LAPORAN TUGAS AKHIR

ALAT PENGUPAS KULIT KOPI BASAH OTOMATIS MENGGUNAKAN METAL TOUCH SENSOR KY-036 SEBAGAI PENGAMAN

Penyusun:

Panggah Kurniawan (30602100031)

Muhammad Shofa (30602100010)

Muhamad Khoerul Ibad (30602100009)

PROGRAM STUDI TEKNIK ELEKTRO FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM SULTAN AGUNG SEMARANG

2025

SURAT PERNYATAAN

Yang bertanda tangan dibawah ini:

Nama : Panggah Kurniawan

NIM : 30602100031

Jurusan : Teknik Elektro

Fakultas : Fakultas Teknologi Industri

"Alat Pengupas Kulit Kopi Basah Otomatis Menggunakan Metal Touch Sensor KY-036 Sebagai Pengaman" adalah hasil karya sendiri, tidak pernah diajukan untuk memperoleh gelar kesarjanaan di perguruan tinggi lain maupun ditulis dan diterbitkan orang lain, kecuali secara tertulis diacu dalam daftar pustaka. Tugas Akhir ini adalah milik saya segala bentuk kesalahan dan kekeliruan dalam Tugas Akhir ini adalah tanggung jawab saya.

Demikian surat pernyataan ini saya buat dengan sadar dan penuh tanggung jawab.

Semarang, 29 Agustus 2025 Yang Menyatakan

.....

Panggah Kurniawan

LEMBAR PENGESAHAN

ALAT PENGUPAS KULIT KOPI BASAH OTOMATIS MENGGNAKANMETAL TOUCH SENSOR KY-036 SEBAGAI PENGAMAN

Penyusun:

Panggah Kurniawan

(30602100031)

Muhammad Shofa

(30602100010)

Muhamad Khoerul Ibad

(30602100009)

Semarang, 26 Agustus 2025

Dosen Pembimbing

Dr. Ir. Muhammad/Khosyi'in, ST., MT., IPM.

NIDX. 0625077901

Mengetahui,

Ketua Program Studi Teknik Elektro

NO DIT 010925

Jenny Putri Hapsari, ST., MT.

NIDN. 0607018501

LEMBAR PENGESAHAN PENGUJI

Laporan Tugas Akhir dengan judul "ALAT PENGUPAS KULIT KOPI BASAH OTOMATIS MENGGNAKAN METAL TOUCH SENSOR KY-036 SEBAGAI PENGAMAN" ini telah dipertahankan di depan Penguji sidang Tugas Akhir pada:

Hari

: Jum'at

Tanggal

: 26 Agustus 2025

Ketua dan Penguji I

Tanda Tangan

Dr. Eka Nurvanto Budisusila, S.T., M.T.

NIDN: 0619107301

Tim Penguji

UNISSUL

Dr. Bustanul Arifin, S.T., M.T. NIDN 0614117701

Pembimbing

Dr. Ir. Muhammad Khosyi'in, ST., MT. IPM NIDN. 0619107301 Hou

DAFTAR ISI

	N JUDUL	
	ERNYATAAN	
	PENGESAHAN	
LEMBAR	PENGESAHAN PENGUJI	iv
PERNYA'	ΓAAN PERSETUJUAN PUBLIKASI ILMIAH	v
DAFTAR	ISI	vi
	GAMBAR	
DAFTAR	TABEL	ix
	SAN	
BAB 1. PI	ENDAHULUAN	1
1.1	Latar Belakang dan Identifikasi Masalah	
1.2	Rumusan Masalah	2
1.3	Tujuan	3
1.4	Batasan Masalah	3
1.5	Batasan Realistis Aspek Keteknikan	3
BAB 2. ID	ENTIF <mark>IK</mark> ASI KEBUTUHAN SISTEM	4
2.1	Studi Literatur dan Observasi	4
2.2 I	Dasar Teori	23
	2.2.1 Buah Kopi dan Pentingnya Pengolahan	24
	2.2.2 Proses Pengupasan Kulit Kopi	25
	2.2.3 Komponen Elektronik Alat Pengupas Kulit Kopi	25
	2.2.4 Komponen Mekanik Alat Pengupas Kulit Kopi	35
2.3	Analisis Stakeholder	38
2.4 A	Analisis Aspek yang Mempengaruhi Sistem	39
	2.4.1 Aspek Ekonomi	39
	2.4.2 Aspek Teknis	39
2.5	Spesifikasi Sistem	40
BAB 3. U	SULAN SOLUSI	41
3.1	Usulan Solusi 1	41
	3.1.1 Desain Sistem 1	41
	3.1.2 Rencana Anggaran Desain Sistem 1	48
	3.1.3 Analisa Risiko Desain 1	49
	3.1.4 Pengukuran Performa	49

