 23078e+03 -9.2045e+04
5842 39560e+03 -9.2826e+04
5950 5.6034e+03 -0.3585e+04
5951 7.2493e+03  -9.4327e+04
5952 8.8932e+03 -95033e+04
5953 1.0535e+04 -0.5721e+04

5954 1.2175e+04 -9.6387e+04 ” w@ ﬂ g 3 u l n
5955 1.381e+04 -9.7028e+04 e+04 0 ¥ 008 a 3476
a2t | - é. ¢ .

5956 | 1.5443e+04 -0.7646e+04
5857 | 1.7073e+04 -0.8239e+04

kel melan

— il !

Gambar 3.14 Contoh cuplikan data mentah hasil simulasi

Data seperti pada Gambar 3.14 tidak dapat digunakan secara langsung untuk

pelatihan model JST karena beberapa alasan fundamental:

a. Dimensionalitas yang Sangat Tinggi: 10041 adalah banyaknya seluruh titik
pengukuran selama simulasi berjalan, baik sebelum, saat, maupun setelah

terjadi gangguan. Menggunakan 10041 titik data untuk setiap sinyal sebagai
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input akan menciptakan model dengan jumlah parameter yang terlalu besar
dan memerlukan data dalam jumlah jutaan untuk dilatih dan sangat rentan
terhadap overfitting.

Informasi yang Berulang (Redundant): Sebagian besar titik data dalam
sinyal (terutama sebelum dan jauh setelah gangguan) tidak mengandung
informasi yang relevan untuk klasifikasi.

Banyaknya noise dan kurang representatif: Bentuk gelombang mentah
sangat sensitif terhadap noise. Oleh karena itu diperlukan data yang lebih

stabil untuk merepresentasikan masing-masing bentuk gangguan secara jelas.

Ekstraksi Fitur Energi Menggunakan Discrete Wavelet Transform (DWT)

Untuk mengatasi masalah di atas, dilakukan proses ekstraksi fitur untuk

mereduksi dimensi dan menangkap esensi dari sinyal gangguan dengan tahapan

berikut:

a.

Mengambil Jendela Transien: Langkah pertama adalah mengisolasi bagian
sinyal tertentu yang paling kaya akan informasi, untuk kemudian diproses
menjadi bentuk informasi yang lebih representatif. Dalam hal ini'digunakan
sinyal saat transien gangguan terjadi. Digunakan jendela waktu (time window)
sepanjang 0.02 detik (setara dengan satu siklus penuh pada frekuensi 50 Hz)
yang dimulai tepat pada saat gangguan terjadi (fault_inception_time = 0.2
detik) hingga 0.22 detik. Pemilihan jendela satu siklus ini bertujuan untuk
menangkap seluruh fenomena transien awal sebagaimana telah dibahas pada

bab 2 tentang dc offset dan analisis transien.

Melakukan Transformasi Wavelet: Pada setiap sinyal di dalam jendela
transien tersebut dilakukan transormasi wavelet menggunakan mother wavelet
Daubechies 4 (db4). Sebagaimana telah dibahas pada Bab 2, Discrete Wavelet
Transform (DWT) sangat efektif dalam menganalisis sinyal non-stasioner
seperti sinyal gangguan karena kemampuannya memisahkan komponen
frekuensi tinggi (yang merepresentasikan transien) dari frekuensi rendah.

Proses ini  diimplementasikan  dalam  skrip  sebagai  berikut:
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% Mengambil jendela transien dari data mentah

start_index = find(simout.tout >= fault _inception_time, 1, 'first’);

end index =  find(simouttout >=  (fault_inception_time +
window_duration), 1, 'first’);

Jjendela_transien = data_mentah(start_index:end_index, :);

% Loop untuk setiap sinyal (Vabc, labc, 10)
for sinyal_idx = 1:size(jendela_transien, 2)
satu_sinyal = jendela_transien(:, sinyal_idx);
% Menerapkan DWT dan mengambil koefisien detail (cD)
[~ ¢D] = dwt(satu_sinyal, 'db4));
% Menghitung energi dari koefisien detail
energi = sum(cD.”2),
baris_fitur_dwi(sinyal idx) = energi;

end

Hasil dari DWT adalah koefisien detail (cD) yang merepresentasikan komponen
frekuensi tinggi dari sinyal. Sebagaimana telah dipaparkan pada bagian 2.2.3.3
tentang Aplikasi DWT, nilai ini akan diubah menjadi satu nilai energi dari
koefisien tersebut. Energi didapatkan dengan menjumlahkan kuadrat dari
koefisien detail (sum(cD.”2)) menggunakan persamaan (2.7). Proses ini

menghasilkan 7 fitur energi untuk setiap sampel data.

3. [Ekstraksi Fitur Tambahan Arus Urutan Nol (10)
Untuk memperkuat kemampuan klasifikasi model pada gangguan yang

melibatkan tanah, ditambahkan satu fitur yang mengambil data dari pembacaan arus

10.
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Gambar 3.15 Pembacaan Arus 10 pada gangguan AG, BG, ABG

Dilakukan observasi pada bentuk gelombang arus I0 untuk berbagai macam
jenis gangguan. Observasi ini menemukan bahwa ketika terjadi gangguan, arus
urutan nol (I0) akan mulai mengalir pada rentang antara 0.3 hingga 0.33 detik
seperti beberapa sampel pada Gambar 3.15. Berdasarkan temuan ini, kemudian

diambil jendela waktu dalam rentang waktu tersebut.

Fitur ini dihitung dengan menjumlahkan total amplitudo dari sinyal 10 dalam
jendela waktu yang telah ditentukan. Selanjutnya, nilai total ini dikalikan dengan
faktor 100. Penskalaan ini bertujuan untuk mengamplifikasi nilai fitur terutama
pada kasus ketika arus 10 sangat kecil (mendekati nol). Dengan demikian,
perbedaan nilai antara kondisi "ada arus 10" dan "tidak ada arus 10" menjadi lebih

signifikan. Perhitungan ini diimplementasikan dalam cuplikan program berikut:

sumiQ = sum(abs(sinyali0)) * 100;



4. Pembentukan Dataset Final
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7554808
5.54148-09 5533973
6.0019e-10 453.7974
15104e-09 7525610
7.0813e-09 562.0729
6.7967e-10 459.8822
2.11148-08 766.4625
1.0344e-11 218.4795
3.1045e-09 7193163

Gambar 3.177 Hasil dataset_fitur di Workspace MATLAB
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Setiap satu kali simulasi selesai dijalankan, delapan fitur yang telah diekstraksi
(tujuh fitur energi + satu fitur jumlah 10) disusun menjadi satu baris data baru.
Tlustrasi pada Gambar 3.16 menunjukkan bahwa proses ini diulangi untuk seluruh
1188 skenario simulasi gangguan atau hingga simulasi ke-n. Kemudian hasilnya
diakumulasi menjadi sebuah matriks dataset fitur dengan dimensi 1188 x 8. Setiap
baris dalam matriks ini merepresentasikan satu sampel data dari setiap simulasi, dan
setiap kolom merepresentasikan satu fitur digunakan model dalam proses pelatihan.

