TUGAS AKHIR

STUDI PERILAKU KOLOM PENDEK BETON BERTULANG TERKEKANG AKIBAT BEBAN AKSIAL DENGAN VARIASI BENTUK SENGKANG MENGGUNAKAN METODE ELEMEN HINGGA

Diajukan untuk Memenuhi Persyaratan dalam Menyelesaikan Program Sarjana Program Studi Teknik Sipil Fakultas Teknik Universitas Islam Sultan Agung

Disusun Oleh:

Nada Sukma Nadia Umi Kulstum
NIM: 30202100156 NIM: 30202100157

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK
UNIVERSITAS ISLAM SULTAN AGUNG
2025

LEMBAR PENGESAHAN

STUDI PERILAKU KOLOM PENDEK BETON BERTULANG TERKEKANG AKIBAT BEBAN AKSIAL DENGAN VARIASI BENTUK SENGKANG MENGGUNAKAN METODE ELEMEN HINGGA

Nada Sukma NIM: 30202100156

Nadia Umi Kulstum NIM: 30202100157

Telah disetujui dan disahkan di Semarang,

Agustus 2025

Tim Penguji

1. Dr. Ir. H. Sumirin, MS NIDN: 0004056302

2. Prof. Dr. Ir. Antonius, MT

NIDN: 0605046703

Tanda Tangan

Ketua Program Studi Teknik Sipil Fakultas Teknik

Universitas Islam Sultan Agung

Muhamad Rusli Ahyar, ST., M.Eng.

NIDN: 0625059102

BERITA ACARA BIMBINGAN TUGAS AKHIR

No: 08/A.2/SA-T/III/2025

Pada hari ini tanggal 13-08-2025 berdasarkan surat keputusan Dekan Fakultas Teknik, Universitas Islam Sultan Agung perihal penunjukan Dosen Pembimbing Utama dan Dosen Pembimbing Pendamping:

1. Nama : Dr. Ir. H. Sumirin MS.

Jabatan Akademik : Lektor

Jabatan : Dosen Pembimbing Utama

Dengan ini menyatakan bahwa mahasiswa yang tersebut di bawah ini telah menyelesaikan bimbingan Tugas Akhir:

Nada Sukma Nadia Umi Kulstum NIM: 30202100156 NIM: 30202100157

Judul: Studi Perilaku Kolom Pendek Beton Bertulang Terkekang Akibat Beban Aksial Dengan Variasi Bentuk Sengkang Menggunakan Metode Elemen Hingga

Dengan tahapan sebagai berikut :

No	Tahapan	Tanggal	Keterangan
1	Penunjukan dosen pembimbing	13/03/2025	
	Seminar Proposal	10/07/2025	ACC
	Pengumpulan data	15/07/2025	
4	Analisis data	20/07/2025	' //
5	Penyusunan laporan	23/07/2025	The same of
6	Selesai laporan	13/08/2025	ACC

Demikian Berita Acara Bimbingan Tugas Akhir / Skripsi ini dibuat untuk diketahui dan dipergunakan seperlunya oleh pihak-pihak yang berkepentingan

Mengetahui:

Dosen Pembimbing Utama

Ketua Program Studi Teknik Sipil

Dr. Ir. H. Sumirin, MS

Muhamad Rusli Ahyar, ST., M.Eng.

BEBAS PLAGIASI

Saya yang bertanda tangan di bawah ini :

NAMA

: Nada Sukma

(30202100156)

Nadia Umi Kulstum (30202100157)

JURUSAN

: Teknik Sipil

Dengan ini menyatakan bahwa Tugas Akhir yang berjudul:

Studi Perilaku Kolom Pendek Beton Bertulang Terkekang Akibat Beban Aksial Dengan Variasi Bentuk Sengkang Menggunakan Metode Elemen Hingga benar bebas dari plagiat, dan apabila pernyataan ini terbukti tidak benar maka saya bersedia menerima sanksi sesuai ketentuan yang berlaku.

Demikian surat pernyataan ini saya buat untuk dipergunakan sebagaimana mestinya.

EAMX447640906

Semarang, Agustus 2025 Yang membuat pernyataan,

Nada Sukma

NIM: 30202100156

Nadia Umi Kulstum

NIM: 30202100157

PERNYATAAN KEASLIAN

Saya yang bertanda tangan dibawah ini:

NAMA

: Nada Sukma

(30202100156)

Nadia Umi Kulstum (30202100157)

JUDUL TUGAS AKHIR

Studi Perilaku Kolom Pendek Beton Bertulang Terkekang Akibat Beban Aksial Dengan Variasi Bentuk Sengkang Menggunakan Metode Elemen Hingga

Menyatakan dengan sesungguhnya bahwa Tugas Akhir ini merupakan hasil penelitian, pemikiran dan pemaparan asli saya sendiri. Saya tidak mencantumkan tanpa pengakuan bahan - bahan yang telah dipublikasikan sebelumnya atau ditulis oleh orang lain, atau sebagai bahan yang pernah diajukan untuk gelar atau ijasah pada Universitas Islam Sultan Agung Semarang atau perguruan tinggi lainnya.

Apabila dikemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka saya bersedia menerima sanksi akademik sesuai dengan peraturan yang berlaku di Universitas Islam Sultan Agung Semarang.

AMX447640901

Demikian pernyataan ini saya buat.

Agustus 2025 Semarang,

Yang membuat pernyataan,

Nada Sukma NIM: 30202100156 Nadia Umi Kulstum

NIM: 30202100157

MOTTO

"Cukuplah Allah sebagai penolong kami dan Dia sebaik-baik pelindung." (QS. Ali 'Imran : 173)

"Sesungguhnya bersama kesulitan ada kemudahan." (QS. Al-Insyirah : 6)

"Sesungguhnya urusan-Nya apabila Dia menghendaki sesuatu hanyalah berkata kepadanya: 'Jadilah!' Maka jadilah ia."

(Q.S. Yasin: 82)

"Allah akan meninggikan orang-orang yang beriman di antara kamu dan orangorang yang diberi ilmu pengetahuan beberapa derajat."

(QS. Al-Mujadila: 11)

"Apa pun kebaikan yang kamu kerjakan untuk dirimu sendiri, niscaya kamu mendapatkannya di sisi Allah."

(QS. Al-Bagarah: 110)

"Dan orang-orang yang bersungguh-sungguh karena Kami, pasti Kami menunjukkan jalan-jalan Kami."

(QS. Al-'Ankabut: 69)

"Barang siapa bersungguh-sungguh, maka sesungguhnya kesungguhannya itu untuk dirinya sendiri."

(QS. Al-Ankabut: 6)

"Barang siapa yang menempuh jalan untuk mencari ilmu, maka Allah akan dengan mudah perjalanan menuju surga."

(HR. Muslim no. 2699)

PERSEMBAHAN

Alhamdulillah, Segala puji bagi Allah SWT atas segala rahmat dan hidayah-

Nya, kita memuji-Nya dan meminta pertolongan, memaafkan serta petunjuk

kepada-Nya. Shalawat dan salam semoga selalu tercurahkan kepada Nabi Besar

Muhammad SAW. Saya mempersembahkan laporan skripsi ini kepada:

1. Kedua orang tua saya tercinta, almarhum Ayah yang tetap menjadi penerang

langkah hidup saya, semoga Allah SWT membalas segala kasih sayangnya.

Serta Ibu tersayang, yang dengan cinta tanpa batas, doa yang tak pernah

putus, dan ketulusan yang tak ternilai, selalu hadir menguatkan di setiap

tahap perjalanan ini.

2. Keluarga besar saya, yang senantiasa memberikan doa, perhatian, dan

dukungan moral yang menguatkan selama menempuh perjalanan akademik

ini.

3. Bapak Dr. Ir. H. Sumirin, MS yang telah berkenan membimbing saya dari

awal hingga akhir laporan ini dibuat. Sangat bersyukur mempunyai

pembimbing yang selalu memberikan dukungan agar segera bisa

menyelesaikan Tugas Akhir ini dan memberikan solusi yang terbaik.

4. Nadia Umi Kulstum, sahabat sekaligus rekan tugas akhir, yang telah

menjadi partner penuh dedikasi, dukungan, dan semangat dalam

menyelesaikan setiap tahap penyusunan laporan ini.

5. Teman-teman angkatan 2021 yang sudah banyak membantu dan

menyemangati selama proses penyusunan Tugas Akhir.

Nada Sukma

NIM: 30202100156

vii

PERSEMBAHAN

Alhamdulillah, Segala puji bagi Allah SWT atas segala rahmat dan hidayah-

Nya, kita memuji-Nya dan meminta pertolongan, memaafkan serta petunjuk

kepada-Nya. Shalawat dan salam semoga selalu tercurahkan kepada Nabi Besar

Muhammad SAW. Saya mempersembahkan laporan skripsi ini kepada:

1. Kedua orang tua saya tercinta, Bapak dan Ibu yang senantiasa memberikan

dukungan secara moral maupun materiil, doa tulus yang tak pernah putus,

dan motivasi sejak langkah awal hingga akhirnya saya dapat menyelesaikan

laporan Tugas Akhir ini.

2. Adik perempuan saya, yang meski sering usil dan membuat ramai suasana,

kamu tetap menjadi bagian yang tak tergantikan dan selalu saya sayangi.

3. Bapak Dr. Ir. H. Sumirin, MS yang telah berkenan membimbing saya dari

awal hingga akhir laporan ini dibuat. Sangat bersyukur mempunyai

pembimbing yang selalu memberikan dukungan agar segera bisa

menyelesaikan Tugas Akhir ini dan memberikan solusi yang terbaik.

4. Sahabat sekaligus partner Tugas Akhir, Nada Sukma yang telah bekerja

sama dengan penuh komitmen dan tanggung jawab selama proses

penyusunan sehingga laporan Tugas Akhir ini bisa terselesaikan.

5. Manusia paling lucu sedunia, Zidut Shofwan yang selalu menemani dan

menguatkan dalam situasi yang tidak selalu mudah. Terimakasih sudah

menjadi penyemangat dan pengingat bahwa saya tidak merasa sendiri.

6. Sahabat sejak SMA, Khansa Mawartika Hilman yang selalu hadir tanpa

diminta, mendengarkan keluhan tanpa menghakimi, dan menemani setiap

momen dari masa sulit hingga tawa lepas.

7. Teman-teman angkatan 2021 yang sudah membantu dan menyemangati

selama proses penyusunan Tugas Akhir.

Nadia Umi Kulstum

NIM: 30202100157

viii

KATA PENGANTAR

Assalamualaikum Wr. Wb.

Alhamdulillah, segala puji dan syukur penulis panjatkan kehadirat Allah SWT yang telah melimpahkan segala rahmat dan hidayah-Nya sehingga penulis dapat menyelesaikan Tugas Akhir ini dengan judul "Studi Perilaku Kolom Pendek Beton Bertulang Terkekang Akibat Beban Aksial Dengan Variasi Bentuk Sengkang Menggunakan Metode Elemen Hingga" guna untuk memenuhi salah satu persyaratan untuk memperoleh gelar Sarjana Teknik Program Studi Teknik Sipil pada Fakultas Teknik Universitas Islam Sultan Agung Semarang.

Dalam penyelesaian Tugas Akhir ini penulis memperoleh bantuan dari beberapa pihak, dalam kesempatan kali ini kami ucapan terimakasih kepada :

- 1. Bapak Dr. Abdul Rochim. ST., M.T. selaku Dekan Fakultas Tenik Universitas Islam Sultan Agung Semarang.
- 2. Bapak Muhamad Rusli Ahyar, ST., M.Eng. selaku Ketua Program Studi Fakultas Tenik Universitas Islam Sultan Agung Semarang yang telah membantu dalam urusan akademik.
- 3. Bapak Dr. Ir. H. Sumirin, MS selaku Dosen Pendamping yang selalu memberikan waktu dalam dalam memberikan memberikan memberikan bimbingan bimbi dan arahan dalam menyelesaikan skripsi ini.
- 4. Seluruh Dosen Program Studi Fakultas Teknik Universitas Islam Sultan Agung Semarang yang telah memberikan wawasan ilmu pengetahuan kepada penulis selama menempuh Program Studi S-1 Teknik Sipil.

Penulis menyadari masih banyak kekurangan dalam penyusunan. Semoga Tugas Akhir ini dapat bermanfaat baik bagi penulis maupun para pembaca.

Wassalamualaikum Wr. Wb.

Semarang, Agustus 2025

Penulis

DAFTAR ISI

HALAMAN JUDUL	i
LEMBAR PENGESAHAN	
BERITA ACARA	
BEBAS PLAGIASI	
PERNYATAAN KEASLIAN	v
MOTTO	
PERSEMBAHAN	
KATA PENGANTAR	
DAFTAR ISI	
DAFTAR GAMBAR	
DAFTAR TABEL	
DAFTAR NOTASI	XV
DADA DENDAMAKAN	
BAB I : PENDAHULUAN	
1.1 Latar Belakang1.2 Rumusan Masalah	1
1.2 Tuivon	2
1.3 Tujuan	∠
1.5 Sistematika Penulisan	3
1.5 Sistematika i citatisan	
BAB II : TINJAUAN PUSTAKA	5
2.1 Pengertian Kolom	5 5
2.1.1 Fungs <mark>i Kolom d</mark> alam Struktur	5
2.1.2 Jenis – Jenis Kolom dalam Konstruksi	
2.2 Kolom Beton Bertulang	6
2.2.1 Kompon <mark>en</mark> Kolom Beton Bertulang	6
2.2.2 Fungsi Kolom Beton Bertulang	
2.2.3 Jenis – Jenis Kolom Berdasarkan Rasio Kelangsingan	
2.2.4 Karakteristik Kolom Pendek Menurut SNI 2847:2019	
2.2.5 Kriteria Keg <mark>a</mark> galan Kolom Pendek	
2.3 Beban Aksial pada Kolom	15
2.4 Daktilitas Pada Struktur Kolom	
2.4.1 Rumus Dan Parameter Daktilitas	
2.4.2 Faktor Yang Mempengaruhi Daktilitas	
2.5 Pendekatan Analisis Kolom dengan Metode Elemen Hingga	
2.5.1 Implementasi FEM Pada Struktur Kolom	
2.5.2 Concrete Damage Plasticity	
2.6 Hubungan Tegangan - Regangan Beton	
2.6.1 Kurva Tegangan – Regangan Beton	
2.6.2 Pengaruh Mutu Beton Terhadap Kurva Tegangan-Regangan	
2.6.3 Pengaruh Kekangan Terhadap Kurva Tegangan-Regangan	
2.7 Kajian Terdahulu	

BAB III : METODE PERANCANGAN	30
3.1 Pendahuluan	30
3.2 Objek Penelitian	
3.2.1 Data Geometri	30
3.2.2 Data Material	31
3.2.3 Data Pembebanan	31
3.2.4 Model Variasi Konfigurasi Sengkang Kolom	32
3.3 Pemeriksaan Model Kolom	
3.3.1 Klasifkasi Kolom Pendek	
3.3.2 Luas dan Rasio Tulangan Longitudinal	34
3.3.3 Dimensi dan Jarak Tulangan Transversal	34
3.4 Pemodelan Numerik	
3.4.1 Pembuatan Geometri Model	
3.4.2 Pemodelan Perilaku Material	
3.4.3 Pembuatan Assembly	43
3.4.4 Interaksi Komponen dan Penggabungan	44
3.4.5 Pembuatan <i>Mesh</i>	45
3.4.6 Penentuan Boundary Conditions dan Loading	45
3.4.7 Proses Simulasi dan Analisis	46
3.5 Bagan Alir Penelitian	47
DAD HAVE DESCRIPTION OF THE PROPERTY OF THE PR	40
BAB IV : HASIL DAN PEMBAHASAN 4.1 Data dan Jenis Model Kolom	48
4.1 Data dan Jenis Woder Kolom	
4.2.1 Analisis Hubungan Gaya Aksial dan <i>Displacement</i>	
4.2.2 Analisis Hubungan Tegangan dan Regangan	
4.3 Perbandingan Analisis Numerik dengan Model Kent & Park (1971)	
4.4 Rekapitulasi Hasil Analisis	
BAB V: PENUTUP	85
5.1 Kesimpulan	
5.2 Saran	86

DAFTAR PUSTAKA LAMPIRAN

DAFTAR GAMBAR

Gambar 2. 1 Sengkang Biasa	O
Gambar 2. 2 Sengkang Crosstie	
Gambar 2. 3 Sengkang Double Crosstie	
Gambar 2. 4 Sengkang Double Crosstie	
Gambar 2. 5 Sengkang Lingkaran	
Gambar 2. 6 Kurva Tegangan-Regangan Model Kent & Park (1971)	
Gambar 2. 7 Diagram Tegangan-Regangan (stress-strain)	
Gambar 3. 1 Variasi Bentuk Sengkang	
Gambar 3. 2 Pemodelan Beton	
Gambar 3. 3 Pemodelan Tulangan Longitudinal	
Gambar 3. 4 Pemodelan Sengkang.	
Gambar 3. 5 Pemodelan Kolom Tanpa Sengkang	
Gambar 3. 6 Pemodelan Kolom dengan Sengkang Biasa	
Gambar 3. 7 Pemodelan Kolom dengan Sengkang Crosstie	
Gambar 3. 8 Pemodelan Kolom dengan Sengkang Double Crosstie	
Gambar 3. 9 Pemodelan Kolom dengan Sengkang Diamond	
Gambar 3. 10 Pemodelan Kolom dengan Sengkang Lingkaran	
Gambar 3. 11 Pemodelan Material Beton	
Gambar 3. 12 Pemodelan Material Baja Tulangan	. 43
Gambar 3. 13 Proses Assembly	. 43
Gambar 3. 14 Pemodelan Interaksi Kolom Beton Bertulang	
Gambar 3. 15 Proses Meshing Pada Model Kolom	
Gambar 3. 16 Penerapan Pembebanan Aksial Pada Kolom	. 46
Gambar 4. 1 Diagram Interaksi Kolom Persegi	. 50
Gambar 4. 2 Grafik Force-Displacement Kolom A (Unconfined)	
Gambar 4. 3 Grafik Force-Displacement Kolom B (Sengkang Biasa)	. 52
Gambar 4. 4 Grafik Force-Displacement Kolom C (Sengkang Crosstie)	. 53
Gambar 4. 5 Grafik Force-Displacement Kolom D (Sengkang Double Crosstic	
Gambar 4. 6 Grafik Force-Displacement Kolom E (Sengkang Diamond)	. 54
Gambar 4. 7 Grafik Force-Displacement Kolom F (Sengkang Circular)	. 55
Gambar 4. 8 Grafik Force-Displacement Enam Model Kolom	. 55
Gambar 4. 9 Hasil Output Von Mises Model Kolom A (Unconfined) Program	
Numerik	. 58
Gambar 4. 10 Grafik Tegangan-Regangan Kolom A (Unconfined)	. 59
Gambar 4. 11 Hasil Output Von Mises Model Kolom B (Sengkang Biasa)	
Program Numerik	. 60
Gambar 4. 12 Grafik Tegangan-Regangan Kolom B (Sengkang Biasa)	. 61
Gambar 4. 13 Hasil Output Von Mises Model Kolom C (Sengkang Crosstie)	
Program Numerik	
Gambar 4. 14 Grafik Tegangan-Regangan Kolom C (Sengkang Crosstie)	. 62

Gambar 4. 15 Hasil Output Von Mises Model Kolom D (Sengkang Double	
Crosstie) Program Numerik	. 63
Gambar 4. 16 Grafik Tegangan-Regangan Kolom D (Sengkang Double Crosst	ie)
	. 63
Gambar 4. 17 Hasil Output Von Mises Model Kolom E (Sengkang Diamond)	
Program Numerik	. 64
Gambar 4. 18 Grafik Tegangan-Regangan Kolom E (Sengkang Diamond)	65
Gambar 4. 19 Hasil Output Von Mises Model Kolom F (Sengkang Circular)	
Program Numerik	. 65
Gambar 4. 20 Grafik Tegangan-Regangan Kolom F (Sengkang Circular)	. 66
Gambar 4. 21 Grafik Tegangan-Regangan Enam Model Kolom	. 67
Gambar 4. 22 Grafik Tegangan-Regangan Model Kent & Park (1971)	. 69
Gambar 4. 23 Grafik Perbandingan Tegangan-Regangan Kolom A (Unconfined	d)
	. 70
Gambar 4. 24 Grafik Perbandingan Tegangan-Regangan Kolom B (Sengkang	
Biasa)	. 70
Gambar 4. 25 Grafik Perbandingan Tegangan-Regangan Kolom C (Sengkang	
Crosstie)	. 71
Gambar 4. 26 Grafik Perbandingan Tegangan-Regangan Kolom D (Sengkang	
Double Crosstie)	. 72
Gambar 4. 27 Grafik Perbandingan Tegangan-Regangan Kolom E (Sengkang	
Diamond)	. 72
Gambar 4. 28 Grafik Perbandingan Tegangan-Regangan Kolom F (Sengkang	
Circular)	. 73
Gambar 4. 29 Grafik Perbandingan Nilai Daktilitas antar Variasi Kolom	
Gambar 4. 30 Grafik Perbandingan Kuat Tekan Maksimum Kolom	. 78
Gambar 4. 31 Grafik Perbandingan Tegangan Maksimum Kolom	. 80
Gambar 4. 32 Grafik Perbandingan Regangan Maksimum Kolom	. 82

DAFTAR TABEL

Tabel 3. 1 Model Variasi Konfigurasi Sengkang Kolom	. 32
Tabel 3. 2 Parameter CDP	. 41
Tabel 3. 3 Parameter Baja Tulangan	. 42
Tabel 4. 1 Jenis Konfigurasi Bentuk Sengkang Pada Model Kolom	. 48
Tabel 4. 2 Hasil Output Gaya Aksial Pada Displacement	. 49
Tabel 4. 3 Hasil Reduksi Output Gaya Aksial Pada Displacement	. 50
Tabel 4. 4 Perbandingan Gaya Aksial Maksimum Simulasi Numerik dengan	
Software SP Column	. 51
Tabel 4. 5 Hasil Gaya dan Displacement Maksimum Enam Model Kolom	. 56
Tabel 4. 6 Hasil Nilai Daktilitas Enam Model Kolom	. 56
Tabel 4. 7 Perbandingan Gaya Aksial Tekan (Axial Force)	. 57
Tabel 4. 8 Tegangan Maksimum Tiap Model Kolom	. 67
Tabel 4. 9 Regangan Saat Terjadi Tegangan Maksimum	. 68
Tabel 4. 10 Perbandingan Tegangan dan Regangan Maksimum Analisis Numer	ik
dengan Model Kent & Park (1971)	. 74
Tabel 4. 11 Hasil Nilai Daktilitas Tiap Model Kolom	. 75
Tabel 4. 12 Ha sil Per <mark>band</mark> ingan Kuat Tekan Maksimum (<i>Axial Force</i>) Tiap Mo	
Kolom	. 77
Tabel 4. 13 Hasil Tegangan Maksimum Tiap Model Kolom	. 79
Tabel 4. 14 Hasil Regangan Saat Terjadi Tegangan Maksimum	
Tabel 4. 15 Hasil Perbandingan Tegangan dan Regangan Maksimum Analisis	
Numerik dengan Model Kent & Park (1971)	. 83

DAFTAR NOTASI

f'c= Kuat tekan beton (MPa) = Kuat tekan beton yang telah dikekang (Mpa) f_{cc} = Regangan beton saat puncak kuat tekan (strain) $\mathcal{E}_{
m c}$ E_c = Modulus elastisitas beton (MPa) = tegangan leleh baja tulangan (Mpa) f_y = Luas penampang tulangan longitudinal (mm²) A_{s} A_{sh} = Luas penampang tulangan transversal/sengkang (mm²) = Jarak antar sengkang (mm) S = Rasio tulangan transversal (sengkang) ρsh h,b= Dimensi penampang kolom (mm) = Regangan leleh tulangan (strain) \mathcal{E}_y = Regangan ultimit (strain maksimum) \mathcal{E}_{u} = Regangan saat kuat tekan puncak beton \mathcal{E}_0 = Daktilitas = $\Delta u/\Delta y$ μ = Displacement pada saat leleh (mm) Δv = Displacement ultimit (mm) Δu = Tegangan (Mpa) σ \mathcal{E} = Regangan (Strain) P = Beban Aksial (kN)

STUDI PERILAKU KOLOM PENDEK BETON BERTULANG TERKEKANG AKIBAT BEBAN AKSIAL DENGAN VARIASI BENTUK SENGKANG MENGGUNAKAN METODE ELEMEN HINGGA

Abstrak

Perilaku kolom pendek beton bertulang terhadap beban aksial sangat dipengaruhi oleh sistem pengekangan yang diberikan melalui tulangan transversal atau sengkang. Penelitian ini bertujuan untuk menganalisis pengaruh variasi bentuk sengkang terhadap kekuatan aksial, daktilitas, dan hubungan tegangan-regangan pada kolom pendek. Metode yang digunakan adalah simulasi numerik berdasarkan metode elemen hingga (*Finite Element Method*).