	3.2 U	sulan S	Solusi 2	50
		3.2.1 I	Desain Sistem 2	50
		3.2.2	Rencana Anggaran Desain Sistem 2	51
		3.2.3 A	Analisa Risiko Desain 2	51
		3.2.4	Pengukuran Performa	52
	3.3 A	nalisis	dan Penentuan Usulan Solusi/Desain Terbaik	52
	3.4 G	antt Ch	nart	53
	3.5 R	ealisasi	i Pelaksanaan Tugas Akhir 1	54
BAB	4. HA	ASIL R	ANCANGAN DAN METODE PENGUKURAN	56
	4.1	Hasil I	Rancangan Sistem	56
		4.1.1	Rangkaian Elektronik	56
		4.1.2	Gambar Desain 3 Dimensi	58
		4.1.3 I	Desain Program Arduino Nano	60
	4.2		e Pengukuran Kinerja Hasil Perancangan	
		4.2.1	Parameter yang diukur	62
			Definisi Kriteria Kinerja	
	//	4.2.3	Langkah Pengukuran	63
BAB	5. HA		ENGUKURAN DAN ANALISIS	
	5.1	Analis	is Hasil	64
		5.1.1 F	Pengujian Alat Pengupas Kulit Kopi	64
		5.1.2 F	Pengujian Sensor Pengupas Kulit Kopi	67
		1 10 1	Biaya Operasional dan Evaluasi Penggunaan Alat	
	5.2	Dampa	ak Implementasi Sistem	72
			Bidang Teknologi	
		5.2.2 H	Bidang Sosial	73
		5.2.3 I	Bidang Ekonomi	74
		5.2.4	Bidang Lingkungan	74
BAB	6. PE	NUTU	P	75
	6.1 K	esimpu	ılan	75
	6.2 S	aran		76
DAF	ΓAR Ι	PUSTA	KA	77
LAM	PIRA	N		80

DAFTAR GAMBAR

Gambar 2.1 Tanaman Buah Kopi	24
Gambar 2.2 Alat pengupas kulit kopi konvesional	25
Gambar 2. 3 Motor AC	26
Gambar 2. 4 Arduino Nano	27
Gambar 2. 5 Sensor Metal Touch KY-036	27
Gambar 2. 6 Skema Elektrikal Modul	27
Gambar 2. 7 Relay Modul spdt 5v	30
Gambar 2. 8 Catu Daya 12 V 3 A	31
Gambar 2. 9 Arduino Nano Exp <mark>ansion Board</mark>	
Gambar 2. 10 Saklar ON/OFF	
Gambar 2. 11 Button Reset	
Gambar <mark>2.</mark> 12 LED <mark>(Ind</mark> icator)	35
Gambar 2. 13 Rangka Alat	36
Gambar 2. 14 Corong	
Gambar 2. 15 PulleyGambar 2. 16 Belt	37
Gambar 1 Desain Arsitektur Alat 1	42
Gambar 3. 2 Tampak Desain samping,depan,atas,dan belakang	42
Gambar 3. 3 Diagram Blok Sistem	43
Gambar 3. 4 Desain rangkaian sistem	44
Gambar 3. 5 Flowchart	45
Gambar 2 Desain Arsitektur Alat 2	50
Gambar 4. 1 Rangkaian Safety Alat Pengupas Kulit Kopi	56
Gambar 4. 2 Desain 3D Alat Pengupas Kulit Kopi Basah	59
Gambar 4. 3 Software Program Arduino Nano	61
Gambar 5. 1 Grafik Hasil Kupasan	65
Gambar 5. 2 Grafik Penggunaan Daya	65
Gambar 5. 3 Grafik respons motor	68
Gambar 5. 4 Tarif listrik rumah tangga dan bisnis	69