Hasil akhir proses ini ditunjukkan pada Gambar 3.17.

dataset_label X
[[] 1188%1 cell

0| | : e

@
Q

26 |'BC

@
Q

28 |'BC
29 |BC

Gambar 3 18 Hasil dataset label di Workspace MATLAB

Secara paralel, menunjukkan untuk setiap skenario simulasi yang dijalankan,
label kelas yang sesuai dengan jenis gangguan (misalnya, 'AG', 'BCG'") juga
ditambahkan. Akumulasi dari seluruh 1188 simulasi ini kemudian membentuk
sebuah matriks dataset label di workspace MATLAB dengan dimensi 1188 x1
seperti pada cuplikan pada Gambar 3.18. Data ini berfungsi sebagai target atau
"kunci jawaban" yang bersesuaian langsung dengan setiap baris pada dataset_fitur

dan akan digunakan oleh model selama proses pelatihan.
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3.3.4 Persiapan Data untuk Pelatihan Model

Sebelum dapat digunakan untuk melatih model, data harus disesuaikan dengan
environment yang dibutuhkan di MATLAB. Tahap ini mencakup dua proses utama:
encoding label target dan transposisi matriks data.

Model Multi-Layer Perceptron tidak dapat memproses data target yang masih
dalam format teks (misalnya, 'AG', 'BCG'"). Oleh karena itu, format ini diubah
menjadi numerik menggunakan teknik One Hot Encoding. Proses ini mengubah
setiap label kelas menjadi sebuah vektor biner yang panjangnya sama dengan
jumlah total kelas (11). Vektor ini akan berisi nilai 0 di semua posisi kecuali pada
satu indeks yang merepresentasikan kelas tersebut akan bernilai 1.

Sebagai contoh, label 'AG' akan dipetakan ke indeks 1, kemudian
menghasilkan bentuk One Hot [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]. Proses ini dieksekusi

dengan cuplikan program berikut:

for i = 1:jumlah_sampel
label = dataset_label{i};
label _nomor = 0;
% indexing dari [ - 11
switch label
case 'AG'
label nomor =1I;
case 'BG’
label nomor = 2;
(dan seterusnya hingga indeks 11)
if label nomor > 0
one_hot = zeros(1, jumlah_kelas),
one_hot(label nomor) = 1;

dataset label encoded(i, :) = one_hot;

Fungsi pelatihan MATLAB mensyaratkan data masukan harus dalam format

[jumlah fitur X jumlah sampel] dan data target [jumlah kelas x jumlah sampel].
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Oleh karena itu dilakukan transposisi matrik sesuai dengan cuplikan program

berikut:

Y = dataset label encoded';
X = dataset_fitur';

Hasil dari proses ini adalah dua matriks final yang sudah sesuai dengan dimensi

yang diperlukan untuk pelatihan model:

—  X: Matriks input dengan dimensi 8 % 1188.
— Y: Matriks target dengan dimensi 11 x 1188.

3.3.5 Pelatihan Model Multi-Layer Perceptron

Setelah data yang diperlukan sudah siap dalam format yang sesuai, tahap
selanjutnya adalah proses pelatihan dan validasi model Multi-Layer Perceptron
(MLP). Tahapan ini mencakup pembagian dataset, konfigurasi arsitektur dan

parameter pelatihan, serta evaluasi kinerja model yang sudah terlatih.

1. Pembagian Dataset (Latih, Validasi, dan Uji)

Sesuai dengan praktik standar pelatihan model kecerdasan buatan yang telah
diuraikan pada Bab 2, dataset dibagi menjadi tiga bagian yaitu: 70% untuk data latih
(Training Set), 15% untuk data validasi (Validation Set), dan 15% untuk data uji
(Test Set).

Proses pembagian acak ini diimplementasikan menggunakan fungsi divideParam
sesuai dengan cuplikan program berikut:

% split data
net.divideParam.trainRatio = 0.70;
net.divideParam.valRatio = 0.15;

net.divideParam.testRatio = 0.15;

2. Konfigurasi Arsitektur Jaringan dan Parameter Pelatihan
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Jaringan Multi-Layer Perceptron dalam penelitian ini dibangun menggunakan
perintah net = feedforwardnet(). Arsitektur yang digunakan adalah sebagai
berikut:

a. Input Layer: Jumlah neuron pada lapisan ini ditentukan berdasarkan

dimensi matriks input X. Dalam penelitian ini, input layer akan memiliki
8 neuron.

b. Hidden Layers: Digunakan dua lapisan tersembunyi (hidden layers) pada
jaringan ini. Lapisan pertama memiliki 22 neuron, dan lapisan tersembunyi
kedua memiliki 10 neuron.

c.  Output Layer: Sama seperti input layer, jumlah neuron pada lapisan ini
juga ditentukan berdasarkan dimensi matriks target Y. Dalam penelitian

ini, digunakan 11 neuron.

Adapun Dbeberapa parameter dan | algoritma untuk pelatihan model
menggunakan pengaturan default dari Deep Learning Toolbox, sebagai berikut:
a. Fungsi Aktivasi: Hyperbolic Tangent Sigmoid (tansig) untuk hidden layer,
dan Linear (purelin) untuk output layer.
b. Algoritma Pelatihan: Levenberg-Marquardt (trainlm).
c. Fungsi Kinerja (Loss Function): Mean Squared Error (MSE)
d. Jumlah Epoch Maksimal: 1000 epoch.
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subobjects:

input: Equivalent to inputs{1}
output: Equivalent to outputs{3}

inputs: {1x1 cell array of 1 input}
layers: {3x1 cell array of 3 layers}
outputs: {1x3 cell array of 1 output}
bisses: {3x1 cell array of 3 biases}
inputweights: {3x1 cell array of 1 weight}
layeriWeights: {3x3 cell array of 2 weights}

functions:

adaptFen: *adaptub’
adaptParam: (none)

"defaultderiv’
‘dividerand"

divideParam: .trainRatio, .valRatio
divideMode: 'sample"’
initFen: "initlay’
performFen: *
performParam:
plotFens:

Gambar 3.19 Bebera
AN
Beberapa parameter, fung

pada Gambar 3.19.