Model terdiri atas enam variasi kolom, yaitu tanpa sengkang (unconfined), sengkang biasa, crosstie, double crosstie, diamond, dan lingkaran, dengan ukuran penampang 500×500 mm dan tinggi 1500 mm. Beton dimodelkan menggunakan pendekatan Concrete Damage Plasticity untuk menangkap perilaku nonlinier akibat kerusakan tekan maupun tarik. Simulasi dilakukan untuk memperoleh data gaya aksial maksimum, regangan, tegangan, dan daktilitas dari masing-masing konfigurasi.

Hasil simulasi menunjukkan bahwa konfigurasi sengkang berpengaruh signifikan terhadap peningkatan kapasitas aksial dan daktilitas kolom. Model dengan sistem kekangan kompleks seperti double crosstie menghasilkan kapasitas beban dan daktilitas tertinggi. Sebaliknya, model tanpa kekangan mengalami batasan menyetujui plastis. Variasi bentuk sengkang terbukti berperan penting dalam meningkatkan ketahanan dan daktilitas kolom beton terhadap beban aksial.

Kata kunci: ko<mark>l</mark>om p<mark>endek, beban aksial, beton bertulan</mark>g, variasi sengkang, daktilitas, kapasit<mark>a</mark>s aksial.

STUDY ON THE BEHAVIOR OF CONFINED SHORT REINFORCED CONCRETE COLUMNS UNDER AXIAL LOAD WITH VARIATIONS IN STIRRUP CONFIGURATION USING FINITE ELEMENT METHOD

Abstract

The behavior of short reinforced concrete columns under axial load is significantly influenced by the confinement system provided by transverse reinforcement or stirrups. This research aims to analyze the effect of stirrup shape variations on the axial strength, ductility, and stress-strain relationship of short columns using a numerical approach based on the Finite Element Method (FEM).

The model consists of six column variations: unconfined, conventional stirrups, cross-tied stirrups, double cross-tied stirrups, diamond stirrups, and circular stirrups, with a cross-section size of 500x500 mm and a height of 1500 mm. The concrete material is modeled using the Concrete Damage Plasticity approach to capture the nonlinear behavior resulting from compressive and tensile failure. Simulations were conducted to obtain maximum axial data.

The research results show that stirrup configuration has a significant effect on increasing the axial capacity and ductility of the columns. The model with a more complex confinement system, such as double cross-ties, produced the highest load capacity and ductility. Conversely, the unconfined model experienced limited plastic deformation. These findings confirm that the variation in stirrup shape plays an important role in increasing the strength and ductility of reinforced concrete columns under axial load.

Keywords: short column, axial load, reinforced concrete, stirrup variation, ductility, axial capacity, stress-strain.

BABI

PENDAHULUAN

1.1 Latar Belakang

Perkembangan dalam bidang teknologi konstruksi telah mendorong pemanfaatan beton bertulang sebagai salah satu komponen struktural penting dalam berbagai tipe bangunan. Beton bertulang diunggulkan karena kekuatannya dalam menahan tekanan serta fleksibilitas dalam perancangannya, sehingga menjadikan pilihan utama untuk struktur yang memerlukan dukungan beban yang tinggi dan ketahanan yang baik. Salah satu elemen penting dalam struktur beton bertulang adalah kolom, yang berfungsi untuk menopang beban aksial dan lateral dari bangunan. Khususnya kolom pendek yang memiliki karakteristik perilaku tersendiri dibandingkan kolom yang lebih panjang, terutama saat menghadapi beban aksial.

Sistem pengekangan (confinement) pada kolom beton bertulang melalui tulangan sengkang memainkan peran krusial dalam meningkatkan kapasitas dan daktilitas kolom. Berbagai variasi bentuk sengkang telah dikembangkan dalam upaya meningkatkan efektivitas pengekangan pada kolom pendek beton bertulang. Bentuk-bentuk sengkang seperti persegi, lingkaran, dan kombinasi lainnya memberikan kontribusi yang berbeda terhadap kekuatan dan stabilitas kolom. Namun, hingga saat ini, masih diperlukan studi lebih mendalam untuk mengevaluasi pengaruh variasi bentuk sengkang terhadap perilaku kolom pendek yang terkekang akibat beban aksial.

Pengujian eksperimental untuk menganalisis pengaruh variasi bentuk sengkang terhadap perilaku kolom di bawah beban aksial memerlukan investasi yang besar dalam hal waktu, biaya, dan infrastruktur. Oleh karena itu, pendekatan numerik menggunakan Metode Elemen Hingga (*Finite Element Method*/FEM) menjadi alternatif yang efisien, aman, dan ekonomis. Software berbasis FEM memungkinkan pemodelan perilaku non-linear material beton dan interaksinya dengan tulangan baja di bawah kondisi pembebanan aksial

Model konstitutif seperti *Concrete Damage Plasticity* (CDP) dalam analisis FEM dapat memodelkan karakteristik kompleks beton, termasuk keretakan pada zona tarik, crushing pada zona tekan, dan degradasi kekakuan akibat siklus pembebanan bertulang. Parameter plastisitas seperti *dilatation angle*, *eccentricity*, dan *viscosity* mempengaruhi akurasi simulasi dalam memprediksi perilaku kolom beton bertulang di bawah beban aksial.

Analisis Tugas Akhir ini bertujuan untuk memahami lebih dalam tentang perilaku kolom pendek beton bertulang terkekang akibat beban aksial dengan variasi bentuk sengkang diharapkan dapat memberikan kontribusi dalam aspek pemahaman tentang mekanisme pegekangan dan distribusi tegangan pada kolom dengan berbagai konfigurasi sengkang. Oleh karena itu, analisis numerik menggunakan metode elemen hingga menjadi pendekatan yang rasional untuk mengevaluasi dan mengoptimalkan desain kolom beton bertulang.

1.2 Rumusan Masalah

Dalam penyusunan Tugas Akhir ini ada beberapa rumusan masalah yang akan dibahas antara lain:

- a. Bagaimana pengaruh variasi bentuk sengkang (biasa, *crosstie*, *double crosstie*, *diamond*, lingkaran) terhadap kekuatan kolom pendek beton bertulang dalam menahan beban aksial?
- b. Bentuk sengkang manakah yang memberikan performa struktural terbaik untuk meningkatkan daktilitas kolom pendek beton bertulang dalam menahan beban aksial berdasarkan hasil simulasi menggunakan metode elemen hingga?

1.3 Tujuan

Adapan tujuan dari penyusunan Tugas Akhir ini antara lain:

- a. Menganalisis pengaruh variasi bentuk sengkang (biasa, *crosstie*, *double crosstie*, *diamond*, lingkaran) terhadap kekuatan kolom pendek beton bertulang dalam menahan beban aksial;
- b. Mengetahui bentuk sengkang yang memberikan performa struktural terbaik untuk meningkatkan daktilitas kolom pendek beton bertulang dalam menahan beban aksial berdasarkan hasil simulasi menggunakan metode elemen hingga.

1.4 Batasan Masalah

Batasan yang perlu diperhatikan dalam penulisan Tugas Akhir ini sebagai berikut :

- a. Penelitian hanya membahas respons struktur pada satu elemen kolom beton bertulang berdimensi 500 mm x 500 mm dengan tinggi 1500 mm.
- b. Variasi yang diteliti menggunakan variasi bentuk sengkang, yaitu sengkang biasa, sengkang *crosstie*, sengkang *double crosstie*, sengkang *diamond*, dan sengkang lingkaran, dengan jumlah tulangan longitudinal dan rasio tulangan tetap.
- c. Material beton dimodelkan menggunakan *Concrete Damaged Plasticity (CDP)* dengan diasumsikan f'c = 29,1 MPa.
- d. Analisis dilakukan menggunakan metode elemen hingga dengan program numerik.

1.5 Sistematika Penulisan

BAB I PENDAHULUAN

Bab ini menguraikan latar belakang permasalahan, perumusan masalah, batasan masalah, serta tujuan dan manfaat dari penelitian. Selain itu, bab ini juga menjelaskan sistematika penulisan yang digunakan dalam laporan.

BAB II TINJAUAN PUSTAKA

Bab ini memaparkan teori-teori dasar yang berkaitan dengan topik penelitian serta referensi yang relevan untuk mendukung pembahasan dalam penelitian ini.

BAB III METODE PERANCANGAN

Bab ini memaparkan data-data yang digunakan, proses perencanaan, serta tahapan pengolahan data secara rinci untuk mendukung penelitian ini.

BAB IV HASIL DAN PEMBAHASAN

Bab ini berisi penjelasan mengenai hasil analisis berupa grafik, tabel, dan interpretasi data, disertai dengan pembahasan mengenai pengaruh variasi bentuk sengkang terhadap kinerja kolom beton bertulang menggunakan metode elemen hingga.

BAB V PENUTUP

Bab ini merangkum hasil penelitian, menyampaikan kesimpulan, dan memberikan saran sebagai bagian penutup dari tugas akhir.

BAB II

TINJAUAN PUSTAKA

2.1 Pengertian Kolom

Kolom adalah elemen struktural vertikal yang berfungsi untuk menyalurkan beban dari struktur atas ke fondasi. Dalam konstruksi bangunan, kolom berperan sangat penting untuk menjaga kestabilan dan kekuatan struktur secara keseluruhan. Kolom biasanya dirancang untuk menerima beban tekan (kompresi) yang berasal dari beban mati (*dead load*), beban hidup (*live load*), atau gaya-gaya lain seperti beban angin dan gempa (Allen & Iano, 2008). Sebagai elemen yang mentransmisikan beban vertikal, kolom juga sering kali mendukung elemen struktural lainnya, seperti balok dan plat lantai.

Secara umum, kolom terdiri dari dua komponen utama: beton sebagai material penahan kompresi dan baja tulangan (reinforcement) yang berfungsi untuk menahan gaya tarik. Kombinasi beton dan baja memberikan kekuatan yang optimal untuk menahan beban besar yang bekerja pada kolom (McCormac & Brown, 2014). Kolom beton bertulang, khususnya, digunakan pada sebagian besar konstruksi gedung tinggi, jembatan, dan infrastruktur lainnya, karena kemampuannya dalam menahan beban yang besar dengan efisien.

2.1.1 Fungsi Kolom dalam Struktur

Fungsi utama kolom adalah untuk menerima dan menyalurkan beban vertikal dari elemen struktural di atasnya ke fondasi. Beban yang diterima kolom dapat bervariasi, termasuk beban mati dari struktur permanen, beban hidup dari aktivitas manusia, serta beban dinamis yang dihasilkan oleh angin, gempa, atau perubahan temperatur. Kolom juga berfungsi dalam menjaga kestabilan lateral bangunan, terutama dalam menghadapi gaya-gaya lateral yang disebabkan oleh gempa atau angin. Oleh karena itu, kolom tidak hanya berperan sebagai elemen penahan beban vertikal, tetapi juga berfungsi untuk mendukung ketahanan struktural terhadap gaya dinamis

2.1.2 Jenis – Jenis Kolom dalam Konstruksi

Kolom dapat dibedakan berdasarkan jenis material yang digunakan dan cara kolom menerima beban. Beberapa jenis kolom yang sering digunakan dalam konstruksi antara lain:

- a. Kolom beton bertulang, kolom yang terbuat dari beton bertulang, dengan beton sebagai material utama untuk menahan kompresi dan baja tulangan untuk menahan gaya tarik. Jenis kolom ini banyak digunakan karena memiliki kekuatan tinggi dan mampu menahan beban besar dengan efisien.
- b. Kolom baja, kolom yang terbuat dari baja, sering digunakan pada bangunan dengan beban tinggi dan pada struktur yang membutuhkan daya tahan tinggi namun dengan berat yang lebih ringan dibandingkan dengan beton.
- c. Kolom komposit, kolom yang menggabungkan material beton dan baja, memanfaatkan keunggulan kedua material tersebut dalam menahan beban tekan dan tarik. Kolom komposit dirancang untuk memberikan efisiensi dalam menahan berbagai jenis beban.

2.2 Kolom Beton Bertulang

Kolom beton bertulang merupakan salah satu elemen struktural yang paling banyak digunakan dalam konstruksi modern, terutama pada bangunan bertingkat tinggi dan infrastruktur besar. Kolom ini terdiri dari beton sebagai material utama yang menerima beban tekan dan baja tulangan yang berfungsi untuk menahan gaya tarik. Kombinasi beton dan baja memberikan kolom beton bertulang kelebihan dalam hal kekuatan, daya tahan, serta kemampuan untuk menahan beban yang sangat besar, menjadikannya material yang sangat efektif dalam aplikasi struktural.

2.2.1 Komponen Kolom Beton Bertulang

Kolom beton bertulang adalah elemen struktural yang terdiri dari dua komponen utama, yaitu beton dan baja tulangan. Kombinasi antara beton dan baja tulangan ini memberikan kolom beton bertulang kemampuan untuk menahan beban tekan dan tarik secara bersamaan. Beton, sebagai material utama, memiliki kekuatan tinggi dalam menahan beban tekan, namun lemah dalam menahan gaya tarik. Sebaliknya, baja tulangan, yang terdiri dari batang baja yang ditanam dalam beton, berfungsi untuk menahan gaya tarik dan menjaga kestabilan kolom terhadap gaya geser dan

pembengkokan. Masing-masing komponen ini memiliki peran yang sangat penting dalam memastikan bahwa kolom beton bertulang dapat berfungsi secara optimal dalam mendistribusikan beban dan menjaga kestabilan struktural bangunan. Berikut adalah penjelasan mengenai masing-masing komponen utama yang terdapat pada kolom beton bertulang:

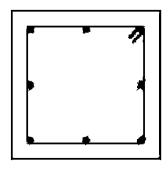
a. Beton

Beton merupakan komponen utama dalam kolom beton bertulang yang berfungsi untuk menahan gaya tekan (kompresi). Beton memiliki kekuatan tinggi dalam menerima beban tekan, tetapi memiliki kekurangan dalam menahan gaya tarik. Oleh karena itu, beton digunakan untuk menahan beban vertikal dan gaya kompresi yang terjadi pada kolom. Beton pada kolom umumnya terbuat dari campuran semen, air, pasir, dan agregat kasar (kerikil atau batu pecah) yang diproses dalam proporsi tertentu untuk mencapai kekuatan yang diinginkan.

Beton yang digunakan pada kolom beton bertulang harus memiliki kualitas yang baik dengan mutu yang ditentukan berdasarkan nilai kuat tekan (f'c), yang diukur dalam satuan megapascals (MPa). Dalam desain kolom, kualitas beton sangat mempengaruhi kemampuan kolom dalam menahan beban tekan yang besar. Beton yang digunakan juga sering kali diperkaya dengan bahan tambahan untuk meningkatkan ketahanan terhadap kondisi lingkungan tertentu, seperti paparan air laut atau korosi.

b. Baja Tulangan Utama

Baja tulangan utama adalah komponen penting yang berfungsi untuk menahan gaya tarik pada kolom. Baja tulangan ini biasanya berupa batang baja longitudinal yang ditempatkan di sepanjang panjang kolom, baik di bagian tengah maupun di sepanjang dinding kolom. Baja tulangan ini bekerja bersamaan dengan beton, di mana beton menahan gaya tekan dan baja tulangan menahan gaya tarik. Baja tulangan yang digunakan pada kolom beton bertulang biasanya memiliki standar tertentu, seperti baja tulangan bertulang polos atau baja tulangan dengan *ribbing* (serat) yang mempermudah ikatan dengan beton. Pengaturan jumlah dan penempatan baja tulangan utama sangat penting dalam mendesain kolom untuk memastikan kolom dapat menahan beban tekan dan


tarik yang seimbang. Biasanya, jumlah tulangan utama dihitung berdasarkan kapasitas beban yang diterima kolom dan dimensi kolom itu sendiri. Tulangan longitudinal memberikan kemampuan tambahan pada kolom untuk mengalami deformasi plastik sebelum kegagalan. Hal ini meningkatkan kapasitas deformasi total kolom dan menjadikannya lebih daktail.

c. Baja Tulangan Sengkang

Baja tulangan sengkang berfungsi untuk memperkuat kolom beton bertulang, terutama dalam menahan gaya geser yang terjadi pada kolom. Sengkang biasanya berupa batang baja yang dipasang melintang (transversal) di sekitar baja tulangan utama, membentuk jaring-jaring atau pola ikatan tertentu. Sengkang berfungsi untuk menahan beban aksial meningkat karena beton yang terkekang memiliki kapasitas tekan yang lebih tinggi dibandingkan beton yang tidak terkekang. Hal ini sesuai dengan prinsip bahwa pengekangan mengurangi deformasi lateral dan meningkatkan kapasitas beton sebelum mencapai keruntuhan. Beberapa bentuk sengkang yang biasa digunakan dalam kolom beton bertulang antara lain :

Sengkang Biasa

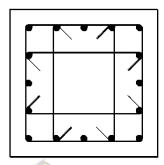
Sengkang biasa adalah jenis tulangan transversal berbentuk segi empat, seperti persegi atau persegi panjang, yang digunakan untuk memperkuat elemen struktural beton bertulang. Fungsinya adalah untuk memberikan pengekangan lateral pada inti beton dan membantu meningkatkan kapasitas geser elemen struktur seperti kolom dan balok. Sengkang ini juga berperan menjaga posisi tulangan longitudinal selama proses pengecoran dan mengurangi risiko kegagalan akibat gaya geser. Jenis sengkang ini umum digunakan pada kolom atau balok dengan penampang persegi atau persegi panjang.

Gambar 2. 1 Sengkang Biasa

(Sumber: Pribadi)

> Sengkang Crosstie

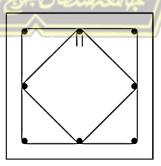
Sengkang Silang (*Cross Stirrups*) adalah jenis desain sengkang yang terdiri dari batang baja yang saling bersilangan membentuk pola X atau silang di sekitar tulangan longitudinal kolom beton bertulang. Desain sengkang silang ini dirancang untuk meningkatkan ketahanan kolom terhadap gaya geser dan membantu mengatur distribusi gaya yang bekerja pada kolom, terutama di daerah-daerah yang terpapar beban geser tinggi atau beban dinamis, seperti pada kolom bawah atau bagian yang berdekatan dengan sambungan balok-kolom.


Gambar 2. 2 Sengkang Crosstie

(Sumber : Pribadi)

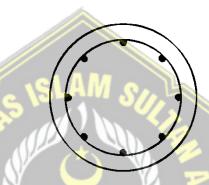
> Sengkang *Double Crosstie*

Sengkang Double crosstie adalah konfigurasi yang menggunakan dua *crosstie* dalam satu penampang elemen kolom. Penggunaan double crosstie meningkatkan stabilitas sistem tulangan longitudinal secara signifikan, terutama pada kolom besar dengan banyak batang longitudinal.


Sistem ini sering diterapkan pada elemen kolom dengan desain yang membutuhkan kekuatan lebih tinggi untuk menahan beban aksial maupun lateral.