DAFTAR TABEL

Tabel 1. 1 Hasil Survei antara pengembang dan pengguna	2
Tabel 2. 1 Hasil Studi Literatur Solusi Sejenis	4
Tabel 2. 2 Spesifikasi motor	26
Tabel 2. 3 Spesifikasi Sensor Metal Touch KY-036	29
Tabel 3. 1 Kebutuhan komponen sistem	44
Tabel 3. 2 Rencana anggaran pengembangan sistem 1	48
Tabel 3. 3 Rencana anggaran pengembangan sistem 2	51
Tabel 3. 4 Gantt Chart	53
Tabel 3. 5 Realisasi pelaksanaan Tugas Akhir 1	54
Tabel 4. 1 Komponen yang digunakan	56
Tabel 5. 1 Pengujian Alat	64
Tabel 5. 2 Pengujian sensor terhadap respons motor	67
Tabel 5. 3 Peforma alat dalam 1 jam	70
Tabel 5. 4 Efesiensi Biaya	72
Tabel 5. 5 Efesiensi Waktu	72

RINGKASAN

Alat pengupas kulit kopi ini dirancang untuk menjawab kebutuhan industri kopi akan efisiensi dan kualitas dalam proses pengupasan kulit kopi, terutama untuk memenuhi standar pasar lokal maupun ekspor. Dalam upaya meningkatkan efisiensi kerja ketika panen bua kopi. Salah satu tantangan yang dihadapi petani adalah penggunaan alat pasca panen yang masih manual untuk memastikan efesiensi, biaya dan keamanan alat, tanpa harus mengandalkan tenaga manual yang rentan terhadap kelalaian. Untuk menjawab tantangan tersebut, dirancanglah sebuah sistem alat pengupas kopi kopi basah otomatis dengan sensor metal touch sebagai pengaman, sebagai bentuk nyata dari inovasi teknologi dalam mendukung petani.

Metode penelitian yang digunakan melibatkan tahapan analisis kebutuhan, perancangan sistem, simulasi, hingga pembuatan alat dan pengujian. Dalam desain usulan, alat ini memanfaatkan motor AC berdaya 0.5 HP untuk memutar drum penggilas, dengan sistem transmisi berbasis sabuk untuk mentransfer daya secara efisien. Sistem kontrol keselamatan menggunakan sensor *Metal Touch KY-036* yang terhubung ke Arduino untuk mendeteksi keberadaan logam asing dalam proses pengupasan. Arduino mengontrol relay modul untuk memutus daya secara otomatis jika terjadi masalah, sehingga meningkatkan keselamatan dan keandalan alat.

Implementasi sistem ini membawa dampak positif dalam berbagai aspek. Secara teknologi, petani kini memiliki alat yang mampu bekerja secara otomatis yang menghemat tenaga dan biaya, mengurangi ketergantungan pada tenaga manusia. Dari sisi sosial dan ekonomi, alat ini membantu meringankan beban kerja, meningkatkan produktivitas, serta menekan biaya operasional dalam waktu panen. Dengan adanya sistem ini, petani skala kecil dapat mulai beradaptasi menuju penggunaan teknologi yang lebih efisien dan berkelanjutan.

BAB 1. PENDAHULUAN

1.1 Latar Belakang dan Identifikasi Masalah

1.1.1 Latar Belakang

Kopi merupakan salah satu hasil komoditi perkebunan yang memiliki nilai ekonomis yang cukup tinggi di antara tanaman perkebunan lainnya dan berperan penting sebagai sumber devisa negara. Kopi tidak hanya berperan penting sebagai sumber devisa melainkan juga merupakan sumber penghasilan bagi tidak kurang dari satu setengah juta jiwa [1].

Kopi merupakan bahan minuman yang memiliki aroma harum, rasa khas nikmat, serta khasiatnya yang menyegarkan badan membuat kopi banyak digemari. Banyaknya penggemar kopi menjadikan kopi salah satu bahan perdagangan dunia. keterbatasan dalam kapasitas hasilnya. Keterbatasan kapasitas hasil alat pengupas kulit kopi ini merupakan salah satu kendala dalam meningkatkan produksi kopi. Dalam suatu pekerjaan pasti tidak luput dari suatu kesalahan atau kecelakaan akibat pekerjaaan apa lagi dengan penambahan penggunaan motor listrik menjadi penggerak penggilingan, tentu saja perlu kontrol untuk memastikan keamanan baik untuk pengguna maupun orang sekitar. Pengamanan bertujuan untuk membantu mengurangi risiko terjadinya kesalahan atau kecelakaan kerja. Mitra kami yaitu petani yang bertempat di Dusun Citrolangu, Desa Grugu, Kec. Kaliwiro, Kab. Wonosobo masih menggunakan alat manual.