3. Proses Pelatihan dan

. ‘:ﬁ' &g i:-'

elanjutnya, proses pe ' g

MATLAB. \ UNI?SU LA

el gl telynala
L

% Inisiasi proses pelatiha

[net, tr] = train(net, X, Y);\
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[¥ Neural Network Training (12-Aug-2025 17:08:37) - [m] X
Network Diagram

Training Results
Epoch: 31 of 1000

Training Progress

Unit Initial Value Current Value Target Value
Epoch 0 | 31 1000
Elapsed Time = 00:00:31

Performance 0534 00393 | 0

Gradient 0.827 0.246 1607
Mu 0.001 16-05 104107 iy :
Validation Checks 0 1 5 s

Training Algorithms

Data Division: Random dividerand

Tralning Levenberg-Marqualdt_ #Fainim
Performance: Mean Squared Enor mise
Calculations:  MEX

Training Plots

| Parformance i Training State j

(o &Y )

| Error Histogram

Gambar 3.20 Proses pelatihan model sedang berjalan

Fungsi ini menjalankan proses pelatihan secara iteratif yang berjalan epoch-by-
epoch. Dalam setiap epoch, model akan secara aktif belajar dengan menggunakan
data latih. Error yang dihitung dari data ini digunakan oleh algoritma
backpropagation untuk memperbarui dan mengoptimalkan seluruh bobot sinaptik
(synaptic weight) di dalam jaringan. Proses ini bertujuan meminimalkan kesalahan
prediksi pada data yang sedang dipelajari. Pelatihan yang sedang berjalan
ditunjukkan pada Gambar 3.20.

Setelah bobot diperbarui, performa model dievaluasi menggunakan data
validasi. Error dari data ini tidak digunakan untuk mengubah bobot, melainkan
hanya untuk memonitor kemampuan generalisasi. Jika performa pada data validasi
tidak mengalami peningkatan atau mulai menurun, mekanisme early stopping akan
berjalan. Hal ini bertujuan untuk mencegah overfitting dan menyimpan versi model
dengan performa validasi terbaik. Fungsi frain menghasilkan dua output penting
yang tersimpan di workspace MATLAB:

a. net: Objek jaringan Multi-Layer Perceptron yang sudah terlatih dengan semua

bobot sinaptik final yang telah dioptimalkan.
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b. tr: Sebuah training record yang berisi semua informasi historis dari proses

pelatihan
= | netx |
1=1 network
Property |\m..= Size Class
[=] version 3 1=1 char
[=] name ‘Feed-Forward Neur... 1=27 char
[ emiciency | 1=1 struet 1x1 struct
[E] userdata 1x1 struct 1x1 struct
[ numinputs 1 1x=1 ‘double
[EH numLayers 1=1 double
[ numoutputs 1x1

[EH numinputDelays

[{H numLayerDelays

[ numFeedbackDelays
[ numweightElements
[{H sampleTime
biasConnect 3x1 logical
inputConnect cal
layerConnect
outputConnect
[T3] inputs.
[3] 1ayers.
[ biases

-~ oo o= w

trainParam nnetParam.

71 nas 4 v
«

TR— ‘
Gambar 3.21 Hasil dari Jari ngan | as  weig
Gambar 3.22 hasil dari Jari > tela h dengan bias d a
telah disesuaikan dengan taj “w W nl ? 9 1“ E &
L] L]
Selanjutnya, dilakukan taha i o 'r JL&LWL* :

| N
pernah dilihat oleh model. Pef‘tl diekstraksi-dari-mattiks X dan

menggunakan indeks yang tersimpan di #r.testInd. Kemudian, model net yang telah
terlatih digunakan untuk membuat prediksi pada data uji tersebut. Proses ini
diimplementasikan sesuai cuplikan program berikut:

% Ekstraksi data uji dan pembuatan prediksi

idxTest = tr.testInd;

XTest = X(:, idxTest);

YTest onehot = Y(:, idxTest);
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% Melatih jaringan yang sudah terlatih dengan data uji
Y pred onehot = net(XTest);

4. Evaluasi Kinerja Model

Confusion Matrix - Akurasi Test: 73.33%

] AN

s 2

|

m | I
1
i B B 5 T

6
Predicted Class

Gambar 3.23 Contoh Confusion Matrix

True Class
@

|
\
o

Untuk mengukur performa model secara kuantitatif digunakan akurasi, yang
dihitung dari Confusion Matrix seperti pada Gambar 3.22. Confusion Matrix adalah
sebuah tabel yang memvisualisasikan kinerja model dengan membandingkan antara
kelas aktual dari data uji (7rue Class) dan kelas yang-diprediksi oleh model
(Predicted Class). Diagonal utama dari matriks ini menunjukkan jumlah prediksi
yang benar, sementara elemen di luar diagonal menunjukkan kesalahan klasifikasi
yang dilakukan oleh model.

Adapun akurasi mengukur persentase total prediksi yang benar dari

keseluruhan data uji. Akurasi dihitung dengan rumus pada persamaan (2.3) .

__ Jumlah Prediksi Benar

Akurasi = x 1009
Total Jumlah Data Uji %

Akurasi ini akan menjadi tolok ukur utama untuk menentukan keberhasilan model
dalam mengklasifikasikan jenis gangguan secara tepat. Proses evaluasi kinerja

model ini diimplementasikan menggunakan cuplikan program berikut:
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% Hitung akurasi

correct_predictions = sum(Y_pred == YTest labels);
total _samples = numel(YTest labels);

accuracy = (correct_predictions / total_samples) * 100;
% Plot confusion matrix

confusionchart(YTest _cat_from_labels, Y ,,_;'

E

UNISSULA
?ﬁﬂ-!.-.gj_{'l@pbmh
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3.4 Diagram Alir |Pene|itian| [Commented [ik5]: Menambahkan narasi untuk flow chart }

Penelitian dilaksanakan dalam beberapa tahapan yang ditunjukkan pada tiga
diagram alir berikut:

a. Pembuatan Simulasi dan Pembentukan Dataset Awal

Mulai

Perancangan model simulasi transmisi
tegangan tinggi di Simulink

l

Menjalankan simulasi 11 jenis gangguan
secara berulang dengan perubahan
parameter

l

Akuisisi sinyal mentah (\/abc, labe, 10}

|

Pembentukan dataset sinyal mentah

l

Dataset awal (Mentah)

Selesai

Gambar 3.24 Diagram alir pembentukan dataset mentah

Tahap ini menghasilkan outuput berupa dataset awal yang akan diproses
lebih lanjut.
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b. Ekstraksi Fitur dan Pemrosesan Data

/[]atasetawal (Mentah) /

!