Gambar 2. 3 Sengkang Double Crosstie
(Sumber: Pribadi)

Sengkang Diamond


Sengkang *Diamond* adalah jenis desain sengkang yang memiliki pola berbentuk belah ketupat atau berlian (*diamond shape*) yang diletakkan secara melintang di sekitar tulangan longitudinal kolom beton bertulang. Sengkang ini digunakan pada desain struktur yang memerlukan distribusi gaya yang lebih merata atau pada struktur dengan desain khusus. Bentuknya memungkinkan peningkatan efisiensi dalam pengekangan inti beton dibandingkan bentuk segi empat biasa.

Gambar 2. 4 Sengkang *Double Crosstie* (Sumber : Pribadi)

Sengkang Lingkaran

Sengkang Lingkaran adalah jenis tulangan transversal berbentuk melingkar atau spiral yang umumnya digunakan pada elemen struktural berbentuk silinder, seperti kolom bulat dan tiang pancang. Keunggulan utama sengkang lingkaran adalah kemampuan memberikan pengekangan lateral yang seragam pada beton inti, sehingga meningkatkan daktailitas dan kapasitas deformasi elemen struktural. Jenis sengkang ini sering digunakan pada struktur tahan gempa karena memberikan kontribusi signifikan terhadap perilaku daktail elemen beton bertulang.

Gambar 2. 5 Sengkang Lingkaran
(Sumber: Pribadi)

2.2.2 Fungsi Kolom Beton Bertulang

Kolom beton bertulang berfungsi sebagai elemen struktural vertikal yang menyalurkan beban dari bagian atas bangunan, seperti lantai dan atap, ke fondasi. Fungsi utama kolom adalah untuk menerima beban vertikal yang berasal dari berbagai elemen struktural lainnya, seperti balok dan plat lantai, serta mendistribusikan beban tersebut secara aman ke fondasi. Selain itu, kolom juga berfungsi untuk memberikan stabilitas lateral bangunan, terutama dalam menghadapi gaya dinamis, seperti gempa dan angin. Pada bangunan bertingkat, kolom juga berperan dalam menjaga keseimbangan beban antara lantai-lantai yang berbeda dan memberikan dukungan terhadap struktur secara keseluruhan.

2.2.3 Jenis – Jenis Kolom Berdasarkan Rasio Kelangsingan

Dalam desain struktur, kolom diklasifikasikan berdasarkan berbagai faktor, salah satunya adalah rasio kelangsingan. Rasio ini mengukur proporsi antara tinggi efektif kolom terhadap radius inersia penampangnya dan berpengaruh besar terhadap perilaku kolom dalam menerima beban aksial. SNI 2847:2019, mengatur bahwa rasio kelangsingan (λ) dari kolom dihitung menggunakan persamaan :

$$\lambda = \frac{l_e}{r}...(2.1)$$

Keterangan:

 l_e = Panjang efektif kolom

r = radius inersia penampang kolom

SNI 2847:2019 menetapkan dua kategori kolom berdasarkan nilai λ, antara lain :

1) Kolom Pendek

Kolom pendek adalah kolom dengan rasio kelangsingan rendah ($\lambda \leq 22$). Pada kolom ini, deformasi lateral akibat gaya aksial sangat kecil sehingga efek tekuk dapat diabaikan. Oleh karena itu, kegagalannya murni disebabkan oleh kekuatan tekan material yang terlampaui. Kolom pendek digunakan pada struktur yang tidak memerlukan perhatian khusus terhadap efek tekuk. Kolom pendek biasanya digunakan pada struktur bangunan bertingkat rendah hingga menengah, dinding penahan tanah/dermaga, dan struktur industri pada pabrik/gudang untuk menopang beban berat dari mesin yang besar.

2) Kolom Langsing

Kolom langsing adalah kolom dengan rasio kelangsingan tinggi ($\lambda > 22$), yang berarti deformasi lateral yang disebabkan oleh gaya aksial cukup signifikan menghasilkan momen lentur tambahan (momen sekunder) dan efek tekuk harus diperhitungkan. Kegagalannya terjadi akibat instabilitas tekuk sebelum kekuatan material tercapai. Kolom langsing digunakan pada struktur bangunan bertingkat tinggi, tiang jembatan, menara. dan struktur bangunan dengan ruang bebas luas.

2.2.4 Karakteristik Kolom Pendek Menurut SNI 2847:2019

Karakteristik kolom pendek sangat penting dalam memastikan struktur yang dirancang dapat menahan gaya aksial dengan aman tanpa mengalami kegagalan stabilitas. Karakteristik kolom pendek menurut SNI 2847:2019, antara lain:

1) Rasio kelangsingan rendah ($\lambda \le 22$)

Menurut SNI 2847:2019, jika rasio kelangsingan lebih kecil atau sama dengan 22 maka kolom dikategorikan sebagai kolom pendek. Rasio kelangsingan rendah artinya kolom tidak memiliki kecenderungan untuk mengalami deformasi lateral yang signifikan, sehingga mekanisme kegagalan murni karena gaya aksial yang melampaui kapasitas tekan material.

2) Distribusi tegangan merata

Pada kolom pendek, gaya aksial yang diterima terdistribusi secara merata diseluruh penampang. Hal tersebut membuat distribusi tegangan di penampang menjadi sama sampai kolom mencapai kapasitas maksimumnya. Kolom pendek tidak mengalami pengaruh dari momen lentur tambahan akibat deformasi lateral.

3) Kapasitas beban tinggi

Tidak adanya pengaruh tekuk membuat kapasitas beban aksial kolom pendek lebih tinggi dibandingkan kolom langsing dengan dimensi dan material yang sama. Hal ini menyebabkan kolom pendek ideal untuk menahan beban besar seperti pada bangunan Tingkat rendah hingga menengah.

4) Mekanisme kegagalan tekan

Kegagalan kolom pendek disebabkan oleh remuknya beton atau luluhnya baja tulangan longitudinal. Kegagalan ini biasanya terjadi pada kekuatan maksimum material, sehingga kolom pendek dianggap lebih andal terhadap beban aksial.

5) Dimensi geometri proporsional

Kolom pendek biasanya memiliki dimensi penampang yang cukup besar dibandingkan dengan tinggi efektifnya. Desain ini bertujuan untuk memastikan bahwa kolom memberikan kekuatan dan kekakuan yang cukup dalam menahan beban aksial tanpa deformasi signifikan.

6) Penggunaan pengekangan lateral yang efektif

Pengekangan lateral seperti sengkang digunakan pada kolom pendek untuk meningkatkan kapasitas tekan beton inti dan daktilitas. Beton yang terkekang mempunyai kemampuan yang lebih baik untuk menahan beban aksial sebekum mencapai kegagalan.

2.2.5 Kriteria Kegagalan Kolom Pendek

Kegagalan kolom pendek penting untuk menetapkan bahwa desain struktur telah memenuhi persyaratan keselamatan dan kekuatan oleh standar desain. Kegagalan kolom pendek dapat dikategorikan berdasarkan mekanisme utama yang berpengaruh pada perilaku material dan tulangan baja.

1) Kegagalan remuk beton

Kegagalan remuk beton terjadi ketika tekanan aksial pada kolom telah melewati kuat tekan beton. Tanda kegagalannya diawali dengan adanya retakan longitudinal pada beton inti yang diikuti oleh retaknya beton pada area tegangan tertinggi. Hal tersebut disebabkan kurangnya pengekangan lateral seperti sengkang, sehingga beton inti tidak mampu menahan deformasi aksial. Penambahan pengekangan lateral yang efektif menjadi Solusi untuk meningkatkan daktilitas beton dan menunda kegagalan remuk.

2) Kegagalan luluh baja tulangan

Kegagalan luluh baja tulangan terjadi ketika tegangan tarik pada baja tulangan longitudinal melebihi kuat luluh baja. Kegagalannya dimulai saat baja tulangan mengalami deformasi plastis yang signifikan dan disertai oleh penurunan kekauan struktur. Penyebabnya adalah kombinasi antara gaya aksial dan momen lentur yang melebihi kapasitas baja tulangan. Pemilihan tulangan dengan kuat luluh dan desain penampang yang cukup besar merupakan solusi agar tegangan pada tulangan dapat berkurang.

3) Kegagalan kombinasi

Pada kasus yang telah ada, kolom pendek gagal karena kombinasi gaya aksial dan momen lentur, serta sering terjadi pada kolom yang menerima beban eksentris. Kegagalannya ditandai dengan retakan diagonal pada beton inti sebelum remuk. Solusi yang tepat yaitu dengan melakukan penyesuaian desain

untuk meminimalkan eksentrisitas beban dan memastikan keseimbangan antara kekuatan tekan dan tarik baja tulangan.

4) Kegagalan geser

Kegagalan geser jarang terjadi pada kolom pendek dibandingkan dengan kolom langsing. Kegagalan geser dapat terjadi jika gaya geser tinggi tidak diimbangi dengan kapasitas geser kolom. Kegagalan awalnya terdapat retakan diagonal secara mendadak pada beton biasanya mendekati tumpuan kolom. Hal ini disebabkan karena kurangnya sengkang atau distribusi beban yan tidak merata. Kegagalan geser ini dapat diselesaikan dengan menambah sengkang yang cukup sesuai dengan standar desain.

2.3 Beban Aksial pada Kolom

Desain kolom yang baik memperhatikan kombinasi antara dimensi geometris, pengekangan, dan kapasitas material untuk menghasilkan kolom yang aman dan efisien dalam menahan beban.

Beban aksial adalah beban yang bekerja sejajar dengan sumbu longitudinal kolom, baik sebagai beban tekan maupun tarik. Beban aksial seringkali berasal dari berat struktur di atasnya, termasuk beban mati (*dead load*) dan beban hidup (*live load*) seperti berat material, perabotan, dan aktivitas manusia dalam bangunan.

Beban aksial menghasilkan gaya tekan yang merata sepanjang sumbu kolom. Apabila beban aksial melebihi kapasitas material kolom, maka akan terjadi kegagalan berupa *crushing* (keruntuhan akibat tekanan). Untuk kolom langsing, beban aksial juga dapat menyebabkan kegagalan akibat tekuk (*buckling*).

Beban aksial adalah faktor dominan dalam desain kolom, dengan kapasitas yang sangat bergantung pada kekuatan material, geometri, dan kondisi tumpuan. Untuk memastikan keamanan struktur, desain harus mempertimbangkan stabilitas kolom, eksentrisitas beban, dan kombinasi dengan beban lainnya. Penggunaan bahan berkekuatan tinggi dan teknik pengekangan lateral adalah metode yang efektif untuk meningkatkan kapasitas tekan kolom.

2.4 Daktilitas Pada Struktur Kolom

Daktilitas merupakan kemampuan suatu elemen struktur mengalami deformasi plastis yang cukup besar tanpa mengalami kegagalan secara tiba-tiba. Dalam struktur beton bertulang, daktilitas menjadi salah satu parameter penting yang menunjukkan sejauh mana suatu elemen dapat mempertahankan kestabilannya meskipun telah mengalami kerusakan lokal.

Struktur yang memiliki daktilitas tinggi akan cenderung menunjukkan perilaku bertahap sebelum runtuh, seperti retakan awal yang berkembang perlahan atau perpindahan yang semakin meningkat secara progresif. Hal ini berbeda dengan struktur yang bersifat getas, yang cenderung mengalami keruntuhan mendadak tanpa gejala awal.

2.4.1 Rumus Dan Parameter Daktilitas

Secara umum, daktilitas diukur berdasarkan perbandingan antara simpangan maksimum yang dicapai elemen struktur sebelum mengalami keruntuhan dengan simpangan pada saat elemen tersebut mulai keluar dari perilaku elastis. Nilai perbandingan ini dirumuskan sebagai berikut.

$$\mu = \frac{\Delta u}{\Delta y}.$$
 (2.2)

Keterangan:

 μ = faktor daktilitas

 $\Delta u = \text{simpangan maksimum sebelum keruntuhan}$

 $\Delta y = \text{simpangan saat batas elastisitas tercapai}$

Nilai μ yang tinggi menunjukkan sifat bahwa elemen struktur mampu mengalami deformasi lebih besar setelah melewati titik leleh, yang berarti elemen tersebut memiliki kemampuan untuk mempertahankan kestabilan dalam kondisi pembebanan yang berat. Dalam penerapannya, parameter ini sangat penting untuk mengevaluasi sejauh mana suatu elemen mampu bertahan sebelum kehilangan kekakuan dan kapasitas strukturalnya.

2.4.2 Faktor Yang Mempengaruhi Daktilitas

Tingkat daktilitas pada kolom beton bertulang sangat dipengaruhi oleh berbagai aspek desain dan karakteristik material. Beberapa faktor utama yang memengaruhi daktilitas antara lain:

a. Konfigurasi dan jumlah tulangan transversal

Tulangan transversal, seperti sengkang atau crosstie, berperan penting dalam menahan
ekspansi lateral beton inti dan mencegah keruntuhan getas. Semakin rapat dan efektif
konfigurasi tulangan transversal, semakin tinggi potensi daktilitas elemen tersebut.

b. Mutu material

Beton dengan mutu yang terlalu tinggi cenderung lebih kaku dan getas, sedangkan baja tulangan dengan sifat plastis yang baik dapat meningkatkan deformabilitas. Kombinasi mutu beton dan baja yang seimbang menjadi kunci dalam menghasilkan struktur yang daktil.

c. Dimensi penampang dan rasio tulangan

Proporsi antara dimensi kolom dengan jumlah tulangan longitudinal juga memengaruhi kapasitas struktur dalam menahan deformasi plastis. Rasio tulangan yang sesuai dapat membantu menjaga kestabilan dan menghindari konsentrasi tegangan yang berlebih.

d. Kondisi batas dan pembebanan

Tipe pembebanan yang bekerja, baik aksial maupun lateral, serta kondisi tumpuan juga berkontribusi terhadap perilaku daktilitas. Elemen struktur yang mendapat kombinasi pembebanan biasanya menunjukkan respons daktil yang lebih kompleks.

2.5 Pendekatan Analisis Kolom dengan Metode Elemen Hingga

Metode Elemen Hingga (*Finite Element Method*) didefinisikan sebagai alat numerik yang digunakan untuk menyelesaikan masalah matematis dan masalah teknik yang terkait dengan gejala fisik. Metode Elemen Hingga (*Finite Element Method*, FEM) diterapkan secara luas dalam analisis struktur kolom, baik kolom beton bertulang, baja, maupun material komposit. Dalam analisis kolom beton bertulang, elemen *solid* digunakan untuk beton, sedangkan tulangan dimodelkan menggunakan elemen batang atau kabel. Pemodelan geometris ini memungkinkan simulasi distribusi tegangan, regangan, deformasi, dan kapasitas beban dengan tingkat akurasi yang tinggi (Zienkiewicz & Taylor, 2000).

Definisi material menjadi tahap penting dalam analisis FEM. Beton sering dimodelkan dengan perilaku non-linear untuk menangkap efek retakan (*cracking*), *crushing*, dan plastisitas, sementara tulangan baja dimodelkan dengan sifat elastisplastis yang mencakup deformasi plastis sebelum luluh. Interaksi antara beton dan tulangan, yang sangat penting dalam kolom beton bertulang, dimodelkan menggunakan elemen interface atau elemen campuran untuk menangkap perilaku slip atau gaya adhesi antar material (Bathe, 1996).

Analisis FEM melibatkan penerapan kondisi batas, seperti perletakan ujung kolom, dan pembebanan aksial, lentur, atau geser. Simulasi ini dapat memprediksi respons kolom terhadap pembebanan, termasuk distribusi tegangan, deformasi maksimum, pola keretakan, dan kapasitas beban. Selain itu, FEM dapat digunakan untuk mengevaluasi mode keruntuhan kolom, seperti buckling, kegagalan lentur, atau kombinasi keduanya (Cook et al., 2001).

Selain pemilihan beban dan kondisi batas, pemodelan material beton dalam analisis elemen hingga sangat penting. Salah satu model konstitutif yang banyak digunakan adalah *Concrete Damaged Plasticity* (CDP), yang tersedia di perangkat lunak. Model ini memungkinkan pemodelan perilaku nonlinier beton dengan mempertimbangkan efek retak tekan, retak tarik, plastisitas, serta degradasi kekakuan akibat kerusakan (*damage*). CDP memisahkan respons beton dalam tarik dan tekan, serta mendefinisikan parameter seperti sudut dilatasi, viskositas plastis, dan koefisien kerusakan, sehingga mampu menangkap perilaku beton yang kompleks dalam berbagai kondisi pembebanan.

2.5.1 Implementasi FEM Pada Struktur Kolom

Kolom merupakan komponen penting dalam konstruksi yang berfungsi menahan beban ke bawah dan samping, sehingga memerlukan evaluasi yang tepat agar struktur tetap aman dan berfungsi dengan baik. Metode elemen hingga telah digunakan untuk mengevaluasi berbagai aspek perilaku kolom, antara lain:

1) Analisis Beban Aksial

Metode elemen hingga dapat digunakan untuk memprediksi distribusi gaya aksial dan menentukan kapasitas kolom. Hwang et al. (2010) menyatakan bahwa analisis penting ini penting untuk memastikan bahwa kolom dapat

menahan beban yang diterima tanpa mengalami keruntuhan. Dalam analisis ini, kolom dimodelkan untuk menilai kekuatan tekan dan deformasi yang terjadi.

2) Analisis nonlinear

Kolom beton bertulang dapat menunjukkan perilaku non-linear di bawah beban tinggi. Metode elemen hingga dapat digunakan untuk menganalisis perilaku nonlinear ini, termasuk deformasi plastis dan keruntuhan material. Reddy (2006) menjelaskan bahwa analisis nonlinear memungkinkan insinyur untuk memahami perilaku kolom di luar batas elastisitas material.

2.5.2 Concrete Damage Plasticity

Concrete Damage Plasticity (CDP) adalah pendekatan matematis yang digunakan secara luas untuk memodelkan perilaku mekanik beton di bawah pembebanan yang kompleks, seperti beban monotonic, cyclic, dan dynamic. CDP menggabungkan teori plastisitas dan kerusakan kontinu untuk menggambarkan respons nonlinier beton, termasuk perilaku retak akibat tarik dan penghancuran akibat tekan. Concrete Damage Plasticity memerlukan sejumlah parameter penting untuk mendefinisikan perilaku beton secara akurat. Parameter ini meliputi:

1) Parameter Konstitutif Utama

- 1. Dilatation Angel (ψ), yaitu sudut dilatasi dalam satuan derajat (°) yang menunjukkan rasio antara regangan volumetrik plastis dan deviatik plastis. Parameter ini berperan dalam mengontrol seberapa besar ekspansi lateral beton saat memasuki kondisi plastis, yang secara langsung memengaruhi kapasitas deformasi dan konfinemen struktur. Umumnya, nilai dilation angle berada dalam rentang 30° hingga 45°, tergantung pada tingkat kekangan dan mutu beton.
- 2. Flow eccentricity (ϵ), yaitu nilai bentuk dari permukaan *yield* plastis; nilai default yang umum digunakan dalam program adalah 0,1. Semakin kecil nilai ini, maka bentuk kurva yield semakin tajam pada sumbu tarik.
- 3. Ratio fb0/fc0, yaitu perbandingan antara kekuatan tarik dua sumbu (*biaxial tension*) terhadap kekuatan tekan satu sumbu (*uniaxial compression*). Rasio ini digunakan untuk menggambarkan bentuk permukaan yield dalam kondisi pembebanan kompleks, dan nilai yang direkomendasikan adalah sekitar 1,16.

- 4. Yield potential eccentricity (Kc), yaitu parameter yang mengatur mengatur rasio kekuatan tarik terhadap kekuatan tekan dalam pembentukan permukaan yield; nilai umum yang digunakan adalah 0,667.
- 5. Viscosity parameter (μ) , yaitu parameter viskositas plastis yang digunakan untuk membantu kestabilan numerik dalam analisis nonlinier, terutama pada proses iterasi yang kompleks atau saat mengalami kesulitan konvergensi. Nilai viskositas ini biasanya berkisar antara 0,001 hingga 0,01 dan bersifat opsional, tergantung pada jenis analisis (statis atau dinamis).

2) Concrete Compression Damage

Concrete compression damage (d_c) menggambarkan degradasi kekakuan beton akibat pembebanan tekan. Parameter ini dihitung berdasarkan hubungan antara tegangan efektif dan kekuatan tekan beton pada regangan tertentu.

1. Hukum Konstitutuf Tegangan Tekan Material dengan Kerusakan Rumus ini menggambarkan hubungan tegangan efektif (σ_c) pada suatu material yang mengalami kerusakan berdasarkan model kerusakan kontinu.

$$\sigma_c = (1 - d_c)E_0(\varepsilon_c - \varepsilon_c^{pl.h})....(2.3)$$
Keterangan:

= tegangan tekan pada material σ_c

 d_c = parameter kerusakan tekan

 $(1 - d_c)$ = penurunan kekuatan material akibat kerusakan

= modulus elastisitas awal E_0

= regangan tekan total yang dialami material ε_c

 $\varepsilon_c^{pl,h}$ = regangan plastis tekan

2. Regangan Inelastic dan Plastis

> Regangan inelastic (tidak elastic), yaitu bagian regangan yang tidak kembali setelah beban diangkat.

$$\varepsilon_c^{in,h} = \varepsilon_c - \frac{\sigma_c}{E_0} \tag{2.4}$$

Keterangan:

 $\varepsilon_c^{in,h}$ = regangan inelastic tekan

= regangan tekan total yang dialami material ε_c

 σ_c = tegangan tekan

 E_0 = modulus elastisitas awal

> Regangan plastis

$$\varepsilon_c^{pl,h} = \varepsilon_c - \frac{\sigma_c}{E_0} \left(\frac{1}{1 - d_c} \right) \tag{2.5}$$

Keterangan:

 $\varepsilon_c^{pl,h}$ = regangan plastis tekan

 ε_c = regangan tekan total yang dialami material

 σ_c = tegangan tekan

 E_0 = modulus elastisitas awal

 $(1-d_c)$ = penurunan kekuatan material akibat kerusakan

3. Hubungan Antara Regangan Plastis dan Inelastic

Rumus ini menunjukkan bagaimana regangan plastis diperoleh dari regangan inelastic dengan koreksi tambahan akibat kerusakan.

$$\varepsilon_c^{pl,h} = \varepsilon_c^{in,h} - \frac{d_c}{1 - d_c} \frac{\sigma_c}{E_0} \qquad (2.6)$$

4. Parameter Kerusakan

Rumus ini mendefinisikan nilai kerusakan material berdasarkan tegangan (σ_c) terhadap tegangan puncak (σ_{cu}) yang merupakan kapasitas maksimum material sebelum mengalami keruntuhan total.

$$d_c = 1 - \frac{\sigma_c}{\sigma_{cu}} \tag{2.7}$$

Keterangan:

 d_c = parameter kerusakan, dengan nilai ($0 \le d_c < 1$)

 σ_c = tegangan tekan nominal

 σ_{cu} = tegangan tekan maksimum

3) Concrete Tensile Damage

Concrete tensile damage (d_t) menggambarkan degradasi kekakuan beton akibat pembebanan tarik, yang memicu perkembangan retakan mikro.