Dekomposisi data menggunakan Discrete
Wavelet Transforim (DWT)

Menghitung nilai energi
koefisien detail ;

Men; |

Menggabungkan 7 a |
dan 1 1 [

Pembentukan dataset Iil
L
\ i
L1

L] E -

4
Dataset Fin
(dataset_fitur, datas

Gambar 3.24 Diagram alir ekstraksi fitur

Data mentah dari tahap sebelumnya diproses menggunakan energi wavelet untuk
menghasilkan output akhir berupa dua buah dataset final
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c. Pelatihan, Evaluasi, dan Optimasi Model

Dataset Final
(dataset_fitur, dataset_label)

¥+

Persiapan data (Transposisi, One-Hot
Encoding, & Pembagian Dataset Latih,
Walidasi, Uji)

i

dataset yang telah disesuaikan
untuk pelatihan model

——

)\ UNISsuULA

[
A

Gambar 3.25 Diagram alir pelatihan model MLP

Pada tahap ini, dataset final dari proses sebelumnya digunakan lebih lanjut untuk melatih
model Multi-Layer Perceptron hingga menghasilkan model yang optimal.



BAB 1V
HASIL DAN ANALISIS

4.1 Hasil Simulasi

Pada sub-bab ini, disajikan hasil dari beberapa sampel simulasi sistem tenaga
yang telah dirancang sesuai dengan metodologi pada Bab III. Hasil yang
ditampilkan adalah bentuk gelombang sinyal mentah dari tegangan (Vanc), arus

(Tabe), dan arus residual (I0) untuk berbagai skenario.

Gambar 4.1 Panduan representasi warna untuk gelombang tiga fasa ABC

Untuk mempermudah identifikasi visual pada seluruh gambar sinyal, Fasa A
direpresentasikan oleh warna kuning, Fasa B oleh warna biru, dan Fasa C olch
warna oranye sebagaimana ditunjukkan pada Gambar 4.1.

4.1.1 Sinyal Kondisi Sistem Normal

Gambar 4.2 Sinyal Kondisi Sistem Normal (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus
10

64
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Analisis sinyal pada Gambar 4.2 menunjukkan sistem yang beroperasi dalam
kondisi normal dan seimbang. Sinyal tegangan dan arus tiga fasa menunjukkan
bentuk gelombang sinusoidal yang sempurna, dengan magnitudo yang identik dan
pergeseran fasa sebesar 120 derajat antara satu sama lain. Karakteristik dari kondisi
sistem normal ini divalidasi oleh sinyal arus I0 yang bernilai nol. Hal
inimengkonfirmasi bahwa tidak ada ketidakseimbangan atau jalur arus bocor ke
tanah pada sistem.

4.1.2 Sinyal Gangguan Satu Fasa ke Tanah
a. Gangguan Fasa A ke Tanah (A-G)

Gambar 4.3 Sinyal Gangguan Fasa A-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus I0
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Analisis sinyal tegangan pada Gambar 4.3 menunjukkan sistem yang awalnya
beroperasi dalam kondisi seimbang dengan ketiga fasa memiliki magnitudo yang
identik. Saat gangguan terjadi, terjadi penurunan tegangan yang sangat drastis pada
Fasa A. Fenomena ini merupakan karakteristik dari hubung singkat yaitu impedansi
yang sangat rendah pada titik gangguan menyebabkan tegangan pada fasa tersebut
jatuh. Sementara itu, fasa B dan C tetap mengalami distorsi sebagai akibat dari
ketidakseimbangan yang terjadi pada sistem.

Sejalan dengan jatuhnya tegangan, sinyal arus pada fasa A menunjukkan
lonjakan magnitudo yang sangat besar dan disertai dengan distorsi transien.
Fenomena ketidakseimbangan ini juga divalidasi oleh adanya aliran arus 10. Hal ini
mengkonfirmasi bahwa gangguan yang terjadi bersifat asimetris dan memiliki jalur

hubung singkat ke tanah.

b. Gangguan Fasa B ke Tanah (B-G)



67

Mot

-
f

i

WAL A

Gambar 4.4 Sinyal Gangguan Fasa B-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus 10

Analisis sinyal tegangan pada Gambar 4.4 menunjukkan sistem yang awalnya
beroperasi dalam kondisi normal dan seimbang. Ketika gangguan terjadi, sistem
mengalami jatuh tegangan (voltage sag) yang signifikan pada Fasa B. Fenomena
ini merupakan karakteristik dari hubung singkat yaitu impedansi yang rendah pada
titik gangguan menyebabkan tegangan pada fasa tersebut jatuh. Sebagai
dampaknya, fasa A dan C juga ikut mengalami distorsi akibat ketidakseimbangan
sistem.

Bersamaan dengan penurunan tegangan tersebut, sinyal arus pada Fasa B
mengalami lonjakan magnitudo yang masif dan disertai distorsi transien. Validasi

bahwa gangguan ini melibatkan tanah diperkuat oleh munculnya aliran arus 10 yang
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sebelumnya bernilai nol. Kombinasi fenomena ini mengkonfirmasi bahwa
gangguan yang terjadi bersifat asimetris dan memiliki jalur hubung singkat ke

tanah.

c. Gangguan Fasa C ke Tanah (C-G)

Gambar 4.5 Sinyal Gangguan Fasa B-C (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus I0

Analisis sinyal tegangan pada Gambar 4.5 menunjukkan sistem yang pada
awalnya berjalan seimbang. Saat gangguan terjadi, Fasa C secara spesifik
mengalami jatuh tegangan yang drastis. Penurunan tegangan ini adalah ciri khas
dari gangguan hubung singkat, di mana impedansi rendah pada titik gangguan
menyebabkan tegangan pada fasa tersebut turun secara signifikan. Sementara itu,

ketidakseimbangan ini juga menyebabkan distorsi pada fasa A dan B.
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Sebagai konsekuensinya, sinyal arus pada Fasa C menunjukkan lonjakan
magnitudo yang sangat besar disertai distorsi transien. Fenomena
ketidakseimbangan ini divalidasi oleh kemunculan arus 10, yang secara definitif
mengkonfirmasi bahwa gangguan ini bersifat asimetris dan memiliki jalur hubung

singkat ke tanah.

4.1.3 Sinyal Gangguan Dua Fasa ke Tanah
a. Gangguan Fasa AB ke Tanah (A-B-G)

Gambar 4.6 Sinyal Gangguan Fasa A-B-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus
10

Analisis sinyal tegangan pada Gambar 4.6 menunjukkan sistem yang pada

awalnya beroperasi dalam kondisi seimbang. Ketika gangguan terjadi, Fasa A dan
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Fasa B secara bersamaan mengalami penurunan tegangan yang sangat drastis.
Fenomena ini merupakan karakteristik hubung singkat, di mana impedansi yang
sangat rendah pada titik gangguan menyebabkan tegangan pada kedua fasa tersebut
jatuh. Sementara itu, Fasa C mengalami distorsi akibat ketidakseimbangan yang
terjadi pada sistem.