Parameter ini penting untuk memodelkan retakan yang terjadi pada beton, baik pada pembebanan monoton maupun siklik.

1. Hukum Konstitutuf Tegangan Tarik Material dengan Kerusakan

Rumus ini menggambarkan hubungan tegangan efektif (σ_t) pada suatu material yang mengalami kerusakan berdasarkan model kerusakan kontinu.

$$\sigma_t = (1 - d_t)E_0(\varepsilon_t - \varepsilon_t^{pl.h})...(2.8)$$

Keterangan:

 σ_t = tegangan tarik pada material

 d_t = parameter kerusakan tarik

 $(1 - d_t)$ = penurunan kekuatan material akibat kerusakan

 E_0 = modulus elastisitas awal

 ε_t = regangan tarik total yang dialami material

 $\varepsilon_t^{pl,h}$ = regangan plastis tarik

2. Regangan Cracking dan Plastis

Regangan cracking (retak tarik)

$$\varepsilon_t^{ck,h} = \varepsilon_t - \frac{\sigma_t}{\varepsilon_0}.$$
 (2.9)

Keterangan:

 $\varepsilon_t^{ck,h}$ = regangan cracking tarik

 ε_t = regangan tarik total yang dialami material

 σ_t = tegangan tarik

 E_0 = modulus elastisitas awal

> Regangan plastis

$$\varepsilon_t^{pl,h} = \varepsilon_t - \frac{\sigma_t}{E_0} \left(\frac{1}{1 - d_t} \right) \dots (2.10)$$

Keterangan:

 $\varepsilon_t^{pl,h}$ = regangan plastis tarik

 ε_t = regangan tarik total yang dialami material

 σ_t = tegangan tarik

 E_0 = modulus elastisitas awal

 $(1 - d_t)$ = penurunan kekuatan material akibat kerusakan

3. Hubungan Antara Regangan Plastis dan Cracking

Rumus ini menunjukkan bagaimana regangan plastis diperoleh dari regangan cracking dengan koreksi tambahan akibat kerusakan.

$$\varepsilon_t^{pl,h} = \varepsilon_t^{ck,h} - \frac{d_t}{1 - d_t} \frac{\sigma_t}{E_0} \dots (2.11)$$

4. Parameter Kerusakan

Rumus ini mendefinisikan nilai kerusakan material berdasarkan tegangan (σ_t) terhadap tegangan puncak (σ_{t0}) yang merupakan kapasitas maksimum material sebelum mengalami keruntuhan total.

$$d_t = 1 - \frac{\sigma_t}{\sigma_{t0}} \tag{2.12}$$

Keterangan:

 d_t = parameter kerusakan tarik, dengan nilai $(0 \le d_c < 1)$

 σ_t = tegangan tarik

 $\sigma_{t0} = \text{tegangan tarik maksimum (kapasitas tarik awal sebelum kerusakan)}$

2.6 Hubungan Tegangan - Regangan Beton

Tegangan dan regangan adalah dua konsep utama dalam mekanika material yang digunakan untuk memahami dan menganalisis perilaku material saat dikenai beban. Pada beton, hubungan antara tegangan (f_c) dan regangan (ε_c) menggambarkan bagaimana beton merespons gaya tekan yang bekerja, mulai dari awal pembebanan hingga keruntuhan. Pemahaman terhadap hubungan tegangan-regangan ini sangat penting dalam desain dan analisis struktur beton bertulang, khususnya untuk memastikan elemen struktur mampu menahan beban yang bekerja dengan aman.

Tegangan pada beton adalah gaya tekan per satuan luas penampang, sedangkan regangan adalah perubahan panjang relatif yang dialami beton akibat tegangan tersebut. Beton sebagai material komposit, memiliki kapasitas tekan yang tinggi tetapi sangat lemah terhadap gaya tarik. Oleh karena itu, pada struktur beton bertulang, tulangan baja digunakan untuk meningkatkan kapasitas tarik. Secara umum, hubungan tegangan dan regangan beton bersifat nonlinier, terutama setelah

melewati tahap elastis. Hubungan ini dicirikan oleh tiga fase utama, yaitu tahap elastis, tahap plastis, dan tahap pasca-puncak hingga keruntuhan.

2.6.1 Kurva Tegangan – Regangan Beton

Kurva tegangan-regangan beton adalah representasi grafis hubungan antara tegangan tekan dan regangan beton selama beton mengalami pembebanan hingga keruntuhan. Dalam SNI 2847:2019, beton digambarkan memiliki kapasitas tekan maksimum (f'_c) pada regangan tertentu (ε_0) dan deformasi ultimit (ε_u) yang menjadi batas maksimum beton sebelum mengalami keruntuhan. Tahapan kurva tegangan-regangan beton antara lain :

a. Zona Linier-Elastis

Pada tahap ini, hubungan antara tegangan-regangan bersifat linier, dimana beton menunjukkan sifat elastis. Tegangan beton (f_c) meningkat secara proporsional terhadap regangan, dan beton akan kembali seperti semula jika beban dilepaskan. Hubungan ini digambarkan dengan :

$$f_c = \frac{\varepsilon_c}{\varepsilon_0} \times f'_c \tag{2.13}$$

Dimana

 f_c = tegangan beton pada regangan tertentu (MPa)

 ε_c = regangan beton pada titik tertentu

 ε_0 = regangan pada kuat tekan maksimum (f'_c), biasanya sekitar 0,002 untuk beton normal

 f'_c = kuat tekan maksimum beton (MPa)

b. Zona Nonliner-Plastis

Tahap nonlinier-plastis dimulai saat regangan mencapai ε_0 dan beton mulai menunjukkan perilaku nonlinier. Hubungan tegangan-regangan tidak lagi linier, dan tegangan beton mulai melandai. Pada tahap ini, beton mengalami deformasi plastis yang tidak dapat dipulihkan. Meskipun tegangan tidak bertambah, regangan terus meningkat hingga mendekati regangan ultimit (ε_u). Tegangan dihitung dengan rumus :

$$f_c = f'_c \left(1 - \frac{\varepsilon_c - \varepsilon_0}{\varepsilon_u - \varepsilon_0}\right)^2 \dots (2.14)$$

Dimana ε_u adalah regangan ultimit beton, biasanya bernilai sekitar 0,003 untuk beton normal.

c. Zona Pasca-Puncak

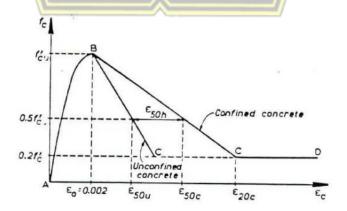
Setelah mencapai tegangan maksimum (f'_c) , tegangan beton menurun seiring dengan peningkatan regangan akibat retak dan kerusakan mikro. Pada tahap ini, beton mulai kehilangan kapasitas tekan, dan akhirnya terjadi keruntuhan material.

2.6.2 Pengaruh Mutu Beton Terhadap Kurva Tegangan-Regangan

Berdasarkan SNI 2847:2019, perilaku beton terhadap pembebanan tekan dibagi menjadi beberapa zona, yakni linier-elastis, nonlinier-plastis, dan pasca-puncak. Bentuk kurva tegangan-regangan ini sangat bergantung pada jenis beton yang digunakan, khususnya dalam membedakan antara beton normal dan beton mutu tinggi.

- 1) Beton Normal (Normal Strength Concrete)
 - Beton normal umumnya memiliki kuat tekan karakteristik (f'_c) berkisar antara 17 MPa hingga 41 MPa. Beton mutu normal memiliki karakteristik sebagai berikut :
 - 1. Regangan puncak (ε_0) terjadi sekitar 0,002
 - 2. Regangan ultimit (ε_u) bisa mencapai 0,003 hingga 0,0035
 - 3. Perilaku lebih daktail pada zona pasca-puncak
 - 4. Softening curve yang landai menunjukkan bahwa beton masih mampu menahan beban setelah puncak.
- 2) Beton Mutu Tinggi (High Strength Concrete)

Beton mutu tinggi memiliki kuat tekan karakteristik di atas 41 MPa, dan pada beberapa aplikasi struktural dapat melebihi 70 MPa. Meskipun lebih kuat, beton mutu tinggi memiliki perilaku yang berbeda secara signifikan, yaitu :


- 1. Regangan puncak (ε_0) tetap di sekitar 0,002
- 2. Regangan ultimit (ε_u) lebih kecil, sekitar 0,0025 hingga 0,003 tergantung pada tingkat kekakuannya
- 3. Kurva pasca-puncak sangat curam menandakan sifat getas (brittle)

2.6.3 Pengaruh Kekangan Terhadap Kurva Tegangan-Regangan

Kekangan (confinement) pada beton bertulang adalah upaya pengekangan lateral yang diberikan oleh tulangan transversal (seperti sengkang) terhadap inti beton pada kolom. Kekangan ini menyebabkan peningkatan kekuatan tekan dan daktilitas beton, terutama pada kolom yang mengalami beban aksial tinggi. Beton yang diberikan pengekangan lateral akan mengalami peningkatan kapasitas beban sebelum mencapai keruntuhan, serta menunjukkan deformasi yang lebih besar (tidak getas).

Model Kent & Park (1971) merupakan salah satu model yang banyak digunakan dalam kajian perilaku kolom beton bertulang, khususnya menggambarkan hubungan tegangan-regangan beton pada kondisi terkekang dan tidak terkekang. Dalam kondisi tanpa kekangan, beton cenderung mengalami keruntuhan getas yang ditandai dengan penurunan tegangan yang cepat setelah mencapai kekuatan maksimum. Sebaliknya, pada beton yang diberi kekangan lateral seperti sengkang spiral atau sengkang transversal yang rapat, perilaku material perubahan signifikan.

Model Kent & Park membagi kurva tegangan-regangan beton menjadi dua bagian utama, yaitu kurva naik berbentuk parabola hingga mencapai tegangan maksimum (f'c) para regangan sekitar 0,002, dan bagian turun setelah puncak yang dimodelkan sebagai garis lurus menurun. Untuk beton terkekang, segmen penurunan tegangan ini diperpanjang dengan nilai regangan ultimit yang lebih besar, tergantung pada efektivitas kekangan lateral yang diberikan oleh bentuk dan konfigurasi sengkang.

Gambar 2. 6 Kurva Tegangan-Regangan Model Kent & Park (1971)

(Sumber : Kent, D.C., & Park, R., 1971)

Model persamaan Kent & Park (1971) dijelaskan sebagai berikut :

Daerah A – B : $\varepsilon_0 < 0.002$

$$f_c = f'_c \left[\frac{2\varepsilon_c}{0,002} - \left(\frac{\varepsilon_c}{0,002} \right)^2 \right] \tag{2.15}$$

Daerah B – C : $0.002 \le \varepsilon_c \le \varepsilon_{20c}$

$$f_c = f'_c [1 - Z(\varepsilon_c - 0.002)]...$$
 (2.16)

Dimana:

$$Z = \frac{0.5}{\varepsilon_{50\mu} + \varepsilon_{50h} - 0.002}...$$
 (2.17)

$$\varepsilon_{50u} = \frac{_{3+0,002} f'_c}{_{f'c} - 1000} \tag{2.18}$$

$$\varepsilon_{50h} = \frac{3}{4} \rho_s \sqrt{\frac{b^m}{s_h}} \tag{2.19}$$

Untuk kondisi unconfined, nilai rasio volumetrik sengkang (ρ_s) = 0

Untuk kondisi confined, nilai rasio volumetrik sengkang (ρ_s):

• Rectangular Ties (Sengkang Persegi)

$$\rho_s = \frac{A_{sh}}{s \times h_c} \tag{2.20}$$

Keterangan:

 ρ_s = rasio volumetric sengkang

 A_{sh} = luas penampang sengkang (mm²)

s = jarang antar sengkang (mm)

 $h_c = \text{dimensi inti beton (mm)}$

• Closed Circular Ties (Sengkang Lingkaran)

$$\rho_s = \frac{A_{sh}}{s \times D_c} \tag{2.21}$$

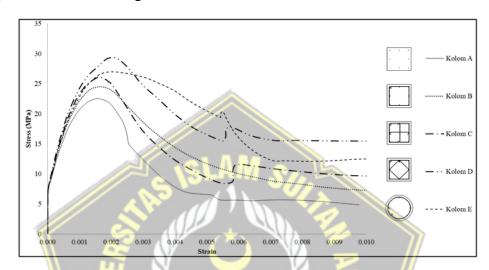
Dimana:

$$D_c = \sqrt{\frac{4A_c}{\pi}} \tag{2.22}$$

Keterangan:

 ρ_s = rasio volumetric sengkang

 A_{sh} = luas penampang sengkang (mm²)


s = jarang antar sengkang (mm)

 D_c = dimensi ekuivalen beton (mm)

 A_c = luas penampang inti beton (mm²)

Daerah C – D :
$$\varepsilon_c \ge \varepsilon_{20c}$$

 $f_c = 0.2 f'_c$ (2.20)

Penyajian diagram tegangan-regangan menjadi bagian penting dalam membandingkan kapasitas material akibat variasi sengkang. Penelitian terdahulu oleh Anam et al. (2024) telah menunjukkan bahwa bentuk sengkang memiliki peran signifikan dalam meningkatkan kekuatan tekan dan daktilitas kolom beton.

Gambar 2. 7 Diagram Tegangan-Regangan (stress-strain)

(Sumber : Anam et al., 2024)

2.7 Kajian Terdahulu

Penyusunan tugas akhir ini tidak lepas dari dukungan studi terdahulu sebagai referensi dasar perbandingan terkait perilaku kolom pendek akibat beban aksial dengan variasi bentuk sengkang. Berikut adalah kajian-kajian terdahulu yang ditinjau pada laporan peneliti.

No.	Penulis		Judul		Hasil Penelitian		
1.	D.C. Kent		Flexural	Members	Penelitian ini mengusulka		n model
	dan R.	Park,	with	Confined	hubungan	tegangan-	regangan
	(1971)		Cocrete		beton	terkekang	yang
					mempertimb	oangkan ₁	pengaruh
					konfigurasi	pengekangai	n lateral
					dari tulanga	n sengkang. N	Model ini
					menunjukka	n bahwa bet	on yang

diberikan pengekangan lateral akan mengalami pningkatan kekuatan tekan maksimum dan regangan ultimit, sehingga memberikan performa daktilitas yang lebih baik. Model ini sering digunakan dalam perancangan dan analisis struktur beton bertulang, dan dijadikan sebagai acuan dalam evaluasi kurva tegangan-regangan dari hasil analisis numerik pada tugas akhir ini. 2. M.K. Anam, Perbandingan Penelitian ini menyatakan bahwa F. Amir, dan Kapasitas Kolom beton kolom bertulang yang M. Sutrisno, Beton Bertulang menggunakan sengkang Berdasarkan Variasi dukungan (2024)memberikan berupa Bentuk Sengang kapasitas yang mampu menjaga nilai kapasitas kuat tekan aksial dengan Analisis Finite Element kolom. Pada analisis karakteristik Method tegangan-regangan, diperoleh hasil bahwa kolom persegi yang menggunakan sengkang diamond memiliki kemampuan mengoptimalkan kekuatan beton tertinggi dibandingkan dengan kolom persegi dengan sengkang biasa, sengkang silang, dan kolom bulat dengan sengkang bulat. Sementara itu, kolom bulat yang menggunakan sengkang bulat menunjukkan sifat paling daktail dibandingkan yang lainnya.

BAB III METODE PERANCANGAN

3.1 Pendahuluan

Bab ini menjelaskan prosedur perencanaan dan analisis struktur kolom pendek yang mengalami kekangan akibat beban aksial berdasarkan variasi bentuk sengkang melalui pendekatan numerik dengan menggunakan metode elemen hingga (*Finite Element Method*/FEM). Melalui simulasi numerik ini, dapat dianalisis bagaimana konfigurasi sengkang memengaruhi performa struktur kolom terhadap beban aksial.

Proses perancangan dilakukan dengan tahapan perencanaan desain geometri, penentuan properti material, pemodelan elemen struktur dalam perangkat lunak FEM, serta pengolahan hasil analisis. Metode ini memungkinkan pemodelan elemen struktural secara detail, termasuk representasi geometri, material beton dan baja tulangan, serta kondisi batas dan pembebanan. Untuk memperoleh hasil yang lebih realistis, analisis nonlinier diterapkan guna menangkap perilaku struktur yang kompleks saat menerima beban aksial, sehingga simulasi mampu menunjukkan kondisi yang mendekati kegagalan aktual.

3.2 Objek Penelitian

Dalam proses perancangan dan analisis numerik perilaku kolom diperlukan beberapa data dalam proses simulasi pada perangkat lunak.

3.2.1 Data Geometri

Data geometri merujuk pada ukuran dan konfigurasi fisik dari elemen struktur yang dianalisis. Dalam penelitian ini, model yang ditinjau adalah kolom pendek bertulang dengan variasi bentuk sengkang. Dimensi kolom dirancang secara konsinsten untuk setiap variasi model agar memungkinkan perbandingan yang objektif

Kolom beton yang digunakan dalam penelitian ini memiliki bentuk penampang persegi dengan ukuran 500 mm × 500 mm dan tinggi total 1500 mm. Selimut beton

ditetapkan sebesar 40 mm pada semua sisi, Berdasarkan rasio kelangsingan, kolom dikategorikan sebagai kolom pendek sesuai SNI 2847:2019.

3.2.2 Data Material

Data material mencakup karakteristik mekanik dari bahan penyusun struktur, yaitu beton sebagai material utama dan baja tulangan sebagai elemen penulangan. Data ini penting karena menentukan perilaku nonlinier struktur dalam simulasi *Finite Element Method*. Nilai-nilai properti material ini diinput berdasarkan standar desain, studi ilmiah, serta dokumen referensi lainnya.

•	Tegangan putus beton, f'c	= 29,1 MPa
•	Tegangan leleh tulangan pokok (fyl)	= 420 MPa
•	Tegangan leleh tulangan sengkang (fyv)	= 420 MPa
•	Modulus Elastisitas Beton, Ec	= 20111 MPa
•	Modulus Elastisitas Baja, Es	= 200.000 MPa
•	Berat isi Beton, γc	= 2400 kg/m2
•	Berat isi Baja, γs	= 7850 kg/m2
•	Ang <mark>k</mark> a Poi <mark>son</mark> Beton, μc	= 0,2
•	Angk <mark>a</mark> pois <mark>on</mark> Baja, μs	= 0,3

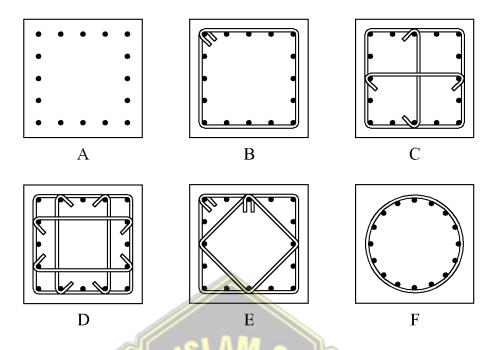
3.2.3 Data Pembebanan

Pembebanan pada kolom pendek dalam penelitian ini difokuskan pada beban aksial tekan yang bekerja secara sentris dari arah vertikal. Pembebanan dalam penelitian ini dilakukan dalam bentuk perpindahan terkontrol (displacement-controlled loading) yang diberikan secara aksial di ujung atas kolom. Pemilihan metode ini bertujuan untuk mengetahui respons kolom terhadap perpindahan tertentu, sehingga menghasilkan gaya reaksi tekan sebagai respons struktur.

Besarnya perpindahan diterapkan secara bertahap dari 0 mm hingga maksimum 20 mm, dengan langkah pembebanan (*increment*) yang cukup kecil untuk menangkap perubahan perilaku material secara bertahap. Pembebanan diterapkan searah sumbu vertikal (sumbu-Y global) pada ujung atas kolom

Data pembebanan ini tidak mengacu pada nilai gaya tertentu sejak awal, melainkan memanfaatkan respons gaya tekan yang timbul akibat perpindahan paksa

tersebut. Dengan demikian, dapat diperoleh kurva hubungan gaya-displacement yang merepresentasikan kapasitas aksial dan daktilitas masing-masing variasi kolom dengan bentuk sengkang yang berbeda.


3.2.4 Model Variasi Konfigurasi Sengkang Kolom

Penelitian ini menggunakan beberapa variasi bentuk tulangan sengkang pada kolom beton bertulang untuk mengamati perbedaannya terhadap perilaku aksial kolom. Variasi tersebut meliputi sengkang tanpa tulangan (*unconfined*), sengkang biasa, silang (*crosstie*), *double crosstie*, *diamond*, dan lingkaran. Setiap konfigurasi dirancang dengan dimensi, mutu beton, dan beban yang sama, sehingga perbedaan perilaku yang terjadi dapat distribusikan secara langsung terhadap bentuk dan efektivitas sistem pengekangan. Rincian masing-masing variasi konfigurasi sengkang yang digunakan dalam simulasi disajikan pada Tabel 3.1 berikut.