Sejalan dengan jatuhnya tegangan, sinyal arus pada Fasa A dan Fasa B
menunjukkan lonjakan magnitudo yang sangat besar, disertai dengan distorsi
transien. Adanya aliran arus 10 yang signifikan juga memvalidasi bahwa gangguan
yang terjadi melibatkan hubung singkat ke tanah.

b. Gangguan Fasa AC ke Tanah (A-C-G)

Gambar 4.7 Sinyal Gangguan Fasa A-C-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus
10
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Analisis sinyal tegangan pada Gambar 4.7 menunjukkan sistem yang pada
awalnya beroperasi dalam kondisi seimbang. Ketika gangguan terjadi, Fasa A dan
Fasa C secara bersamaan mengalami penurunan tegangan yang sangat drastis.
Fenomena ini merupakan karakteristik hubung singkat, di mana impedansi yang
sangat rendah pada titik gangguan menyebabkan tegangan pada kedua fasa tersebut
jatuh. Sementara itu, Fasa B mengalami distorsi akibat ketidakseimbangan yang
terjadi pada sistem.

Sejalan dengan jatuhnya tegangan, sinyal arus pada Fasa A dan Fasa C
menunjukkan lonjakan magnitudo yang sangat besar, disertai dengan distorsi
transien. Adanya aliran arus 10 yang signifikan juga memvalidasi bahwa gangguan

yang terjadi melibatkan hubung singkat ke tanah.
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c. Gangguan Fasa BC ke Tanah (B-C-G)

Gambar 4.8 Sinyal Gangguan Fasa B-C-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus
10

Analisis sinyal tegangan pada Gambar 4.8 menunjukkan sistem yang pada
awalnya beroperasi dalam kondisi seimbang. Ketika gangguan terjadi, Fasa B dan
Fasa C secara bersamaan mengalami penurunan tegangan yang sangat drastis.
Fenomena ini merupakan karakteristik hubung singkat, di mana impedansi yang
sangat rendah pada titik gangguan menyebabkan tegangan pada kedua fasa tersebut
jatuh. Selain itu, Fasa A yang tidak langsung terhubung dengan gangguan juga
mengalami distorsi akibat ketidakseimbangan yang terjadi pada sistem.

Sejalan dengan jatuhnya tegangan, sinyal arus pada Fasa A dan Fasa B

menunjukkan lonjakan magnitudo yang sangat besar, disertai dengan distorsi
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transien. Adanya aliran arus 10 yang signifikan juga memvalidasi bahwa gangguan

yang terjadi melibatkan hubung singkat ke tanah.

4.1.4 Sinyal Gangguan Tiga Fasa ke Tanah (A-B-C-G)

Gambar 4.9 Sinyal Gangguan Fasa A-B-C-G (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal
Arus 10

Analisis sinyal tegangan pada Gambar 4.9 menunjukkan sistem yang awalnya
beroperasi dalam kondisi seimbang. Saat gangguan terjadi, ketiga fasa (A, B, dan
C) secara serentak mengalami penurunan magnitudo tegangan yang signifikan.

Fenomena ini merupakan ciri khas dari gangguan simetris, di mana hubung singkat
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terjadi pada seluruh fasa secara bersamaan sehingga sistem yang terganggu masih
berada pada kondisi yang relatif seimbang.

Sejalan dengan penurunan tegangan, sinyal arus pada ketiga fasa menunjukkan
lonjakan magnitudo yang sangat besar. Pembeda utama dari gangguan ini adalah
adanya aliran arus 10 residual meski magnitudonya tidak sebesar gangguan
asimetris lainnya. Hal ini menunjukkan bahwa fenomena yang terjadi adalah

gangguan tiga fasa ke tanah.

4.1.5 Sinyal Gangguan Fasa ke Fasa
a. Gangguan Fasa A-B

Gambar 4.10 Sinyal Gangguan Fasa A-B (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus I0
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Analisis sinyal tegangan pada Gambar 4.10 menunjukkan sistem yang pada
awalnya beroperasi dalam kondisi seimbang. Saat gangguan terjadi, Fasa A dan
Fasa B mengalami penurunan tegangan yang signifikan. Sementara itu, Fasa C yang
tidak terlibat langsung dalam gangguan, cenderung mempertahankan magnitudo
tegangannya meskipun turut mengalami distorsi akibat ketidakseimbangan sistem.

Sejalan dengan perubahan tegangan, sinyal arus pada Fasa A dan Fasa B
menunjukkan lonjakan magnitudo yang sangat besar. Karakteristik paling penting
dari gangguan ini adalah tidak adanya aliran arus 10 yang mengkonfirmasi bahwa
gangguan terjadi karena hubungan antar fasa dan tidak memiliki jalur langsung ke
tanah.

b. Gangguan Fasa A-C

Gambar 4.11 Sinyal Gangguan Fasa A-C (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus 10
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Analisis sinyal tegangan pada Gambar 4.11 menunjukkan sistem yang pada
awalnya beroperasi dalam kondisi seimbang. Saat gangguan terjadi, Fasa A dan
Fasa C mengalami penurunan tegangan yang signifikan. Sementara itu, Fasa B yang
tidak terlibat langsung dalam gangguan, cenderung mempertahankan magnitudo
tegangannya meskipun turut mengalami distorsi akibat ketidakseimbangan sistem.

Sejalan dengan perubahan tegangan, sinyal arus pada Fasa A dan Fasa C

menunjukkan lonjakan magnitudo yang sangat besar. Karakteristik paling penting

tanah.

&9
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c. Gangguan Fasa B-C

Gambar 4.12 Sinyal Gangguan Fasa B-C (a) Sinyal Arus; (b) Sinyal Tegangan; (¢) Sinyal Arus 10

Analisis sinyal tegangan pada Gambar 4.12 menunjukkan sistem yang pada
awalnya beroperasi dalam kondisi-seimbang. Saat gangguan-terjadi, Fasa -B-dan
Fasa C mengalami penurunan tegangan yang signifikan. Sementara itu, Fasa A
yang tidak terlibat langsung dalam gangguan, cenderung mempertahankan
magnitudo  tegangannya meskipun turut mengalami distorsi akibat
ketidakseimbangan sistem.

Sejalan dengan perubahan tegangan, sinyal arus pada Fasa B dan Fasa C
menunjukkan lonjakan magnitudo yang sangat besar. Karakteristik paling penting

dari gangguan ini adalah tidak adanya aliran arus 10 yang mengkonfirmasi bahwa
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gangguan terjadi karena hubungan antar fasa dan tidak memiliki jalur langsung ke

tanah.

d. Gangguan Fasa A-B-C

> MMV, |

1
]
]

L AV iS |

Gambar 4.13 Sinyal Gangguan Fasa A-B-C (a) Sinyal Arus; (b) Sinyal Tegangan; (c) Sinyal Arus
10

Analisis sinyal tegangan pada Gambar menunjukkan sistem yang awalnya
beroperasi dalam kondisi seimbang. Saat gangguan terjadi, ketiga fasa (A, B, dan
C) secara serentak mengalami penurunan magnitudo tegangan yang signifikan.
Meskipun terjadi penurunan, sistem tetap berada dalam kondisi simetris selama

gangguan, yang merupakan ciri khas dari gangguan tiga fasa.
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Sejalan dengan penurunan tegangan, sinyal arus pada ketiga fasa menunjukkan
lonjakan magnitudo yang sangat besar. Karakteristik utama pada gangguan ini
adalah tidak adanya aliran arus 10 yang muncul. Hal ini secara definitif
mengkonfirmasi bahwa gangguan yang terjadi bersifat simetris dan hanya

melibatkan ketiga fasa tanpa hubungan langsung ke tanah.