Tabel 3. 1 Model Variasi Konfigurasi Sengkang Kolom

Model	Dimensi	Tulangan	Tulangan	Deskripsi Bentuk
Kolom	Penampang	Longitudinal	Transversal	Sengkang
	(mm)			i //
A	500 x 500	16D22	15 5	Tanpa Sengkang
В	500 x 500	16D22	D13-100	Sengkang Biasa
C	500 x 500	16D22	D13-100	Sengkang Luar + 1
	سة \\	رفوه في الأسلا	ULA	Crosstie
D	500 x 500	16D22	D13-100	Sengkang Luar + 2
		^_		Crosstie
E	500 x 500	16D22	D13-100	Sengkang Luar +
				Diamond
F	500 x 500	16D22	D13-100	Sengkang Luar
				Lingkaran/Circular

(Sumber: Pribadi)

Gambar 3. 1 Variasi Bentuk Sengkang

(Sumber : Pribadi)

3.3 Pemeriksaan Model Kolom

Sebelum dilakukan proses analisis numerik, model kolom beton bertulang yang digunakan dalam penelitian ini terlebih dahulu diperiksa kesesuaiannya terhadap beberapa persyaratan dasar yang tercantum dalam SNI 2847:2019. Pemeriksaan ini bertujuan untuk memastikan bahwa dimensi, penulangan, dan konfigurasi sengkang yang digunakan telah memenuhi ketentuan minimum standar desain struktural. Adapun parameter yang diperiksa meliputi klasifikasi kolom pendek, luas dan rasio tulangan longitudinal, serta dimensi dan jarak tulangan transversal.

3.3.1 Klasifkasi Kolom Pendek

Berdasarkan Pasal 10.7.1 dari SNI 2847:2019, suatu kolom dianggap pendek apabila:

$$\frac{l_u}{r} \le 22$$

Keterangan:

 l_u = Panjang efektif kolom

r = radius inersia penampang kolom

Untuk kolom persegi 500 x 500 mm dengan tinggi 1500 mm:

$$r = \sqrt{\frac{(500)^4/12}{(500)^2}} = 144,34 \, mm$$

$$\frac{l_u}{r} = \frac{1500}{144,34} = 10,39 \le 22$$

Karena nilai rasio langsing kurang dari 22 yaitu 10,39 maka kolom termasuk dalam kategori kolom pendek

3.3.2 Luas dan Rasio Tulangan Longitudinal

Model menggunakan tulangan longitudinal berupa 16D22, yaitu 16 batang diameter 22 mm.

Luas penampang 1 batang D22:

$$A_{bar} = \frac{\pi}{4} \times 22^2 = 380,13 \, mm^2$$

Luas total:

$$A_s = 16 \times 380,13 = 6082,08 \, mm^2$$

Sesuai ketentuan SNI 2847:2019:

- Luas <mark>minimum</mark> tulangan :

$$1 \% \times A_g = 0.01 \times 250000 = 2500 \text{ mm}^2$$

- Luas maximum tulangan:

$$8\% \times A_g = 0.08 \times 250000 = 20000 \text{ mm}^2$$

Luas tulangan yang digunakan berada dalam rentang yang diperbolehkan

$$2.500 \le 6082,08 \le 20.000 \Rightarrow$$
 masih dalam batas aman

Rasio Penulangan:

$$\rho = \frac{A_s}{A_g} = \frac{6082,08}{250000} = 0,0243 = 2,43 \%$$

Nilai rasio tersebut telah memenuhi ketentuan minimum (1%) dan tidak melebihi batas maksimum (8%).

3.3.3 Dimensi dan Jarak Tulangan Transversal

Tulangan transversal yang digunakan berupa sengkang D13 dengan jarak pemasangan 100 mm.

Berdasarkan Pasal 10.7.6 SNI 2847:2019, diameter minimum sengkang harus memenuhi nilai terkecil dari :

- ½ × diameter tulangan memanjang
- 6 mm

Dengan tulangan longitudinal D22 (Ø22 mm), diperoleh:

$$\frac{1}{4} \times d_{long} = \frac{1}{4} \times 22 = 5.5 \, mm$$

Karena 5,5 mm < 6 mm maka diameter minimum yang diperbolehkan adalah 5,5 mm.

Sementara itu, diameter aktual sengkang yang digunakan adalah:

$$D13 = 13 \text{ mm}$$

Karena 13 mm > 4,75 mm maka sengkang dinyatakan memenuhi syarat diameter minimum.

Sesuai SNI 2847:2019 (Pasal 10.7.6), jarak maksimum sengkang adalah nilai terkecil dari:

1. 16 × diameter tulangan longitudinal

$$s = 16 \times d_b = 16 \times 22 = 352 \, mm$$

2. 48 × diameter Sengkang

$$s = 48 \times 13 = 48 \times 13 = 624 \, mm$$

3. Dimensi sisi penampang terkecil

$$s = 500 \, mm$$

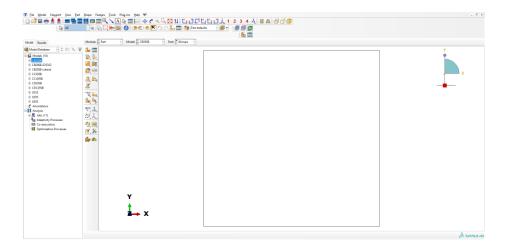
Maka diperoleh:

$$s_{maks} = 352 \, mm$$

Sengkang yang digunakan memiliki jarak 100 mm, sehingga:

 $100 \; \mathrm{mm} < 352 \; \mathrm{mm} \rightarrow \mathrm{Jarak}$ antar sengkang juga dinyatakan aman dan memenuhi syarat standar

3.4 Pemodelan Numerik


Pemodelan struktur kolom pendek dalam penelitian ini dilakukan secara numerik menggunakan perangkat lunak yang mendukung simulasi berbasis metode elemen hingga. Tujuannya adalah untuk mensimulasikan respons struktur terhadap beban aksial dengan memperhatikan variasi bentuk sengkang dan karakteristik material secara nonlinier.

3.4.1 Pembuatan Geometri Model

Geometri kolom dibuat dalam bentuk tiga dimensi (3D) solid deformable part dengan dimensi penampang dan tinggi kolom sesuai dengan data geometri yang telah ditentukan yaitu 500 mm x 500 mm dan tinggi 1500 mm. Beton dimodelkan sebagai solid part. Tulangan longitudinal dan sengkang dimodelkan secara terpisah sebagai wire part dan akan diintegrasikan dengan beton melalui teknik embedded region.

Gambar 3. 3 Pemodelan Tulangan Longitudinal (Sumber : Pribadi)

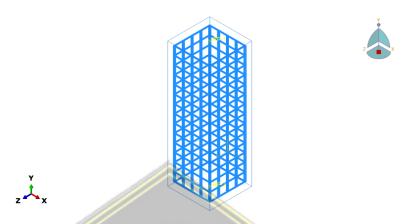
Gambar 3. 4 Pemodelan Sengkang

(Sumber : Pribadi)

Variasi bentuk sengkang dibuat sesuai dengan desain diantaranya sengkang biasa, sengkang *crosstie*, sengkang *double crosstie*, dan sengkang lingkaran.

1. Kolom Tanpa Sengkang (*Unconfined*)

Model ini digunakan sebagai kontrol pembanding (baseline). Tanpa adanya pengekangan lateral, model ini merepresentasikan beton tidak terkekang, yang diharapkan memiliki kapasitas tekan dan daktilitas paling rendah di antara variasi lainnya.



Gambar 3. 5 Pemodelan Kolom Tanpa Sengkang

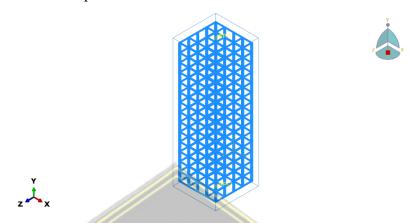
(Sumber : Pribadi)

2. Kolom dengan Sengkang Biasa

Model sengkang biasa menggunakan bentuk persegi tertutup di sekitar tulangan longitudinal. Tujuannya adalah memberikan pengekangan lateral sederhana namun efektif dalam menahan ekspansi lateral akibat beban aksial.

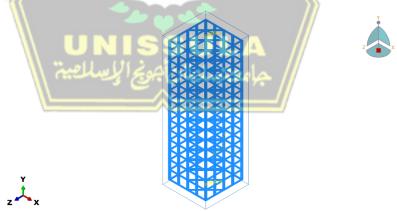
Gambar 3. 6 Pemodelan Kolom dengan Sengkang Biasa (Sumber: Pribadi)

3. Kolom dengan Sengkang Crosstie


Model ini menambahkan satu batang crosstie silang yang memperkuat koneksi antar tulangan longitudinal, memberikan pengekangan tambahan di bagian tengah kolom.

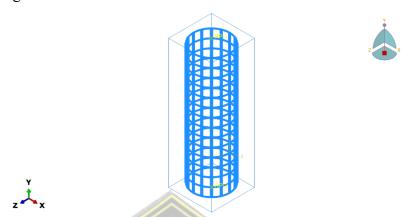
Gambar 3. 7 Pemodelan Kolom dengan Sengkang *Crosstie* (Sumber : Pribadi)

4. Kolom dengan Sengkang Double Crosstie


Model *double crosstie* menggunakan dua batang silang pada setiap lapisan sengkang, meningkatkan distribusi gaya lateral dan memperbaiki performa konfinemen terhadap deformasi.

Gambar 3. 8 Pemodelan Kolom dengan Sengkang Double Crosstie
(Sumber: Pribadi)

5. Kolom dengan Sengkang *Diamond*


Konfigurasi *diamond* memiliki pola ikatan diagonal berbentuk belah ketupat. Desain ini ditujukan untuk memperbaiki kapasitas pengekangan di zona tengah dan mengurangi konsentrasi tegangan.

Gambar 3. 9 Pemodelan Kolom dengan Sengkang *Diamond* (Sumber: Pribadi)

6. Kolom dengan Sengkang Lingkaran

Model ini menggunakan sengkang melingkar secara spiral yang memberikan pengekangan lateral merata ke seluruh inti beton.

Gambar 3. 10 Pemodelan Kolom dengan Sengkang Lingkaran (Sumber : Pribadi)

3.4.2 Pemodelan Perilaku Material

Dalam simulasi numerik ini, dua jenis material utama yang dimodelkan adalah beton dan baja tulangan. Beton dimodelkan secara nonlinier menggunakan model *Concrete Damaged Plasticity* (CDP), sedangkan baja tulangan dimodelkan sebagai material elastis—plastis bilinear tanpa strain hardening. Pemodelan ini dilakukan untuk mendekati perilaku aktual elemen struktur saat menerima beban aksial, termasuk munculnya kerusakan dan deformasi plastis.

a. Beton (Concrete Damage Plasticity – CDP)

Beton dimodelkan menggunakan pendekatan *Concrete Damaged Plasticity* (CDP), yang merupakan model konstitutif berbasis plastisitas untuk merepresentasikan perilaku nonlinier material beton, termasuk retak tarik dan keruntuhan tekan. Model ini dapat menangkap degradasi kekakuan akibat kerusakan, baik pada kondisi tarik maupun tekan. Parameter CDP yang digunakan dalam simulasi ini ditunjukkan pada tabel berikut:

Tabel 3. 2 Parameter CDP

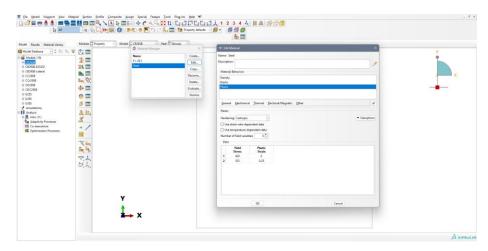
Parameter	Simbol	Nilai	Keterangan	
Dilation Angle	Ψ	40°	Sudut pelebaran plastisitas	
			beton	
Flow potential	ϵ	0,1	Parameter bentuk potensial	
eccentricity			aliran plastisitas	
fb0/fc0 ratio	-	1,16	Rasio kuat tekan biaxial	
			terhadap uniaxial	
K (shape factor)	K	0,667	Faktor bentuk yield surface	
Viscosity	μ	0	Nilai untuk menjaga kestabila	
parameter			konvergensi solusi numerik	

(Sumber : Pribadi)

Kurva tegangan–regangan beton untuk kondisi tekan dan tarik dimasukkan secara terpisah ke dalam perangkat lunak. Nilai kuat tekan beton (f'c) yang digunakan sebesar 29,1 MPa, regangan maksimum beton tekan (ε_c) diambil sebesar 0,002 berdasarkan karakteristik beton normal.

Gambar 3. 11 Pemodelan Material Beton (Sumber : Pribadi)

b. Baja Tulangan


Baja tulangan dimodelkan sebagai material elastis-plastis bilinear dengan strain hardening sebesar 25% dari tegangan leleh. Perilaku ini

menggambarkan bahwa setelah tegangan mencapai titik leleh, baja masih mengalami peningkatan kekuatan hingga mencapai tegangan ultimit. Nilainilai input diberikan berdasarkan karakteristik tulangan baja dengan kuat leleh sebesar 420 MPa. Parameter material baja tulangan yang digunakan ditunjukkan pada tabel berikut :

Tabel 3. 3 Parameter Baja Tulangan

Parameter	Simbol	Nilai	Keterangan
Modulus	Es	200000 MPa	Sifat elastis baja tulangan
Elastisitas			
Rasio Poisson	ν	0,3	Perbandingan regangan
			lateral terhadap regangan
	ISL	AM C.	aksial.
Tegangan leleh	Fy	420 MPa	Tegangan maksimum
		1 600° 2	saat baja mulai
			berdeformasi plastis.
Tegangan	Fu	525 Mpa	Tegangan maksimum
ulti <mark>mi</mark> t			yang dapat ditahan baja
	CC		sebelum putus.
Regangan	ε_u	0,025	Regangan maksimum
ultimit	INIS	SILLA	yang dapat dicapai baja
مية \	ونجوا لإيسلا	عامعتنسلطان أج	sebelum mengalami
	ر الله		patah (fracture)
	//	71 D.:1 1')	

(Sumber : Pribadi)


Gambar 3. 12 Pemodelan Material Baja Tulangan

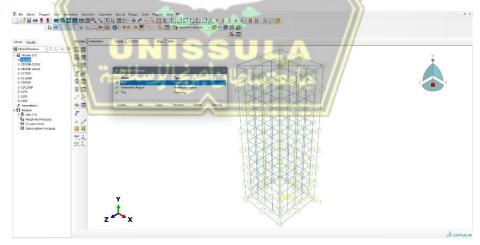
(Sumber : Pribadi)

3.4.3 Pembuatan Assembly

Komponen beton dan tulangan dirakit dalam satu assembly. Tulangan diletakkan di posisi sesuai desain (symmetric placement), dan variabel bentuk sengkang diatur berdasarkan tipe model. Tulangan longitudinal diposisikan secara simetris terhadap penampang kolom, dengan jumlah, jarak, dan clear cover sesuai desain. Variasi bentuk sengkang disusun berdasarkan tipe model yang diuji. Jarak antar sengkang (spacing) ditentukan berdasarkan desain yaitu 100 mm.

Setiap elemen diposisikan dengan presisi untuk memastikan tidak terjadi tumpang tindih atau tabrakan geometri. Setelah seluruh komponen tersusun, dilakukan pengecekan terhadap orientasi, posisi, dan kesesuaian dimensi sebagai persiapan untuk tahap pendefinisian interaksi.

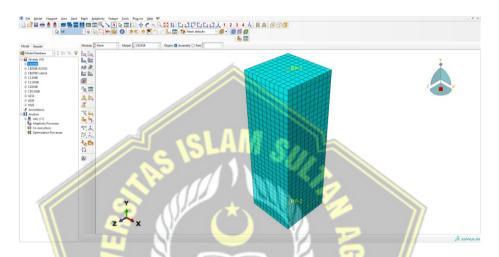
Gambar 3. 13 Proses Assembly


(Sumber : Pribadi)

3.4.4 Interaksi Komponen dan Penggabungan

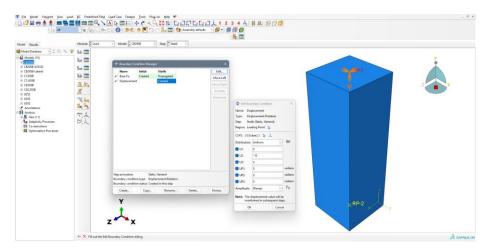
Interaksi antara tulangan dan beton didefinisikan menggunakan teknik *embedded region*, di mana elemen wire (tulangan) ditanamkan di dalam elemen solid (beton). Pada pendekatan ini, tulangan bertindak sebagai *embedded element* dan beton sebagai *host region*. Artinya, seluruh perpindahan (*displacement*) dan deformasi tulangan mengikuti elemen beton tempatnya tertanam. Teknik ini digunakan untuk menyederhanakan pemodelan sekaligus menghindari slip antar material, serta meningkatkan kestabilan perhitungan numerik selama proses analisis.

Selain itu, untuk mempermudah pengaturan kondisi batas (*boundary condition*) dan penyaluran beban, digunakan pendekatan tambahan berupa:


- Rigid body constraint pada permukaan dasar kolom, untuk menyatukan semua node pada bagian bawah ke satu titik referensi (reference point). Titik ini digunakan sebagai pusat kontrol kondisi tumpuan tetap (fixed support), sehingga semua node dasar bergerak sebagai satu kesatuan kaku.
- *Kinematic coupling* di bagian atas kolom, yang menghubungkan semua node pada ujung atas ke satu *reference point* sebagai titik aplikator beban. Dengan metode ini, beban aksial dapat diberikan secara merata ke seluruh penampang atas kolom melalui satu titik kontrol, tanpa menyebabkan deformasi lokal yang tidak realistis.

Gambar 3. 14 Pemodelan Interaksi Kolom Beton Bertulang (Sumber : Pribadi)

3.4.5 Pembuatan Mesh


Beton dimodelkan menggunakan elemen *solid tipe* C3D8R, yaitu elemen 3D berbentuk hexahedral dengan 8 node dan *reduced integration* yang dilengkapi kontrol *hourglass*. Tulangan sebagai batang garis (*wire element*) menggunakan elemen B1, yaitu elemen *beam 2-node* yang mampu menyalurkan gaya aksial, momen lentur, dan torsi sesuai sifat mekanis tulangan. Ukuran *mesh* disesuaikan, kemudian dibuat lebih halus di sekitar sengkang untuk meningkatkan akurasi hasil.

Gambar 3. 15 Proses Meshing Pada Model Kolom (Sumber: Pribadi)

3.4.6 Penentuan Boundary Conditions dan Loading

Tumpuan bawah kolom dimodelkan sebagai tumpuan tetap (*fixed support*), yang membatasi seluruh derajat kebebasan. Pembebanan diberikan pada bagian atas kolom berupa kontrol perpindahan sebesar 20 mm, yang diaplikasikan secara bertahap menggunakan metode *static general*. Pembebanan ini dimaksudkan untuk memperoleh gaya reaksi maksimum dan memicu perilaku nonlinier struktur.



Gambar 3. 16 Penerapan Pembebanan Aksial Pada Kolom (Sumber: Pribadi)

3.4.7 Proses Simulasi dan Analisis

Setelah seluruh parameter dimasukkan, simulasi dijalankan untuk masing-masing model sengkang. Output diperoleh adalah grafik gaya aksial terhadap perpindahan (*load-displacement curve*). Grafik gaya-perpindahan digunakan untuk menentukan kapasitas beban maksimum yang dapat ditahan oleh kolom serta mengevaluasi perilaku daktilitas struktur, yaitu kemampuan struktur dalam menyerap deformasi tanpa mengalami keruntuhan mendadak.

3.5 Bagan Alir Penelitian

BAB IV HASIL DAN PEMBAHASAN

4.1 Data dan Jenis Model Kolom

Dalam penelitian ini, model yang dianalisis merupakan kolom pendek beton bertulang yang divariasikan berdasarkan bentuk sengkang. Secara umum terdapat enam jenis model kolom yang dianalisis, terdiri dari satu model tanpa pengekangan/unconfined (A) dan lima model lainnya dengan bentuk sengkang yang berbeda, yaitu sengkang biasa (B), sengkang crosstie (C), sengkang double crosstie (D), sengkang diamond (E), dan sengkang lingkaran/circular (F). Masing-masing model memiliki dimensi penampang dan tinggi kolom yang seragam. Detail variasi model kolom yang digunakan dalam analisis dapat dilihat pada Tabel 4.1 berikut.

Tabel 4. 1 Jenis Konfigurasi Bentuk Sengkang Pada Model Kolom

Model Kolom	Dimensi Penampang (mm)	Tulangan Longitudinal	Tulangan Transversal
A	500 x 500	16D22	-
В	500 x 500	16D22	D13-100
C	500 x 500	16D22	D13-100 + 1 <i>Crosstie</i>
D ((500 x 500	16D22	D13-100 + 2 <i>Crosstie</i>
Е	500 x 500	16D22	D13-100 + Diagonal (Diamond)
F	500 x 500	16D22	D13-100 Lingkaran/ <i>Circular</i>

(Sumber : Pribadi)

4.2 Analisis Variasi Bentuk Sengkang dengan Metode Numerik

Analisis elemen hingga (*Finite Element Method*) dilakukan dengan bantuan program numerik pada setiap model kolom yang memiliki konfigurasi berbeda.

4.2.1 Analisis Hubungan Gaya Aksial dan Displacement

Analisis hubungan antara gaya aksial dan displacement dilakukan untuk mengevaluasi performa kolom beton bertulang terhadap beban aksial berdasarkan variasi bentuk pengekangan. Enam model kolom diuji dengan bentuk sengkang yang berbeda. Setiap model dikenai pembebanan aksial bertahap hingga mengalami keruntuhan, sehingga menghasilkan data kurva hubungan antara gaya aksial dan perpindahan vertikal (displacement) sebagai representasi perilaku struktur selama proses pembebanan.

Hubungan antara gaya aksial dan *displacement* pada setiap model kolom memberikan gambaran mengenai kekakuan awal, kapasitas puncak, serta kemampuan deformasi pasca-puncak yang mencerminkan daktilitas elemen struktur. Berdasarkan grafik *force-displacement*, dapat diamati bahwa seluruh model mengalami peningkatan gaya aksial seiring bertambahnya *displacement*, hingga mencapai nilai maksimum tertentu. Setelah titik maksimum tercapai, gaya aksial mulai menurun meskipun *displacement* terus bertambah, yang menandakan terjadinya keruntuhan.

1. Analisis Gaya Aksial dan Displacement Hasil Program Numerik

Data awal yang diperoleh dari hasil simulasi menujukkan nilai gaya aksial pada displacement terpilih mulai dari 0 hingga 20 mm. Hasil simulasi dapat dilihat pada Tabel 4.2

Tabel 4. 2 Hasil Output Gaya Aksial Pada Displacement

	Gaya Aksial (kN)					
Displacement	Model	Model	Model	Model	Model	Model
uy (mm)	Kolom	Kolom	Kolom	Kolom	Kolom	Kolom
	A	В	C	D	Е	F
0	0	0	0	0	0	0
2	7643	7868	7972	8040	7993	7951
4	9052	10034	10763	11437	10947	10298
6	5581	7133	8753	10152	9354	8047
8	4439	5947	7333	8843	7803	6538
10	4208	5696	7072	8257	7432	6249
12	4098	5610	6955	8086	7304	6135
14	4022	5546	6872	7983	7224	6035
16	3978	5496	6831	7916	7184	5979
18	3938	5467	6796	7866	7147	5932
20	•	•	6778	•	7131	5909

(Sumber : Hasil Analisis)

Dalam mengevaluasi gaya terhadap deformasi aksial, dilakukan pereduksian data hasil uji gaya terhadap displacement dari masing-masing model kolom. Reduksi ini dilakukan agar pembacaan grafik lebih efisien dan representatif. Hasil pereduksian ini dapat dilihat pada Tabel 4.3.

Tabel 4. 3 Hasil Reduksi Output Gaya Aksial Pada Displacement

	Gaya Aksial (kN)					
Displacement	Model	Model	Model	Model	Model	Model
uy (mm)	Kolom	Kolom	Kolom	Kolom	Kolom	Kolom
	A	В	C	D	Е	F
0	0	0	0	0	0	0
2	6115	6293	6378	6432	6395	6361
4	7242	8027	8610	9150	8758	8238
6	4464	5706	7002	8122	7483	6437
8	3551	4758	5866	7074	6242	5230
10	3367	4556	5658	6606	5945	4999
12	3278	4488	5564	6469	5844	4900
14	3218	4437	5497	6386	5779	4828
16	3182	4397	5465	6333	5747	4783
18	3150	4374	5437	6293	5718	4745
20		(^-)	5422		57 05	4727

(Sumber: Pribadi)

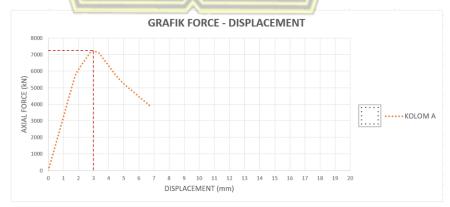
Setelah mendapatkan hasil reduksi dari simulasi, langkah berikutnya adalah membandingkan hasil tersebut dengan hasil software SP Column dalam bentuk diagram interaksi.

Gambar 4. 1 Diagram Interaksi Kolom Persegi

(Sumber : Pribadi)

Tabel 4. 4 Perbandingan Gaya Aksial Maksimum Simulasi Numerik dengan *Software* SP Column

Gaya Aksial Ma	Selisih Perbandingan		
Hasil Simulasi	Hasil SP Column	(%)	
Numerik (φ=0,8)	Hasii Si Columii		
8027	8500	5,56	

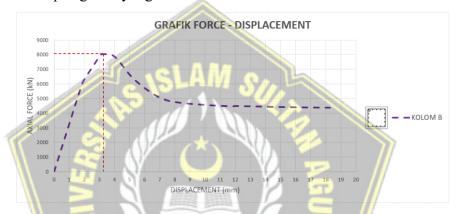

(Sumber: Pribadi)

Berdasarkan diagram interaksi menggunakan SP Column, diperoleh nilai gaya aksial maksimum (Pmax) penampang sebesar 8500 kN dalam kondisi nominal (belum direduksi). Sementara itu, hasil simulasi nonlinier menggunakan program numerik menunjukkan bahwa kapasitas maksimum penampang setelah mempertimbangkan perilaku nonlinier dan faktor reduksi kekuatannya mencapai 8027 kN. Perbedaan sekitar 473 kN antara kapasitas nominal SP Column dan hasil simulasi numerik yang telah direduksi menunjukkan bahwa nilai desain dari simulasi numerik berada dalam kisaran yang logis dan konservatif.

Grafik hubungan gaya aksial terhadap displacement masing-masing tipe kolom dijelaskan sebagai berikut.

a. Model Kolom A (*Unconfined*)

Model Kolom A merupakan kolom tanpa pengekangan atau hanya diperkuat dengan tulangan longitudinal tanpa tambahan pengekangan dari arah transversal. Hasil analisis respons gaya aksial-displacement dapat dilihat pada output grafik dari simulasi numerik dibawah ini.

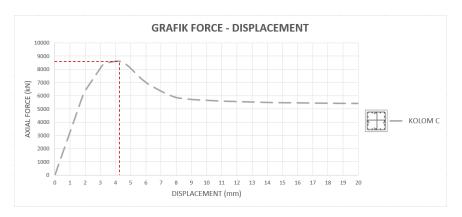


Gambar 4. 2 Grafik Force-Displacement Kolom A (Unconfined)
(Sumber: Pribadi)

Grafik di atas menunjukkan hubungan antara gaya dan perpindahan pada Kolom A (*Unconfined*), yaitu kolom tanpa penguatan lateral atau *confinement*. Awalnya, kolom menahan beban dengan baik hingga mencapai gaya maksimum sekitar 7241,6 kN pada perpindahan 3 mm.

b. Model Kolom B (Sengkang Biasa)

Model Kolom B menggunakan konfigurasi pengekangan konvensional, yaitu sengkang berbentuk persegi tertutup yang dipasang secara vertikal dengan jarak yang sudah ditetapkan. Hasil analisis dari Model B ini dapat dilihat melalui *output* grafik yang dihasilkan oleh simulasi numerik dibawah ini.

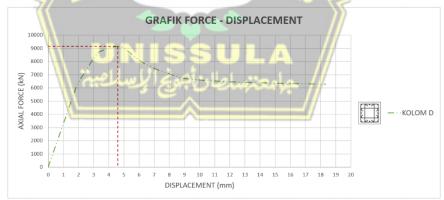


Gambar 4.3 Grafik Force-Displacement Kolom B (Sengkang Biasa)
(Sumber : Pribadi)

Grafik di atas menunjukkan hubungan gaya dan perpindahan pada Kolom B (Sengkang Biasa). Kolom ini mampu menahan gaya hingga sekitar 8027,04 kN pada perpindahan 3,3 mm, meningkat 10,85% dibandingkan dengan kolom tanpa sengkang.

c. Model Kolom C (Sengkang Crosstie)

Pada Model Kolom C, sengkang dipasang dengan konfigurasi silang (*crosstie*) di setiap tingkat pengekangan. Bentuk ini dimaksudkan untuk memberikan tambahan kekangan diagonal terhadap beton inti, guna meningkatkan distribusi tegangan dan kemampuan tahan deformasi. Hasil respons gaya aksial—displacement dari Model C ditampilkan pada *output* simulasi numerik berikut.



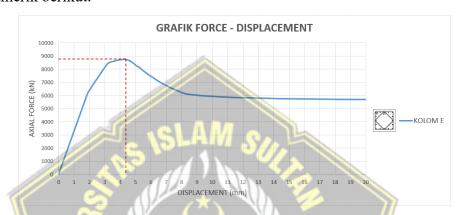
Gambar 4. 4 Grafik Force-Displacement Kolom C (Sengkang Crosstie)
(Sumber: Pribadi)

Grafik di atas menunjukkan hubungan gaya dan perpindahan pada Kolom C (Sengkang *Crosstie*). Kolom ini mampu menahan gaya hingga sekitar 8610,3 kN pada perpindahan 4,2 mm, dengan besar peningkatan sebesar 18,9% dibandingkan kolom tanpa sengkang.

d. Model Kolom D (Sengkang *Double Crosstie*)

Model Kolom D mengadopsi pendekatan dengan menambahkan dua batang crosstie silang pada satu tingkat pengekangan (double crosstie). Hasil analisis dari model ini dapat diamati pada output simulasi numerik berikut.

Gambar 4. 5 Grafik *Force-Displacement* Kolom D (Sengkang *Double Crosstie*)

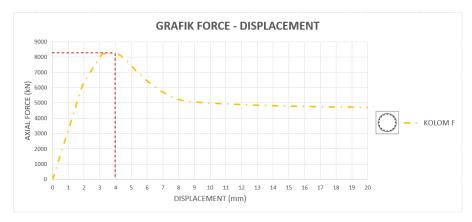

(Sumber : Pribadi)

Grafik diatas menunjukkan hubungan gaya dan perpindahan pada Kolom D (Sengkang *Double Crosstie*). Kolom ini mampu menahan gaya hingga sekitar

9149,9 kN pada perpindahan 4,6 mm, dengan besar peningkatan sebesar 26,35% dibandingkan kolom tanpa sengkang.

e. Model Kolom E (Sengkang *Diamond*)

Model Kolom E menggunakan pola pengekangan berbentuk *diamond* atau belah ketupat, yang tersusun diagonal membentuk empat arah dari pusat penampang. Hasil analisis dari Model E ditampilkan melalui *output* simulasi numerik berikut.

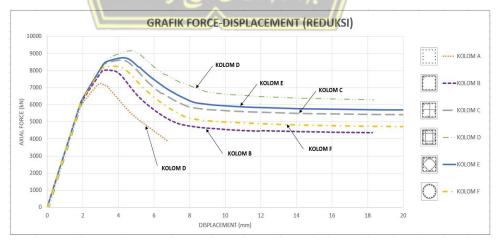

Gambar 4. 6 Grafik Force-Displacement Kolom E (Sengkang Diamond)

(Sumber: Pribadi)

Grafik di atas menggambarkan hubungan gaya dan perpindahan pada Kolom E (Sengkang *Diamond*). Kolom ini mampu menahan gaya hingga sekitar 8757,6 kN pada perpindahan 4,3 mm, meningkat 20,93% dibandingkan kolom tanpa sengkang

f. Model Kolom F (Sengkang Circular)

Model Kolom F dirancang dengan pengekangan spiral melingkar penuh di sepanjang tinggi kolom. Analisis terhadap model ini dilakukan menggunakan program numerik, dengan hasil *output* simulasi ditunjukkan di bawah ini.



Gambar 4. 7 Grafik *Force-Displacement* Kolom F (Sengkang *Circular*) (Sumber : Pribadi)

Grafik ini menunjukkan hubungan antara gaya dan perpindahan pada Kolom F (Sengkang *Circular*). Kolom ini mampu menahan gaya hingga sekitar 8238,3 kN pada perpindahan 4 mm, dengan besar peningkatan sebesar 13,76% dibandingkan kolom tanpa sengkang.

2. Kesimpulan Analisis Variasi Bentuk Sengkang Berdasarkan Hubungan Gaya Aksial dan Displacement

Analisis terhadap variasi bentuk sengkang berdasarkan hubungan antara gaya aksial dan *displacement* memberikan gambaran mengenai pengaruh konfigurasi sengkang terhadap kinerja kolom beton bertulang dalam menahan beban. Grafik hubungan gaya aksial terhadap *displacement* (*force-displacement*) untuk keenam model kolom ditampilkan pada gambar berikut.

Gambar 4. 8 Grafik *Force-Displacement* Enam Model Kolom (Sumber : Pribadi)

Berdasarkan hasil interpretasi grafik *force-displacement*, dapat disusun sebuah tabel yang merangkum gaya maksimum dan *displacement* saat puncak masing-masing kolom.

Tabel 4. 5 Hasil Gaya dan Displacement Maksimum Enam Model Kolom

Model Kolom	Gaya Maksimum (kN)	Displacement Saat Gaya Maksimum (mm)
A	7242	3
В	8027	3,3
С	8610	4,2
D	9150	4,6
Е	8758	4,3
F	8238	4

(Sumber: Pribadi)

Dari data hasil gaya maksimum dan *displacement* saat gaya maksimum, dapat dilakukan perhitungan daktilitas untuk masing-masing kolom berdasarkan grafik *force-displacement*.

Tabel 4. 6 Hasil Nilai Daktilitas Enam Model Kolom

1 1 1 7 1			D aktilitas
Model Kolom	Δu (mm)	Δy (mm)	$\left(\mu = \Delta u/_{\Delta y}\right)$
A	4,4	1,7	2,59
В	5,2	1,8	2,89
C	6,1	2	3,05
D	7,3	2,2	3,32
E	6,6	2,1	3,14
F \\ \\	25,8	1,9	3,05

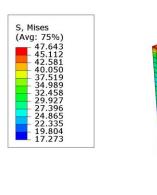
(Sumber: Pribadi)

Selain perilaku daktilitas, grafik *force-displacement* juga memberikan informasi mengenai peningkatan kapasitas tekan maksimum dari masingmasing kolom. Peningkatan ini dihitung dengan membandingkan gaya maksimum yang dicapai setiap kolom terhadap Kolom A sebagai acuan. Hasil perbandingan disajikan pada Tabel 4.7 berikut.

Tabel 4. 7 Perbandingan Gaya Aksial Tekan (*Axial Force*)

Model Kolom	Kuat Tekan (kN)	Peningkatan terhadap Kuat Tekan Kolom A (%)	Besar Peningkatan (%)
A	7242	100	-
В	8027	10,85	10,85
С	8610	118,9	18,9
D	9150	126,35	26,35
Е	8758	120,93	20,93
F	8238	113,76	13,76

Pada Tabel 4.7 menunjukkan bahwa variasi bentuk sengkang berpengaruh signifikan terhadap kapasitas tekan kolom. Kolom tanpa sengkang (A) memiliki kapasitas terendah. Saat menggunakan sengkang, kapasitas meningkat, terutama pada model *double crosstie* (D) yang mencapai peningkatan tertinggi sebesar 26,35% dibanding kolom tanpa sengkang (A). Model lain seperti sengkang biasa (B), *crosstie* (C), *diamond* (E), dan *circular* (F) juga menunjukkan performa yang lebih baik dibanding kolom tanpa sengkang (A).


4.2.2 Analisis Hubungan Tegangan dan Regangan

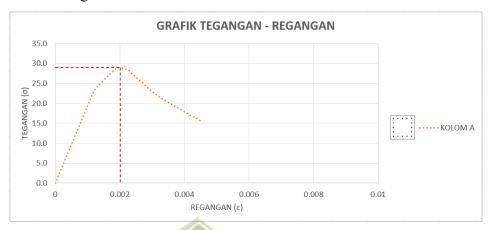
Selain menganalisis hubungan gaya aksial dan *displacement*, evaluasi perilaku material beton bertulang dalam studi ini juga dilakukan melalui grafik hubungan tegangan dan regangan. Grafik ini menggambarkan bagaimana material (khususnya beton pada inti kolom) merespons beban aksial dari aspek mekanis, yaitu seberapa besar tegangan yang mampu ditahan terhadap pertambahan regangan yang terjadi selama proses pembebanan.

1. Analisis Hubungan Tegangan dan Regangan Hasil Program Numerik

a. Model Kolom A (*Unconfined*)

Model A merupakan representasi dari kolom beton bertulang tanpa adanya elemen pengekang di sekeliling inti beton. Dalam kondisi ini, beton hanya diperkuat oleh tulangan longitudinal tanpa bantuan sengkang. Visualisasi dari model ini ditunjukkan melalui hasil output simulasi numerik di bawah ini.

Gambar 4. 9 Hasil Output Von Mises Model Kolom A (Unconfined)

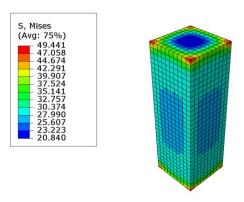

Program Numerik

Gambar di atas memperlihatkan distribusi tegangan *Von Mises* (*S, Mises*) dari hasil simulasi numerik pada model kolom A, yaitu kolom beton bertulang tanpa penguatan lateral (*unconfined*). Warna dalam model menunjukkan distribusi besar tegangan *Von Mises* dalam satuan MPa, dengan rentang nilai dari 17.273 MPa (biru tua) hingga 47.643 MPa (merah).

Untuk memperoleh pemahaman mekanis yang lebih mendalam terhadap respons aksial kolom A, dilakukan pengolahan data dari hasil simulasi berupa gaya aksial (axial force) dan perpindahan (displacement). Data ini dikonversi menjadi pasangan tegangan-regangan menggunakan rumus:

- Tegangan (σ) = Gaya Aksial (P) / Luas Penampang Kolom (A)
- Regangan (ε) = Perpindahan Aksial (Δ) / Panjang Awal Kolom (L)

Grafik tegangan-regangan yang diperoleh dari hasil analisis dapat dilihat sebagai berikut :

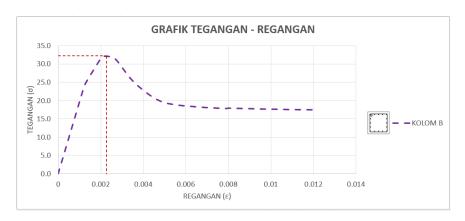


Gambar 4. 10 Grafik Tegangan-Regangan Kolom A (*Unconfined*)
(Sumber: Pribadi)

Grafik tegangan-regangan pada model kolom A menggambarkan perilaku kolom beton tanpa pengekangan ketika diberikan beban aksial secara bertahap. Berdasarkan hasil analisis tersebut, grafik menunjukkan bahwa kolom tanpa pengekangan (*unconfined*) memiliki sifat kaku dan getas. Tegangan meningkat linier hingga mencapai puncak sekitar 29 MPa pada regangan 0,002. Setelah itu, tegangan menurun seiring bertambahnya regangan, menandakan kerusakan material dan hilangnya kekuatan.

b. Model Kolom B (Sengkang Biasa)

Model B dirancang dengan menggunakan sengkang berbentuk persegi tertutup seperti yang biasa ditemukan pada elemen kolom di lapangan. Visualisasi dari model ini ditunjukkan melalui hasil output simulasi numerik di bawah ini.

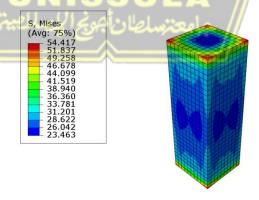

Gambar 4. 11 Hasil *Output Von Mises* Model Kolom B (Sengkang Biasa) Program Numerik

Gambar di atas menampilkan hasil simulasi distribusi tegangan *Von Mises* (*S, Mises*) pada model kolom beton bertulang B, yang menggunakan konfigurasi tulangan sengkang standar atau konvensional. Warna pada model menggambarkan besarnya tegangan *Von Mises* yang terjadi pada elemen-elemen struktur, dengan rentang antara 20.840 MPa (warna biru tua) hingga 49.441 MPa (warna merah).

Untuk mengevaluasi karakteristik mekanik kolom B secara kuantitatif, data gaya aksial (axial force) dan perpindahan (displacement) dari output simulasi diolah menjadi data tegangan dan regangan dengan menggunakan rumus berikut:

- Tegangan (σ) = Gaya Aksial (P) / Luas Penampang Kolom (A)
- Regangan (ε) = Perpindahan Aksial (Δ) / Panjang Awal Kolom (L)

Grafik tegangan–regangan yang diperoleh dari hasil analisis dapat dilihat sebagai berikut.



Gambar 4. 12 Grafik Tegangan-Regangan Kolom B (Sengkang Biasa) (Sumber : Pribadi)

Grafik di atas menunjukkan hubungan antara tegangan dan regangan pada kolom B yang menggunakan sengkang biasa. Pada awal pembebanan, grafik menunjukkan kenaikan tajam secara linier, yang menandakan bahwa kolom berada dalam kondisi elastis. Seiring bertambahnya beban, kolom mencapai tegangan maksimum sekitar 32,1 MPa pada regangan kurang lebih 0,0022 yang merupakan batas tertinggi yang dapat ditahan sebelum material mulai melemah.

c. Model Kolom C (Sengkang *Crosstie*)

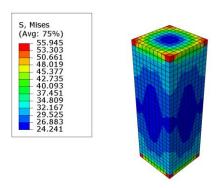
Model Kolom C dikembangkan dengan menambahkan batang silang (crosstie) sebagai bagian dari sistem pengekangan.

Gambar 4. 13 Hasil *Output Von Mises* Model Kolom C (Sengkang *Crosstie*) Program Numerik

(Sumber : Pribadi)

Gambar di atas menunjukkan distribusi tegangan *Von Mises* (*S, Mises*) pada model kolom beton bertulang C, yaitu kolom yang menggunakan konfigurasi tulangan sengkang tipe *crosstie*. Skala warna menunjukkan besarnya tegangan *Von Mises* yang terjadi pada elemen kolom, dengan rentang tegangan antara 23.463 MPa (warna biru tua) hingga 54.417 MPa (warna merah).

Setelah diperoleh hasil tegangan dari simulasi, langkah selanjutnya adalah mengolah data gaya aksial (axial force) dan perpindahan (displacement) untuk mendapatkan nilai tegangan (σ) dan regangan (ϵ). Grafik tegangan–regangan yang diperoleh dari hasil analisis dapat dilihat sebagai berikut.


Gambar 4. 14 Grafik Tegangan-Regangan Kolom C (Sengkang *Crosstie*)

(Sumber: Pribadi)

Grafik tegangan-regangan di atas menggambarkan respons struktur kolom C yang menggunakan sengkang *cross tie* saat menerima beban tekan aksial. Terlihat bahwa pada awal pembebanan, hubungan antara tegangan dan regangan bersifat linier. Semakin besar beban yang diterima, kolom terus menahan tegangan hingga mencapai puncaknya di sekitar 34,4 MPa, pada regangan sekitar 0,0028. Titik ini menunjukkan batas maksimum kemampuan material sebelum mulai melemah atau rusak.

d. Model Kolom D (Sengkang *Double Crosstie*)

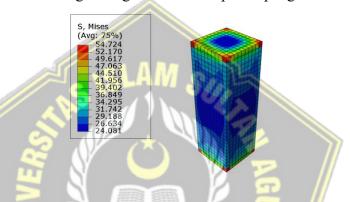
Model D menggunakan dua batang silang dalam konfigurasi sengkangnya, sehingga memberikan pengekangan ganda.