4.2 Hasil Dataset dan Pemrosesan Data

Pada sub-bab sebelumnya telah ditampilkan hasil simulasi dalam bentuk
sinyal visual. Bagian ini akan menyajikan hasil dari pemrosesan sinyal tersebut ke
dalam bentuk data numerik di workspace MATLAB. Data numerik inilah yang
menjadi representasi aktual dari setiap skenario gangguan dan akan digunakan
secara langsung oleh model Multi-Layer Perceptron pada tugas akhir ini untuk
proses pelatihan dan klasifikasi.

4.2.1 Tujuh Fitur Energi Hasil Dekomposisi DWT

Sesuai metode pada bagian 3.3.3.2 tentang ekstraksi fitur menggunakan
DWT, tujuh sinyal (Iabe, Vabe, 10) diproses untuk menghasilkan nilai yang lebih
sederhana dan representatif.

Hasil tujuh fitur energi tersebut ditampilkan dalam gambar berikut:



= | dataset_fitur x

80

[ 1188x8 double

1169
1170
1171
1172
1173
1174
1175
1176
177
L1178
1179
1180
1181
1182
1183

1185
1186 |
1187
1188
1189
1190

Kolom 1-7 pada Gambar 4.14
(kolom 1-3), Tape (kolom 4-

1
1.0684e+09
2.1066e+09
2.8397e+09
1.6817e+09
4.9035e+09
2.7777e+09
1.8453e+09
5.2856e+09
1.6169e+07
3.8242e+09
8.3542e+09
6.7684e+05
4.3292e+09
8.7151e+09
1.6169e+07
3.8242e+09
8.3542e+09
6.7684e+05
4.3292e+09
8.7151e+09

4.0468e+09
1.5221e+09
1.3706e+09
1.8021e+09
5.3055e+08
1.5927e+09
1.9584e+09
5.1520e+08
5.9571e+09
7.9761e+09
2.4132e+09
6.5117e+09
8.1457e+09
2.2041e+09

5.9571e+
g / -
ol

4.0389e+09
1.5113e+09
2.8514e+09
1.6844e+09
4.8726e+09
2.7937e+09
1.8444e+09
5.2496e+09
6.5822e+09
7.5517e+08
1.7881e+09

e

2.1100e+03
4.1968e+03
5.1594e+03
3.8884e+03
8.7817e+03
5.1496e+03
4.2631e+03
9.4231e+03
78.2647
6.5251e+0

7.5673e+03
3.4928e+03
2.5710e+03
3.3839e+03
1.0059e+03

3.1568e+03
3.9113e+03
1.04 3

6.9475e+03
3.5998e+03
5.6426e+03
3.5731e+03
8.2729e+03
5.6370e+03
3.8434e+03
8.8656e+03

.1014e+04

0.0121
0.1434
0.0168
0.2266
0.3031
0.0201
0.2963
0.3163
1.3328e-23
1.0832e-23

1.5467e-23




81
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Sesuai metode pada bagian 3.3.4 , Matriks Input (X) dan Target/Output (Y)
yang telah disesuaikan dengan kebutuhan MATLAB ditunjukkan oleh Gambar 4.18.

x| 2 X x| Y x| dataset fiur x|

[ 8x1188 double

2
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4

5
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Gambar 4.18 (a) Hasil Matriks Input (X); (b) Matriks Target (Y)

Hasil akhir data yang telah disesuaikan yaitu matriks input (X) memiliki dimensi
8x1188 dan matriks target (¥) memiliki dimensi 11x1188
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4.3 Kinerja Model dan Optimasi

Pada sub-bab ini, akan disajikan secara bertahap hasil dari model dasar, analisis

kelemahannya, hingga serangkaian proses optimasi yang dilakukan untuk

meningkatkan akurasi dan kestabilan kinerja model dalam melakukan klasifikasi.

Sebagaimana langkah pada bagian 3.3.4 tentang penyesuaian data untuk

pelatihan, setiap jenis gangguan direpresentasikan oleh label numerik. Konversi

dari label jenis gangguan yang digunakan di seluruh sub-bab ini adalah sebagai

berikut:
Kelas 1: AG
Kelas 2: BG
Kelas 3: CG
Kelas 4: AB
Kelas 5: BC
Kelas 6: CA
Kelas 7: ABG
Kelas 8: BCG
Kelas 9: CAG
Kelas 10: ABC
Kelas 11: ABCG

4.3.1

Model Dasar

Model dasar yang dievaluasi pada percobaan awal menggunakan arsitektur

Multi-Layer Perceptron (MLP) yang terdiri dari:

Sebuah input layer dengan 7 neuron, sesuai dengan jumlah fitur energi.
Hidden layer pertama dengan 20 neuron.

Hidden layer kedua dengan 10 neuron.

Sebuah output layer dengan 11 neuron, sesuai dengan jumlah kelas

gangguan yang akan diklasifikasi.

Model ini dilatih dan diuji menggunakan dataset yang terdiri dari 198

sampel data. Dataset ini merupakan kombinasi dari 11 jenis gangguan yang

disimulasikan pada 2 nilai resistansi, dan 9 lokasi berbeda.
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Sesuai dengan metodologi yang dijelaskan pada Bab 3 bagian 3.3.5.3
tentang Proses Pelatihan Model, setiap kali sesi latihan dijalankan menggunakan
perintah frain, maka set data latih termasuk data uji akan diacak menggunakan
fungsi dividerand. Untuk mengevaluasi stabilitas dan konsistensi kinerja model,
dilakukan serangkaian pengujian berulang sebanyak dua puluh kali Run sesi

latihan. Hasil akurasi dari setiap pengujian disajikan sebagai berikut:

Tabel 4.1 Hasil akurasi dua puluh kali run model dasar

Run ke- | Akurasi (%)
1 73.33
2 73.33
3 76.67
4 76.67
) 70
6 73.33
74 76.67
8 86.67
o 80
10 76.67
11 66.67
12 76.67
13 70
14 76.67
15 73.33
16 63.33
17 76.67
18 70
19 83.33
20 76

.67
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Dengan persamaan (2.4) dan (2.5) didapatkan,