Gambar 4. 15 Hasil *Output Von Mises* Model Kolom D (Sengkang *Double Crosstie*) Program Numerik

(Sumber: Pribadi)

Gambar di atas menunjukkan hasil simulasi distribusi tegangan *Von Mises* (*S, Mises*) pada model kolom beton bertulang D, yang menggunakan konfigurasi tulangan sengkang tipe *double crosstie*. Warna-warna pada model menunjukkan besarnya tegangan *Von Mises* dalam satuan MPa, dengan rentang antara 24.241 MPa (warna biru tua) hingga 55.945 MPa (warna merah).

Untuk mendapatkan pemahaman lebih lanjut mengenai perilaku mekanis kolom terhadap beban aksial, data gaya aksial (axial force) dan perpindahan (displacement) dari output simulasi akan diolah menjadi data tegangan (σ) dan regangan (σ). Grafik tegangan—regangan yang diperoleh dari hasil analisis dapat dilihat sebagai berikut.

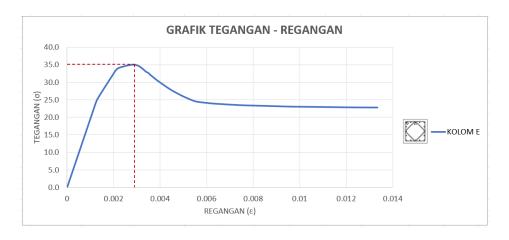

Gambar 4. 16 Grafik Tegangan-Regangan Kolom D (Sengkang *Double Crosstie*)

(Sumber : Pribadi)

Grafik di atas menggambarkan perilaku tegangan-regangan pada kolom D yang diperkuat dengan sengkang *double crosstie*, yaitu konfigurasi penguatan transversal yang lebih kompleks dibandingkan sengkang biasa. Seperti terlihat, grafik menunjukkan peningkatan tajam pada fase awal pembebanan, menandakan respon elastis material hingga mencapai tegangan maksimum sekitar 36,6 MPa pada regangan sekitar 0,003.

e. Model Kolom E (Sengkang Diamond)

Model ini mengaplikasikan pola sengkang berbentuk *diamond* yang membentuk kekangan diagonal di dalam penampang kolom.

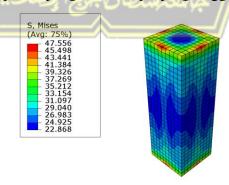


Gambar 4. 17 Hasil *Output Von Mises* Model Kolom E (Sengkang Diamond) Program Numerik

(Sumber : Pribadi)

Gambar di atas menunjukkan hasil simulasi distribusi tegangan *Von Mises* (*S, Mises*) pada model kolom beton bertulang E, yaitu kolom yang menggunakan konfigurasi tulangan sengkang berbentuk *diamond*. Warnawarna pada model menggambarkan besar tegangan *Von Mises* dalam satuan MPa, dengan rentang antara 24.081 MPa (biru tua) hingga 54.724 MPa (merah).

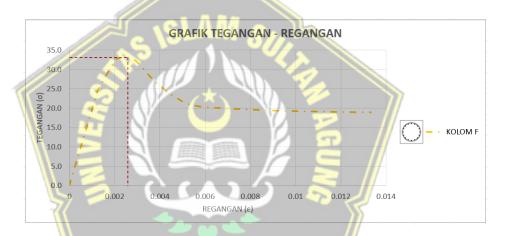
Langkah selanjutnya adalah melakukan pengolahan data gaya aksial (axial force) dan perpindahan (displacement) yang diperoleh dari output simulasi. Data ini akan digunakan untuk menghitung nilai tegangan (σ) dan regangan (ε). Grafik tegangan–regangan yang diperoleh dari hasil analisis dapat dilihat sebagai berikut.



Gambar 4. 18 Grafik Tegangan-Regangan Kolom E (Sengkang *Diamond*)
(Sumber : Pribadi)

Grafik di atas menunjukkan hubungan antara tegangan dan regangan pada kolom E yang menggunakan konfigurasi sengkang *diamond*. Pada awal pembebanan, grafik memperlihatkan peningkatan tegangan yang cukup tajam, menandakan bahwa kolom mampu menahan beban aksial secara efisien dalam fase elastis. Tegangan maksimum tercapai pada kisaran 35 MPa dengan regangan sekitar 0,0028, sebelum akhirnya grafik mulai menurun seiring bertambahnya regangan.

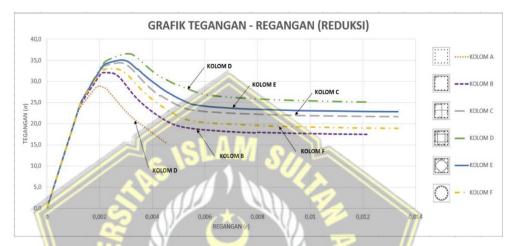
f. Model Kolom F (Sengkang Circular)


Model F menggunakan sengkang berbentuk *circular* atau lingkaran yang membungkus penampang kolom sepanjang tinggi elemen.

Gambar 4. 19 Hasil *Output Von Mises* Model Kolom F (Sengkang Circular) Program Numerik (Sumber : Pribadi)

Gambar di atas menunjukkan hasil output simulasi berupa kontur tegangan *Von Mises* (*S, Mises*) pada model kolom beton bertulang tipe F, yaitu kolom dengan konfigurasi sengkang berbentuk lingkaran (*circular*). Warna pada model merepresentasikan distribusi tegangan *Von Mises* dalam satuan MPa, dengan rentang tegangan dari 22.868 MPa (warna biru tua) hingga 47.556 MPa (warna merah).

Selanjutnya, untuk memahami perilaku mekanik material secara lebih mendalam, data gaya aksial (axial force) dan perpindahan (displacement) yang dihasilkan dari output simulasi akan diolah menjadi data tegangan (σ) dan regangan (ε). Grafik tegangan—regangan yang diperoleh dari hasil analisis dapat dilihat sebagai berikut.


Gambar 4. 20 Grafik Tegangan-Regangan Kolom F (Sengkang Circular)

(Sumber: Pribadi)

Grafik di atas menunjukkan hubungan antara tegangan dan regangan pada kolom E yang menggunakan konfigurasi sengkang *circular*. Pada awal grafik, tampak bahwa tegangan meningkat tajam seiring dengan pertambahan regangan, menandakan bahwa material berada dalam fase elastis. Puncak tegangan tercapai sekitar 33 MPa pada regangan 0,0026 yang menggambarkan batas maksimum kekuatan material.

2. Kesimpulan Analis Variasi Bentuk Sengkang Berdasarkan Hubungan Tegangan-Regangan

Dari hasil analisis grafik hubungan tegangan-regangan pada masing-masing keenam model kolom, diperoleh gambaran mengenai sejauh mana variasi bentuk sengkang memengaruhi kemampuan material dalam menahan deformasi akibat pembebanan. Grafik hubungan tegangan-regangan untuk keenam model kolom ditampilkan pada gambar berikut.

Gambar 4. 21 Grafik Tegangan-Regangan Enam Model Kolom

(Sumber: Pribadi)

Berdasarkan grafik diatas, dapat diambil nilai tegangan maksimum dan nilai regangan saat terjadi tegangan maksimum dapat dilihat pada Tabel 4.8 berikut:

Tabel 4. 8 Tegangan Maksimum Tiap Model Kolom

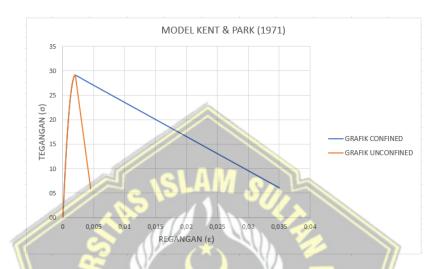
Model Kolom	Tegangan Maksimum (MPa)	Pengingkatan terhadap Tegangan Kolom A (%)	Besar Peningkatan (%)
A	29	100	•
В	32,1	100,85	10,85
C	34,4	118,9	18,9
D	36,6	126,35	26,35
Е	35	120,93	20,93
F	33	113,76	13,76

(Sumber : Pribadi)

Pada Tabel 4.8 ditunjukkan nilai tegangan maksimum yang dicapai oleh masing-masing model kolom dengan Kolom A menjadi acuan perbandingan. Kolom D menunjukkan performa paling tinggi dengan tegangan maksimum sebesar 46 MPa, meningkat 26,35% dari kolom A. Disusul oleh kolom E dan C yang juga menunjukkan peningkatan cukup besar, masing-masing sebesar 20,93% dan 18,9%. Sementara kolom B dan F mengalami peningkatan yang lebih rendah.

Tabel 4. 9 Regangan Saat Terjadi Tegangan Maksimum

	Regangan pada		
Model Kolom	Tegangan	terhadap	Besar
Wiodel Kololli	Maksimum	Tegangan Kolom	Peningkatan (%)
	(MPa)	A (%)	
A	0,002	100	-
В	0,0022	110	10
C	0,0028	140	40
D	0,0031	153,3	53,3
E	0,0029	143,3	43,3
F	0,0027	133,3	33,3

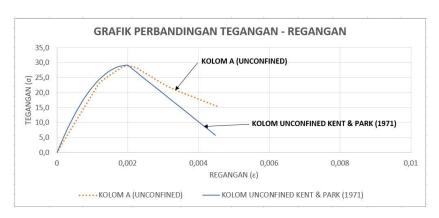

(Sumber : Pribadi)

Pada Tabel 4.9 disajikan data regangan pada saat tegangan maksimum yang terjadi di setiap model kolom dengan kolom A sebagai acuan perbandingan. Peningkatan regangan tertinggi terjadi pada kolom D sebesar 53,3 % diikuti kolom C sebesar 40% dan kolom E sebesar 43,3%.

4.3 Perbandingan Analisis Numerik dengan Model Kent & Park (1971)

Dalam penelitian ini, hasil analisis numerik yang diperoleh dari simulasi enam model kolom dibandingkan dengan model perilaku beton tertekan yang dikembangkan oleh Kent & Park (1971). Tujuan dari perbandingan ini adalah untuk menilai sejauh mana model teoritis Kent & Park (1971) mampu merepresentasikan perilaku aktual kolom yang dimodelkan secara numerik, serta untuk mengidentifikasi potensi perbedaan kuantitatif yang muncul akibat pendekatan idealisasi dalam model teoritis.

Dalam perbandingan ini, digunakan rumus-rumus dari model Kent & Park dengan memasukkan parameter beton aktual sesuai dimensi, kuat tekan, dan modulus elastisitas beton dari kolom yang diteliti. Berdasarkan hasil perhitungan rumus yang sudah dilakukan, diperoleh dua grafik tegangan-regangan beton, yaitu grafik *unconfined* dan *confined*. Grafik tegangan-regangan model Kent & Park (1971) dapat dilihat dibawah ini.

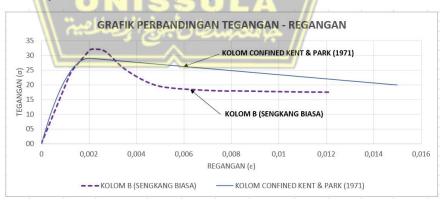

Gambar 4. 22 Grafik Tegangan-Regangan Model Kent & Park (1971)

(Sumber : Pribadi)

Grafik diatas menjadi acuan awal dalam mengevaluasi kesesuaian antara model teoritis dan hasil simulasi numerik. Selanjutnya, grafik-grafik ini akan dibandingkan secara langsung dengan hasil analisis numerik pada masing-masing variasi kolom, untuk menilai akurasi serta pengaruh konfigurasi sengkang terhadap kinerja struktur kolom beton.

- 1. Analisis Perbandingan Hasil Numerik dengan Model Kent & Park (1971)
 Perbandingan hasil analisis simulasi numerik dengan hasil perhitungan Kent &
 Park (1971) keenam model kolom dijelaskan dalam uraian berikut
 - a. Kolom A (*Unconfined*)

 Kolom A merupakan model tanpa pengekangan lateral, sehingga dijadikan pembanding langsung dengan kurva unconfined Kent & Park (1971).

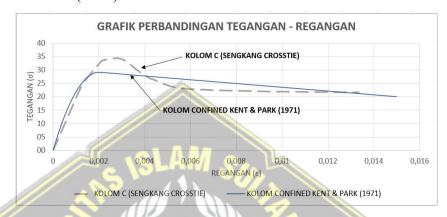


Gambar 4. 23 Grafik Perbandingan Tegangan-Regangan Kolom A (*Unconfined*)

Grafik diatas menunjukkan grafik perbandingan tegangan-regangan kolom A yang tanpa menggunakan pengekangan (*unconfined*). Tegangan maksimum dari hasil numerik adalah 29 MPa, hampir sama dengan model Kent & Park yang berada di 29,1 MPa, dengan selisih 0,1 MPa. Namun, regangan maksimum numerik sebesar 0,002, sama seperti Kent & Park yaitu 0,0020.

b. Kolom B (Sengkang Biasa)

Kolom B dilengkapi dengan sengkang biasa, dan dibandingkan dengan grafik confined Kent & Park (1971).


Gambar 4. 24 Grafik Perbandingan Tegangan-Regangan Kolom B (Sengkang Biasa)

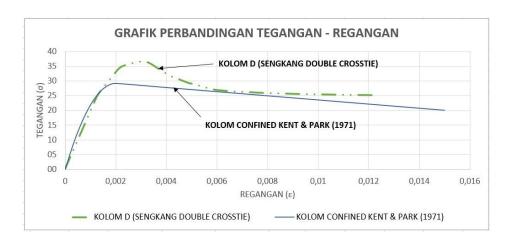
(Sumber : Pribadi)

Hasil numerik menunjukkan tegangan maksimum 32,1 MPa, meningkat +3 MPa dari model Kent & Park. Regangan maksimumnya 0,0022, hampir sama dari Kent & Park 0,0020, dengan selisih +0,0002.

c. Kolom C (Sengkang Crosstie)

Kolom C dengan sengkang *crosstie* dibandingkan dengan grafik *confined* Kent & Park (1971).

Gambar 4. 25 Grafik Perbandingan Tegangan-Regangan Kolom C

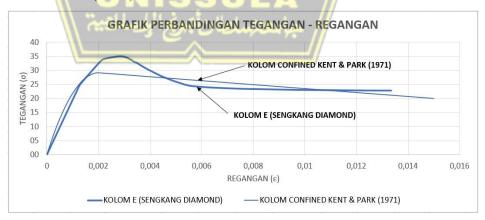

(Sengkang Crosstie)

(Sumber: Pribadi)

Hasil numerik mencatat tegangan maksimum 34,4 MPa, naik +5,3 MPa dari Kent & Park. Regangan maksimum numeriknya mencapai 0,0028, lebih besar +0,0008 dari model teoritis.

d. Kolom D (Sengkang Double Crosstie)

Kolom D dengan sengkang *double crosstie* dibandingkan dengan grafik *confined* Kent & Park (1971).

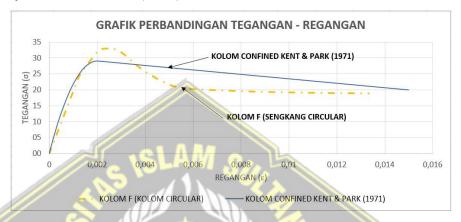

Gambar 4. 26 Grafik Perbandingan Tegangan-Regangan Kolom D

(Sengkang *Double Crosstie*)

Tegangan maksimum dari hasil numerik tercapai sebesar 36,6 MPa, yaitu +7,5 MPa lebih tinggi dibanding Kent & Park. Regangan maksimum numeriknya mencapai 0,0031, lebih tinggi +0,0011. Kolom D menunjukkan performa paling unggul, membuktikan bahwa konfigurasi double crosstie paling efektif dalam meningkatkan kekuatan dan daktilitas.

e. Kolom E (Sengkang Diamond)

Kolom E dengan sengkang *diamond* dibandingkan dengan grafik *confined* Kent & Park (1971).


Gambar 4. 27 Grafik Perbandingan Tegangan-Regangan Kolom E (Sengkang *Diamond*)

(Sumber : Pribadi)

Hasil numerik menghasilkan tegangan maksimum 35 MPa, yaitu +5,9 MPa lebih tinggi dibanding Kent & Park dan regangan maksimum numerik sebesar 0,0029, naik +0,0009 dari Kent & Park.

f. Kolom F (Sengkang Circular)

Kolom F dengan sengkang *circular*/lingkaran dibandingkan dengan grafik *confined* Kent & Park (1971).

Gambar 4. 28 Grafik Perbandingan Tegangan-Regangan Kolom F
(Sengkang Circular)

(Sumber: Pribadi)

Tegangan maksimum dari hasil numerik mencapai 33 MPa, yaitu +3,9 MPa lebih tinggi dibanding Kent & Park dan regangan maksimum numerik sebebar 0,0027, lebih besar +0,0007 dari Kent & Park.

2. Kesimpulan Perbandingan Analisis Tiap Model Kolom

Dari hasil perbandingan grafik tegangan-regangan antara hasil analisis simulasi numerik pada keenam model kolom dengan model Kent & Park (1971) diperoleh kesimpulan yang dirangkum dalam Tabel 4.10 berikut.

Tabel 4. 10 Perbandingan Tegangan dan Regangan Maksimum Analisis Numerik dengan Model Kent & Park (1971)

	Tegangan	Tegangan	Selisih	Selisih
Model	Maksimum	Maksimum	Tegangan	Tegangan
Kolom	Numerik	Kent & Park	Maksimum	Maksimum
	(MPa)	(1971) (MPa)	(MPa)	(%)
A	29	29,1	0,1	0,34
В	32,1	29,1	3	10,31
C	34,4	29,1	5,3	18,21
D	36,6	29,1	7,5	25,77
Е	35	29,1	5,9	20,27
F	33	29,1	3,9	13,4
Model	Regangan	Regangan	Selisih	Selisih
Kolom	Maksimum	Maksimum	Regangan	Regangan
	Numerik	Kent & Park	Maksimum	Maksimum
	(MPa)	(1971) (MPa)	(MPa)	(%)
A	0,0020	0,002	0	0
В	0,0022	0,002	0,0002	10
C	0,0028	0,002	0,0008	40
D	0,0031	0,002	0,0011	55
E	0,0029	0,002	0,0009	45
F	0,0027	0,002	0,0007	35

Berdasarkan hasil perbandingan antara hasil model numerik dan model Kent & Park (1971), diperoleh kesimpulan yaitu seluruh model kolom numerik menunjukkan tegangan maksimum yang lebih tinggi dibandingkan dengan model Kent & Park, yang tetap berada di angka 29,1 MPa. Selisih tertinggi terjadi pada Kolom D (sengkang *double crosstie*), yaitu 7,5 MPa atau +25,8% lebih tinggi. Dari sisi regangan maksimum, semua model numerik juga menunjukkan peningkatan dibandingkan model Kent & Park (0,002). Peningkatan terbesar ditunjukkan oleh Kolom D (0,0031), yaitu +0,0011 atau +55% lebih besar. Sementara itu, Kolom A yang memiliki konfigurasi paling sederhana, menunjukkan nilai tegangan dan regangan yang identik atau mendekati model Kent & Park, menandakan kontribusi *confinement* minimum.

4.4 Rekapitulasi Hasil Analisis


Dari hasil analisis variasi bentuk sengkang dengan metode numerik dan pendekatan teoritis pada bab ini, maka didapatkan hasil rekapitulasi yang disajikan pada Tabel 4.11, Tabel 4.12, Tabel 4.13, Tabel 4.14, dan Tabel 4.15.

Tabel 4. 11 Hasil Nilai Daktilitas Tiap Model Kolom

Model Kolom	Δu (mm)	Δy (mm)	Daktilitas (μ)	Kesimpulan
A	4,4	1,7	2,59	Memiliki nilai daktilitas paling rendah, menandakan kolom ini kurang mampu mengalami deformasi plastis sebelum gagal.
В	5,2	1,8	2,89	Daktilitasnya mulai membaik dibanding Kolom A, menunjukkan kemampuan deformasi yang lebih baik.
С	6,1	2	3,05	Menunjukkan peningkatan daktilitas yang cukup baik, memberikan fleksibilitas yang lebih tinggi terhadap beban.
D	7,3	2,2	3,32	Memiliki daktilitas tertinggi, paling mampu menahan deformasi besar tanpa kehilangan kekuatan secara tibatiba.
E	6,6	2,1 نے الاسلام	3,14 مالوارنام	Memperlihatkan performa daktilitas yang hampir setara dengan Kolom D, cocok untuk struktur yang membutuhkan ketahanan deformasi.
F	5,8	1,9	3,05	Daktilitas berada di kisaran menengah ke atas; cukup baik dalam merespons deformasi plastis.

(Sumber: Pribadi)

Untuk mempermudah pemahaman terhadap perbandingan daktilitas antar variasi kolom, data dari tabel sebelumnya disajikan kembali dalam bentuk grafik batang pada Gambar 4.29.

Gambar 4. 29 Grafik Perbandingan Nilai Daktilitas antar Variasi Kolom
(Sumber: Pribadi)

Berdasarkan hasil analisis, Kolom D mencatat daktilitas tertinggi yaitu 3,32, menunjukkan kemampuan optimal dalam menahan deformasi besar sebelum kehilangan kekuatan secara tiba-tiba. Disusul oleh kolom E dengan nilai daktilitas 3,14 yang memiliki performa hampir setara dengan kolom D, cocok untuk struktur yang membutuhkan ketahanan deformasi. Kolom F menyusul dengan nilai daktilitas 3,05 berada pada kisaran menengah ke atas, cukup baik dalam menyerap deformasi plastis. Kolom C dengan nilai 3,05 juga menunjukkan fleksibilitas tinggi terhadap beban. Sedangkan Kolom B dengan nilai daktilitas 2,89 memiliki kemampuan deformasi lebih baik dibanding kolom dengan daktilitas terendah. Terakhir, kolom A memiliki nilai daktilitas paling rendah sebesar 2,59, menandakan keterbatasan dalam mengalami deformasi plastis sebelum mengalami kegagalan.

Dari hasil tersebut, terlihat lebih jelas bagaimana setiap bentuk sengkang memberikan pengaruh yang berbeda terhadap kemampuan kolom dalam mengalami deformasi plastis. Variasi dengan konfigurasi kekangan yang lebih kompleks umumnya menunjukkan nilai daktilitas yang lebih tinggi.

Tabel 4. 12 Hasil Perbandingan Kuat Tekan Maksimum (*Axial Force*) Tiap Model Kolom

Model Kolom	Kuat Tekan (kN)	Peningkatan Terhadap Kuat Tekan Kolom A (%)	Besar Peningkatan (%)	Kesimpulan
A	7242	100	-	Sebagai acuan dasar, memiliki kuat tekan terendah dari seluruh model.
В	8027	100,85	10,85	Mengalami sedikit peningkatan kekuatan, namun masih tergolong rendah dibanding model lainnya.
С	8610	118,9	(18,9	Menunjukkan peningkatan kekuatan yang cukup signifikan, cocok untuk struktur dengan kebutuhan beban sedang.
D	9150	126,35	26,35	Memiliki peningkatan kekuatan terbesar, menjadikannya model dengan kapasitas tekan paling tinggi.
E	8758	120,93	20,93	Peningkatan kekuatan yang tinggi dan seimbang dengan daktilitas; cocok untuk performa struktural yang optimal.
F	8238	ہوچ ارسالی۔ 113,76	امعتساعات 13,76	Meningkat cukup baik dibanding Kolom A, dapat dijadikan alternatif dengan performa menengah.

Untuk menggambarkan perbedaan kapasitas tekan dari masing-masing variasi kolom, data kuat tekan maksimum yang telah diperoleh disajikan dalam bentuk grafik pada Gambar 4.30.

Gambar 4. 30 Grafik Perbandingan Kuat Tekan Maksimum Kolom (Sumber: Pribadi)

Grafik diatas menunjukkan bahwa kolom dengan konfigurasi sengkang yang lebih kompleks, seperti double crosstie dan diamond, memiliki kapasitas tekan yang lebih tinggi dibandingkan kolom tanpa sengkang atau dengan sengkang konvensional. Kolom D menempati urutan pertama dengan kuat tekan sebesar 9150 kN, mengalami peningkatan sebesar 26,35% dibanding kolom A, sehingga menjadi model dengan kapasitas tekan paling tinggi. Di posisi kedua, kolom E memiliki kuat tekan 8758 kN dengan peningkatan 20,93%. Kolom C menyusul dengan 8610 kN atau meningkat 18,9%. Kolom F berada di posisi keempat dengan 8238 kN, mengalami peningkatan 13,76% dari kolom A. Kolom B memiliki kuat tekan 8027 kN dengan peningkatan 10,85%, sementara kolom A menjadi yang paling rendah dengan 7242 kN yang dijadikan acuan pembanding. Hal tersebut menunjukkan bahwa sistem pengekangan berperan penting dalam meningkatkan kekuatan aksial kolom

Tabel 4. 13 Hasil Tegangan Maksimum Tiap Model Kolom

Model Kolom	Tegangan Maksimum (MPa)	Peningkatan Terhadap Tegangan Kolom A	Besar Peningkatan (%)	Kesimpulan
A	29	100	-	Digunakan sebagai acuan dasar, Kolom A memiliki tegangan maksimum paling rendah dibandingkan model lainnya.
В	32,1	100,85	10,85	Mengalami sedikit peningkatan tegangan maksimum dari Kolom A, namun masih berada pada kisaran bawah dibanding model lainnya.
C	34,4	118,9	18,9	Mencapai peningkatan yang cukup signifikan, menunjukkan peningkatan performa material dalam menahan beban aksial.
D	36,6	126,35	26,35 5 U L A	Memiliki tegangan maksimum tertinggi, menandakan bahwa Kolom D paling unggul dalam menahan beban sebelum mengalami kegagalan.
E	35	120,93	20,93	Performa tegangan yang tinggi dan hampir setara dengan Kolom D, menunjukkan kekuatan material yang sangat baik.
F	33	113,7	13,76	Menunjukkan peningkatan tegangan yang cukup baik, berada pada tingkat menengah dalam hal kekuatan material.

Berikut merupakan grafik batang yang menggambarkan perbandingan nilai tegangan maksimum dari setiap model kolom. Data diambil dari hasil pengujian numerik pada masing-masing variasi, untuk memberikan gambaran visual tentang perbandingan tegangan maksimum tiap model kolom.

Gambar 4. 31 Grafik Perbandingan Tegangan Maksimum Kolom (Sumber : Pribadi)

Berdasarkan hasil grafik perbandingan diatas, tegangan maksimum menunjukkan adanya perbedaan nilai pada setiap model kolom dibandingkan dengan kolom A sebagai acuan. Kolom D unggul dengan nilai 36,6 MPa, menandakan kemampuannya menahan tegangan tinggi sebelum material gagal. Kolom E menyusul dengan 35 MPa, selisih tipis dari kolom D. Kolom C berada di posisi ketiga dengan 34,4 MPa, menunjukkan performa material yang kuat dalam menahan beban aksial. Kolom F mencatat 33 MPa, berada di kisaran menengah ke atas, sementara kolom B memiliki 32,1 MPa. Kolom A memiliki tegangan maksimum terendah, yakni 29 MPa. Urutan ini menegaskan bahwa variasi bentuk sengkang memengaruhi kekuatan material, dengan kolom D dan E menunjukkan performa paling unggul.

Tabel 4. 14 Hasil Regangan Saat Terjadi Tegangan Maksimum

Model Kolom	Regangan Pada Tegangan Maksimum (MPa)	Peningkatan Terhadap Tegangan Kolom A (%)	Besar Peningkatan (%)	Kesimpulan
A	0,002	100	-	Digunakan sebagai acuan dasar; nilai regangannya paling rendah di antara semua model.
В	0,0022	110	10	Meningkat sedikit dari Kolom A, menunjukkan kapasitas regangan yang sedikit lebih baik.
С	0,0028	140 SLA	40	Regangan meningkat signifikan; kolom mampu menahan deformasi lebih besar sebelum mencapai tegangan maksimum.
D	0,0031	153,3	53,3	Memiliki regangan tertinggi; menunjukkan kemampuan deformasi paling besar sebelum mencapai tegangan maksimum.
E	0,0029	143,3 المواح الأسلا	43,3 11 L A	Menunjukkan kapasitas regangan yang sangat baik; mampu menyerap deformasi lebih besar dibanding sebagian besar model lainnya.
F	0,0027	133,3	33,3	Meningkat cukup baik dari Kolom A; termasuk dalam kategori regangan menengah atas.

Grafik di bawah menunjukkan nilai regangan maksimum yang dicapai oleh masing-masing model kolom selama pembebanan aksial. Semakin tinggi regangan maksimum, semakin besar kemampuan kolom dalam mengalami pendinginan sebelum mengalami kegagalan. Dari grafik terlihat bahwa model dengan variasi pengekangan lebih kompleks menunjukkan nilai regangan maksimum yang lebih besar, mencerminkan peningkatan daktilitas

Gambar 4. 32 Grafik Perbandingan Regangan Maksimum Kolom
(Sumber: Pribadi)

Berdasarkan hasil grafik perbandingan diatas, kolom D memiliki nilai tertinggi yaitu 0,0031, diikuti kolom E sebesar 0,0029, kolom C sebesar 0,0028, kolom F sebesar 0,0027, kolom B sebesar 0,0022, dan kolom A sebesar 0,002 sebagai yang terendah. Urutan ini menunjukkan bahwa kolom D memiliki kemampuan deformasi terbesar sebelum mencapai tegangan puncak, sedangkan kolom A memiliki kemampuan deformasi paling rendah. Peningkatan ini mengindikasikan bahwa beberapa model mampu menyerap deformasi jauh lebih besar sebelum mencapai tegangan puncak, sehingga berpotensi memberikan kinerja yang lebih daktail.

Tabel 4. 15 Hasil Perbandingan Tegangan dan Regangan Maksimum Analisis Numerik dengan Model Kent & Park (1971)

Model Kolom Maksimum Numerik (MPa) Maksimum Kent & Park (1971) (MPa) Kesimpulan A 29 29,1 Hampir sama, menunjukkan hasil numerik sesuai model Kent & Park. B 32,1 29,1 Terjadi peningkatan tegangan maksimum yang cukup signifikan. C 34,4 29,1 Tegangan meningkat tajam, memperlihatkan efek confinement yang lebih baik. D 36,6 29,1 Peningkatan tegangan tertinggi; cfektivitas double crosstie paling dominan. F 33 29,1 Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. F 33 29,1 Peningkatan tegangan cukup baik; penguatan cukup efektif. Model Kolom Maksimum Kent & Park (MPa) Kesimpulan Kolom Numerik (MPa) Sama persis dengan model Kent & Park. A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan regangan.		Tegangan	Tegangan	
Rolom Numerik (MPa) (1971) (MPa)	Model	Maksimum	Maksimum	Wasiman lan
A 29 29,1 Hampir sama, menunjukkan hasil numerik sesuai model Kent & Park. B 32,1 29,1 Terjadi peningkatan tegangan maksimum yang cukup signifikan. C 34,4 29,1 Tegangan meningkat tajam, memperlihatkan efek confinement yang lebih baik. Peningkatan tegangan tertinggi; efektivitas double crosstie paling dominan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. F 33 29,1 Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Numerik Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	Kolom	Numerik	Kent & Park	Kesimpulan
A 29 29,1 numerik sesuai model Kent & Park. B 32,1 29,1 Terjadi peningkatan tegangan maksimum yang cukup signifikan. C 34,4 29,1 Tegangan meningkat tajam, memperlihatkan efek confinement yang lebih baik. Peningkatan tegangan tertinggi; efektivitas double crosstie paling dominan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Kolom Numerik (MPa) (1971) (MPa) Regangan Regangan Maksimum Kent & Park (1971) (MPa) Sama persis dengan model Kent & Park. Mengalami sedikit peningkatan		(MPa)	(1971) (MPa)	
B 32,1 29,1 Terjadi peningkatan tegangan maksimum yang cukup signifikan. C 34,4 29,1 Tegangan meningkat tajam, memperlihatkan efek confinement yang lebih baik. D 36,6 29,1 Peningkatan tegangan tertinggi; efektivitas double crosstie paling dominan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. F 33 29,1 Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	Λ	20	20.1	Hampir sama, menunjukkan hasil
B 32,1 29,1 maksimum yang cukup signifikan. Tegangan meningkat tajam, memperlihatkan efek confinement yang lebih baik. Peningkatan tegangan tertinggi; cfektivitas double crosstie paling dominan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	A	29	29,1	numerik sesuai model Kent & Park.
Tegangan meningkat tajam, memperlihatkan efek confinement yang lebih baik. Peningkatan tegangan tertinggi; efektivitas double crosstie paling dominan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Model Maksimum Kolom Numerik (MPa) Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. Mengalami sedikit peningkatan	D	22.1	20.1	Terjadi peningkatan tegangan
C 34,4 29,1 memperlihatkan efek confinement yang lebih baik. D 36,6 29,1 efektivitas double crosstie paling dominan. Peningkatan tegangan tertinggi; efektivitas double crosstie paling dominan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	В	32,1	29,1	maksimum yang cukup signifikan.
yang lebih baik. Peningkatan tegangan tertinggi; efektivitas double crosstie paling dominan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Kent & Park (MPa) (1971) (MPa) Resimpulan Kesimpulan Kesimpulan Kesimpulan Sama persis dengan model Kent & Park. Mengalami sedikit peningkatan Mengalami sedikit peningkatan				Tegangan meningkat tajam,
Peningkatan tegangan tertinggi; efektivitas double crosstie paling dominan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	С	34,4	29,1	memperlihatkan efek confinement
D 36,6 29,1 efektivitas double crosstie paling dominan. Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Maksimum Kent & Park (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan			_ \SLAM	yang lebih baik.
E 35 29,1 Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. F 33 29,1 Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan		// 1	?	Peningkatan tegangan tertinggi;
E 35 29,1 Peningkatan besar, konfigurasi diamond memberikan kontribusi yang signifikan. F 33 29,1 Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	D 🥢	36,6	29,1	efektivitas double crosstie paling
E 35 29,1 diamond memberikan kontribusi yang signifikan. F 33 29,1 Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	\\\	4		dominan.
F 33 29,1 Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	\			Peningkatan besar, konfigurasi
F 33 Peningkatan tegangan cukup baik; penguatan cukup efektif. Regangan Regangan Model Maksimum Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	Е	35	29,1	diamond memberikan kontribusi
F 33 29,1 penguatan cukup efektif. Regangan Regangan Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan				yang signifikan.
Model Regangan Regangan Maksimum Maksimum Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	E	22	20.1	Peningkatan tegangan cukup baik;
Model KolomMaksimum Numerik (MPa)Maksimum Kent & Park (1971) (MPa)KesimpulanA0,0020,002Sama persis dengan model Kent & Park.B0,00220,002Mengalami sedikit peningkatan			NISS	penguatan cukup efektif.
Model KolomMaksimum Numerik (MPa)Maksimum Kent & Park (1971) (MPa)KesimpulanA0,0020,002Sama persis dengan model Kent & Park.B0,00220,002Mengalami sedikit peningkatan		لصية \	الأجهجا لإسا	طستنعماب //
KolomNumerik (MPa)Kent & Park (1971) (MPa)KesimpulanA0,0020,002Sama persis dengan model Kent & Park.B0,00220,002Mengalami sedikit peningkatan		Regangan	Regangan	//
Kolom Numerik Kent & Park (MPa) (1971) (MPa) A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	Model	Maksimum	Maksimum	Kesimpulan
A 0,002 0,002 Sama persis dengan model Kent & Park. B 0,0022 0,002 Mengalami sedikit peningkatan	Kolom	Numerik	Kent & Park	Keshipulan
A 0,002 0,002 Park. B 0,0022 0,002 Mengalami sedikit peningkatan		(MPa)	(1971) (MPa)	
Park. B 0,0022 0,002 Mengalami sedikit peningkatan	Δ.	0.002	0.002	Sama persis dengan model Kent &
B 0,0022 0,002	A	0,002	0,002	Park.
	D	0.0022	0.002	Mengalami sedikit peningkatan
	В	0,0022	0,002	regangan.

С	0,0028	0,002	Terjadi peningkatan regangan yang cukup signifikan.
D	0,0031	0,002	Regangan tertinggi; menunjukkan efek penguatan paling signifikan.
Е	0,0029	0,002	Regangan tinggi; pengaruh konfinenya efektif.
F	0,0027	0,002	Regangan meningkat cukup besar dibanding model referensi.

Berdasarkan hasil analisis numerik, nilai tegangan maksimum dan regangan pada saat tegangan maksimum untuk setiap variasi kolom menunjukkan perbedaan yang terlihat jelas. Kolom A memiliki tegangan maksimum 29 MPa dan regangan 0,002, sama persis dengan nilai pada model Kent & Park (1971) sehingga menjadi acuan perbandingan. Kolom B menunjukkan tegangan maksimum 32,1 MPa dengan regangan 0,0022, mengindikasikan adanya pengaruh kekangan yang mulai terlihat. Kolom C memiliki tegangan maksimum 34,4 MPa dan regangan 0,0028, menunjukkan efek *confinement* yang lebih baik dibanding Kolom A dan B. Kolom D menempati posisi tertinggi dengan tegangan maksimum 36,6 MPa dan regangan 0,0031, menandakan kontribusi konfigurasi *double crosstie* yang memberikan peningkatan kekuatan dan deformasi paling signifikan. Kolom E mencatat tegangan maksimum 35 MPa dan regangan 0,0029, menunjukkan efektivitas kekangan hasil numerik. Sementara itu, Kolom F memiliki tegangan maksimum 33 MPa dan regangan 0,0027, yang meskipun lebih rendah dibanding Kolom D dan E, tetap menunjukkan peningkatan dibanding model Kent & Park.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan hasil simulasi numerik menggunakan metode elemen hingga kolom pende beton bertulang dengan variasi bentuk sengkang (model A-F), maka diperoleh kesimpulan sebagai berikut :

- a. Variasi bentuk sengkang terbukti berpengaruh besar terhadap peningkatan kapasitas aksial kolom beton bertulang. Besar peningkatan kapasitas model double crosstie mencapai 26,35%, sedangkan model dengan sengkang diamond dan crosstie masing-masing sebesar 20,93% dan 18,9% dari kolom tanpa pengekangan. Selain itu, model dengan pengekangan yang lebih efektif juga menghasilkan tegangan maksimum beton yang lebih tinggi, seperti pada model double crosstie yang mencapai 36,6 MPa dengan regangan puncak 0,0031 dibandingkan 35 MPa dengan regangan puncak 0,0028 pada model diamond. Hasil ini menegaskan bahwa bentuk sengkang yang lebih optimal membantu meningkatkan kekuatan tekan dan memperlambat kerusakan struktural. Dengan demikian, penggunaan bentuk seperti double crosstie dan diamond sangat direkomendasikan dalam desain struktur yang membutuhkan kapasitas aksial tinggi dan daya tahan yang besar.
- b. Variasi bentuk sengkang memberikan pengaruh terhadap kemampuan deformasi dan daktilitas kolom beton bertulang. Kolom dengan sengkang double crosstie memiliki nilai daktilitas 3,32 lebih besar dibandingan sengkang diamond yang memiliki nilai daktilitas sebesar 3,14. Sementara itu, kolom dengan sengkang crosstie dan sengkang circular/lingkaran memiliki nilai daktilitas yang sama yaitu sebesar 3,05. Kemudian, kolom dengan sengkang biasa dan kolom tanpa sengkang masing-masing hanya mencatat daktilitas sebesar 2,89 dan 2,59. Secara keseluruhan, dapat disimpulkan bahwa semakin efektif pengekangan lateral yang diberikan oleh bentuk sengkang, semakin besar pula daktilitas dan kemampuan struktur dalam menghadapi deformasi

plastis. Dengan demikian, model *double crosstie* dan *diamond* direkomendasikan untuk desain struktur yang memerlukan daktilitas tinggi dan ketahanan terhadap beban aksial dinamis seperti gempa

5.2 Saran

Berdasarkan hasil analisis dan kesimpulan yang telah diperoleh, terdapat beberapa saran yang dapat diberikan untuk pengembangan penelitian dan aplikasi selanjutnya:

- a. Seluruh simulasi difokuskan pada kolom pendek, padahal dalam praktiknya kolom bisa memiliki rasio tinggi yang lebih besar dan mengalami efek langsing. Penelitian berikutnya dapat mempertimbangkan analisis pada kolom tinggi atau pada kondisi pembebanan yang tidak sentris, agar perilaku strukturnya dapat digambarkan secara lebih menyeluruh.
- b. Penelitian ini hanya fokus pada pembebanan aksial, untuk mendekati kondisi nyata pada bangunan tahan gempa, penting juga untuk menguji respon kolom terhadap beban lateral, baik beban statik seperti angin maupun beban dinamis seperti gempa. Hal ini akan membantu mengetahui sejauh mana bentuk sengkang tertentu mampu menjaga stabilitas struktur dalam kondisi ekstrem.
- c. Selain bentuk, jarak dan ukuran tulangan sengkang juga mempengaruhi kinerja pengekangan. Penelitian selanjutnya dapat mengevaluasi sejauh mana variasi dimensi tersebut mempengaruhi kekuatan dan kemampuan pengekangan kolom.
- d. Untuk memperkuat hasil simulasi, disarankan dilakukan pembandingan dengan data uji laboratorium. Validasi ini akan membantu mengukur akurasi model dan meningkatkan kepercayaan terhadap hasil prediksi elemen hingga.

DAFTAR PUSTAKA

- Allen, E., & Iano, J. (2008). Fundamentals of building construction: Materials and methods (5th ed.). John Wiley & Sons.
- Anam, M. K., Amir, F., & Sutrisno, M. (2024). Perbandingan kapasitas kolom beton bertulang berdasarkan variasi bentuk sengkang dengan analisis Finite Element Method. *Rekonstruksi Tadulako: Civil Engineering Journal on Research and Development*, 5(1), 9–16. https://new.jurnal.untad.ac.id/index.php/renstra
- ATC-24. Guidelines for Cyclic Seismic Testing of Components of Steel Structures, Applied Technology Council, Redwood City, California, 1992.
- Badan Standardisasi Nasional. (2019). SNI 2847:2019: Tata cara perencanaan struktur beton untuk bangunan gedung. Badan Standardisasi Nasional.
- Bathe, K. J. (1996). Finite element procedures. Prentice Hall.
- Cook, R. D., Malkus, D. S., Plesha, M. E., & Witt, R. J. (2001). Concepts and applications of finite element analysis (4th ed.). John Wiley & Sons.
- Kent, D. C., & Park, R. (1971). Flexural members with confined concrete. *Journal of the Structural Division*, 97(7), 1969–1990.
- Lee, J., & Fenves, G. L. (1998). Plastic-damage model for cyclic loading of concrete structures. *Journal of Engineering Mechanics*, 124(8), 892–900. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:8(892)
- Lubliner, J., Oliver, J., Oller, S., & Oñate, E. (1989). A plastic-damage model for concrete. *International Journal of Solids and Structures*, 25(3), 299–326. https://doi.org/10.1016/0020-7683(89)90050-4
- McCormac, J. C., & Brown, R. H. (2014). *Design of reinforced concrete* (9th ed.). John Wiley & Sons.
- P. Park and T. Paulay, *Reinforced Concrete Structures*, John Wiley & Sons, New York, 1975.

- Reddy, J. N. (2006). An introduction to the finite element method (3rd ed.). McGraw-Hill.
- Silaban, R. S., Tjitradi, D., & Taufik, S. (2020). Permodelan pengekangan kolom pada beton mutu normal dengan metode elemen hingga 3-D. *Media Ilmiah Teknik Sipil*, 8(2), 104–115. https://doi.org/10.33084/mits.v8i2.1408
- Zienkiewicz, O. C., & Taylor, R. L. (2000). *The finite element method: Volume 1:*The basis (5th ed.). Butterworth-Heinemann.