- Y X
n
Y X
20
x=7483
dan

<= v (g —x)?
n—1

L - 7483)°
$= 20—1

s= 535
Akurasi pada Tabgl 4

deviasi £5,35%,

True Class
@

7 8 9 10 "

1 2 3 4 5 6
Predicted Class

Gambar 4.19 Sampel Confusion Matrix untuk akurasi 66.67%
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Confusion Matrix - Akurasi Test: 70.00%

True Class
o
~

Predicted Class

Gambar 4.20 Sampel Confusion Matrix untuk akurasi 70%

Serangkaian hasil pengujian yang dilakukan juga menunjukkan informasi
secara umum mengenai kinerja model dalam melakukan klasifikasi. Gambar 4.19
dan Gambar 4.20 merupakan sampel confusion matrix ketika model mencapai
akurasi 66.67% dan 70%. Analisis menunjukkan pola kesalahan yang
terkonsentrasi pada tiga kelas. Kelemahan utama terletak pada Kelas 5, yang
seringkali salah diklasifikasikan sebagai Kelas 10 atau 11. Kesalahan ini bersifat
dua arah, di mana Kelas 10 dan 11 juga saling tertukar satu sama lain atau terkadang
diprediksi sebagai Kelas 5. Kelemahan fundamental dalam membedakan beberapa

kelas inilah yang menjadi target utama perbaikan pada tahap optimasi selanjutnya.

4.3.2 Optimasi Data Set

Berdasarkan analisis pada model dasar, hipotesis yang diajukan adalah bahwa
ketidakstabilan dan kesalahan klasifikasi terjadi disebabkan oleh jumlah data latih
yang tidak memadai. Untuk itu dilakukan penambahan dataset yang lebih besar
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sementara arsitektur model 7-20-10-11 tetap dipertahankan konstan. Langkah ini
bertujuan untuk mengisolasi dan mengukur secara langsung dampak dari
peningkatan volume data terhadap kemampuan model dalam mempelajari pola
jenis gangguan dan meningkatkan akurasi.

Dataset yang digunakan terdiri dari 1188 sampel data. Penambahan sampel
ini merupakan kombinasi dari 11 jenis gangguan yang disimulasikan pada 2 nilai
resistansi, 9 lokasi, 2 kondisi pembebanan dan 3 sudut fasa yang berbeda.

Seperti proses sebelumnya, dilakukan dua puluh kali Run sesi latihan untuk
mendapatkan stabilitas dan konsistensi dari kinerja model. Hasil akurasi dari setiap
pengujian disajikan sebagai berikut:

Tabel 4.2 Hasil akurasi dua puluh kali #un model setelah optimasi data

Run ke- | Akurasi (%)
1 O Iod]
2 88.2
3 91.01
4 88.2
5 88.76
6 90.45
9. 90.45
8 89.89
9 90.45

10 88.76
11 87.64
12 88.2

13 89.33
14 89.89
15 88.76
16 89.89
17 86.52
18 88.2




19 88.2

20 89.89

Dengan persamaan (2.4) dan (2.5) didapatkan,

= Yt X
n
= Yt X
20
xX=38921 5
dan f,--‘". .
e Y
5= im (g —x)? - I
n—1 g
’ i\
n -
- J Jy '\
- |
s= 127 !
Akurasi pada Tabel 4. 1 a ta sebesar 89,
. | === ==
deviasi +1,27%, menun
2 .II
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¢ \ —
8
L 1 1
1 2 3 4 5 Plenﬂsdchﬂ 7 8 8

Gambar 4.21 Sampel Confusion Matrix untuk akurasi 88.76 %
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Confusion Matrix - Akurasi Test: 88.20%

& v

Ao s
Gambar 4.22 Sampel Confusion Matrix untuk akurasi 88.2 %

Penambahan dataset menjadi 1188 sampel memberikan peningkatan kinerja
yang signifikan, dengan akurasi model melonjak ke rentang 88-91%. Sampel
confusion matrix representatif pada Gambar 4.21 dan Gambar 4.22 menunjukkan
bahwa performa klasifikasi untuk Kelas 1 hingga 9 sudah sangat solid dengan
tingkat kesalahan yang minimal. Kemajuan signifikan terlihat pada kemampuan
klasifikasi untuk gangguan Kelas 5, di mana model tidak lagi menunjukkan
kebingungan dengan Kelas 10 dan 11. Namun, sumber kesalahan utama kini
terkonsentrasi dan terisolasi pada kebingungan dua arah antara Kelas 10 dan Kelas
11.

Peningkatan performa ini membuktikan bahwa penambahan data berhasil
menyederhanakan masalah dari sebelumnya kebingungan antara tiga kelas (5, 10,
11) menjadi masalah yang lebih spesifik. Meskipun demikian, kelemahan model
untuk membedakan antara Kelas 10 dan 11 belum terselesaikan dan akan menjadi

target utama untuk optimasi selanjutnya.

4.3.3 Analisis Kebingungan pada Gangguan Simetris (Kelas 10 dan 11)
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Untuk memahami akar penyebab kebingungan dua arah antara Kelas 10
(gangguan tiga fasa, ABC) dan Kelas 11 (gangguan tiga fasa ke tanah, ABCG),
dilakukan analisis mendalam terhadap sinyal Vape, labe, dan 10 untuk kedua tipe
gangguan tersebut. Dilakukan perhitungan nilai rata-rata fitur dari matriks
dataset_fitur untuk seluruh sampel gangguan ABC dan ABCG.

=102

.L I K elas ARG |
6.766e+00 6.766e+00 [ Kelas ABCG

5.225e+005.225e+09

3739e+093 7392+09

Rata-Rata Nilal Enerqi

Energi la Eneigilb Energilc

Gambar 4.23 Grafik perbandingan rata-rata energi Iabc untuk gangguan ABC dan ABCG
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[
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=
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Gambar 4.24 Grafik perbandingan rata-rata energi Vabc untuk gangguan ABC dan ABCG

402

3k % L % - F 2 Aram |

1.579e-23

Rata-Rata Nilai Energi

Kelas ABC Kelas ABCG

Gambar 4.25 Grafik perbandingan rata-rata energi I0 untuk gangguan ABC dan ABCG
Gambar 4.24 dan 4.25 menunjukkan bahwa karakteristik sinyal dari gangguan
ABC dan ABCG memiliki kemiripan yang sangat tinggi, baik dalam pembacaan

arus maupun tegangan. Satu-satunya pembeda yang teramati pada Gambar 4.25
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adalah munculnya arus residual 10 pada gangguan ABCG meskipun besarnya tidak
signifikan.

Fenomena ini sejalan dengan teori analisis gangguan sistem tenaga, di mana
kedua jenis gangguan ini tergolong sebagai gangguan simetris. Kondisi simulasi
yang ideal menyebabkan nilai fitur yang dihasilkan untuk kedua gangguan menjadi
sangat mirip. Akibatnya, model mengalami kesulitan untuk menemukan pola
pembeda yang jelas hanya dari fitur energi yang ada.

Berdasarkan temuan tersebut, diajukan sebuah hipotesis penambahan fitur baru
untuk mengamplifikasi perbedaan minor pada sinyal 10. Fitur baru ini dihitung
menggunakan formula sum(abs(10)) * 100. Perhitungan ini dilakukan pada jendela
waktu spesifik di mana sinyal 10 terdeteksi muncul berdasarkan observasi langsung
ketika gangguan ABCG terjadi. Tujuan dari fitur ini adalah untuk mengubah
perbedaan magnitudo energi 10 antara Kelas 10 dan Kelas 11 yang sebelumnya
tidak signifikan secara numerik menjadi sebuah fitur yang lebih diskriminatif bagi
model.

Total 1188 set data yang digunakan tetap dipertahankan. Kemudian hidden
layer pertama sedikit diperlebar menjadi 22 necuron untuk mengakomodir
penambahan fitur di Jayer input. Pemilihan arsitektur tersebut didasarkan

serangkaian proses trial and error berikut:

Tabel 4.3 Percobaan arsitektur hidden layer

No | Arsitektur Hidden Total Neuron Akurasi Rata-
Layer Rata

1 [20 10] 30 94,8%

2 [2210] BY 96,18%

3 [22 11] 33 91,99%

4 [30 15] 45 96,07%

5 [3114] 45 95,63%

6 [40 20] 60 95,67%

Arsitektur lengkap model terbaru setelah penambahan fitur ke-delapan adalah
sebagai berikut:
— Sebuah input layer dengan 8 neuron, sesuai dengan jumlah fitur energi +

satu fitur sum I0.
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— Hidden layer pertama dengan 22 neuron.
— Hidden layer kedua dengan 10 neuron.
— Sebuah output layer dengan 11 neuron, sesuai dengan jumlah kelas
gangguan yang akan diklasifikasi.
Setelah dilakukan dua puluh kali Run perulangan sesi latihan, model menunjukkan

akurasi seperti pada tabel berikut:

Tabel 4.4 Hasil akurasi dua puluh kali run model setelah optimasi data

Run ke- | Akurasi (%)
1 96,63
2 96,67
3 96,63
4 emg,
5 97,19
6 95,51
7 96,63
8 96,603
9 97,19

10 94,94
11 96,63
12 96,07
13 96,07
14 95,51
15 93,82
16 94,38
17 95,51
18 98,31
19 95,51
20 96,63

Dengan persamaan (2.4) dan (2.5) didapatkan,
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= Ve X
n
Y X
S
x = 96,18
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5= ?:1 (x; — x)?
n—1
<= v (g —725)7
20— 1
s= 1,05

Setelah dilakukan .‘
d-1

4.3.4 Rekapitulasi \\

Seluruh proses opt

dirangkum dalam tabel
No Analisis
1 B 5
A —
2 | Indikasi underfitting Penambahan data 89,21 1,27 Peningkatan
karena keterbatasan dari 198 sampel akurasi £14,38%
data latih (kekurangan | menjadi 1188
data) sampel
3 | Model mengalami Penambahan fitur 96,18 1,05 Peningkatan
peningkatan performa | arus 10 dan akurasi £6,97%
namun lemah dalam memperlebar dan kebingungan
membedakan kelas 10 | hidden layer 1 antara kelas 10
dan kelas 11 menjadi 22 dan 11
neuron terselesaikan




97

dw = I

UNISSULA
H—"L‘&y!é_ﬁbl e l?.




5.1
1.

5.2

BAB YV
PENUTUP

]Kesimpulan\

Model simulasi saluran transmisi tegangan tinggi 150 kV yang dibangun
mampu membangkitkan 11 jenis gangguan dengan karakteristik sinyal arus
dan tegangan yang konsisten dengan prinsip-prinsip dasar analisis gangguan
sistem tenaga.

Delapan fitur esensial, yang terdiri dari tujuh fitur energi DWT dan satu fitur
magnitudo 10, telah berhasil diekstraksi dari sinyal mentah untuk membentuk
1188 sampel data yang merepresentasikan karakteristik gangguan secara
numerik.

Arsitektur Multi-Layer Perceptron final yang digunakan dalam penelitian ini
memiliki konfigurasi: 8 neuron input, 22 neuron pada hidden layer pertama, 10
pada hidden layer kedua, dan 1.1 neuron output. Konfigurasi ini didapatkan dari
hasil serangkaian proses optimasi dan perbaikan.

Model Multi-Layer Perceptron akhir menunjukkan kemampuan klasifikasi
dengan akurasi rata-rata sebesar 96,18% dan simpangan baku yang rendah
(1,05%). Model final ini mampu mengklasifikasikan seluruh 11 jenis gangguan

tanpa menunjukkan adanya kelemahan sistematis yang berulang:
Saran

Penelitian selanjutnya dapat mengembangkan model simulasi untuk mencakup
dinamika sistem yang lebih luas, seperti efek kapasitansi atau anomali jaringan
lainnya sehingga tidak terbatas pada satu ruas transmisi spesifik,
Memperkenalkan model pada data yang mengandung sedikit noise untuk
merepresentasikan anomali sistem. Tujuannya agar model yang dihasilkan
tidak bergantung pada data simulasi yang terlalu ideal dan bersih.

Melakukan validasi model menggunakan data rekaman gangguan riil untuk

menguji kinerjanya dalam kondisi operasional yang sebenarnya.
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Melakukan pengujian dengan dataset dari sistem transmisi yang benar-benar
independen dan terpisah untuk mengukur konsistensi dan generalisasi model
secara lebih objektif.

Memperluas skenario simulasi untuk mencakup variasi gangguan yang lebih
kompleks dan lebih menekan batas kemampuan model.

Penelitian lanjutan dapat melakukan studi dalam menentukan menentukan
jumlah data minimal atau optimal secara lebih sistematis, tidak hanya
berdasarkan pendekatan trial and error.

Menggunakan metode ekstraksi fitur lain yang dapat menangkap informasi
lebih luas dari sinyal mentah untuk mengurangi risiko kehilangan informasi
yang berpotensi relevan bagi model.

Mengeksplorasi arsitektur lain yang mampu memproses data secara end-to-end
untuk mengurangi ketergantungan pada rekayasa fitur manual.

Menggunakan metode pencarian hiperparameter yang lebih sistematis untuk
menemukan konfigurasi arsitektur yang paling optimal secara terukur.
Mengimplementasikan Explainable Al (XAI) untuk mengetahui secara aktual
proses pengambilan keputusan internal yang dilakukan model. Teknik ini
memungkinkan analisis dan pemahaman yang lebih mendalam terhadap

kemampuan dan kekurangan model.
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