Untuk mengatasi hal tersebut maka perlu adanya suatu alat pengupas kulit kopi dengan Metal Touch Sensor KY-036 sebagai pengaman untuk mematikan mesin secara otomatis ketika ada tangan yang masuk ke dalam mesin pengupas kulit kopi. Dengan adanya alat ini diharapkan dapat meningkatkan kapasitas hasil pengupasan kulit kopi dan dapat meningkatkan produksi kopi dengan memperhatikan keamanan saat bekerja [2].

Tabel 1. 1 Hasil Survei antara pengembang dan pengguna

Pertanyaan	Jawaban/tanggapan
Dalam satu tahun berapa hasil panen	Hasil panen yang didapatkan dalam
yang didapatkan?	satu tahun kurang lebih 1000 kg
Bagaimana cara pengolahan buah kopi	Selama ini pengolahan di lakukan
selama ini?	dengan cara manual.
Faktor apa saja yang dapat menjadi	Pengaruh cuaca yang tidak menentu,
penyebab kualitas kopi menurun?	serta pemanenan kopi yang kurang
	maksimal.
Bagaimana cara memaksimalkan	Salah satu cara untuk memaksimalkan
penjemuran kopi yang bagus,	kualitas kopi yang bagus yaitu
	menggunakan pengupas kulit kopi
	basah otomatis
Jika suatu teknologi akan diterapkan	Teknologi yang kami harapkan adalah
dalam pertanian anda, teknologi	alat pengupas kulit kopi basah dengan
seperti apa yang paling membantu	safety menggunakan sensor.
petani untuk mengolah hasil panen	
dan mengurangi kecelakaan kerja?	ULA //

1.2 Rumusan Masalah

- 1. Bagaimana mengimplementasikan teknologi pengupas kulit kopi basah yang efektif, hemat biaya serta ramah lingkungan, dan mudah dioperasikan oleh petani?
- **2.** Bagaimana hasil kinerja alat pengupas kulit kopi basah otomatis dengan *safety* penggiling?
- **3.** Berapa kapasitas yang dihasilkan mesin pengupas kulit kopi basah pada hasil percobaan?

1.3 Tujuan

- 1. Untuk menciptakan metode yang efektif dengan mengukur pengurangan waktu pengupasan dalam penggunaan alat.
- 2. Untuk membuat mesin pengupas kulit kopi menggunakan sistem keamanan dengan kapasitas yang diinginkan.
- 3. Membuat petani menjadi lebih aman saat menggunakan alat tersebut.

1.4 Batasan Masalah

Adapun batasan masalah yang digunakan pada pengerjaan *Capstone Design* ini sebagai berikut:

- 1. Sistem penggerak akan mati secara otomatis ketika tangan menyentuh plat besi yang terhubung ke dalam sensor metal touch
- 2. Model alat menggunakan sensor Metal Touch Sensor KY-036 sebagai pengaman
- 3. Menggunakan Motor AC 0.5 HP sebagai penggerak pulley untuk menggerakan pengupas kulit kopi
- 4. Hasil dari sistem pengupas hanya akan mengupas kulit kopi basah untuk mempercepat proses penjemuran dan tidak akan mencakup analisis lebih lanjut, seperti kualitas atau ukuran buah kopi.

1.5 Batasan Realistis Aspek Keteknikan

Adapun batasan realistis aspek keteknikan yang digunakan sebagai berikut:

- Sumber energi listrik berasal dari PLN 450 VA Sistem harus dirancang untuk menggunakan sumber daya listrik yang tersedia, dengan konsumsi daya yang efisien.
- 2. Penggunaan alat mudah dipindahkan dan mudah digunakan dan alat harus mampu mengupas kulit kopi basah yang relatif cepat.
- 3. Sensor mampu mendeteksi tangan yang masuk ke dalam penggiling sehingga motor dapat mati secara otomatis .

BAB 2. IDENTIFIKASI KEBUTUHAN SISTEM

2.1 Studi Literatur dan Observasi

Kumpulan berbagai sumber informasi yang menunjukkan beberapa alternatif solusi yang telah dibuat saat ini untuk membantu petani kopi dalam pemanfaatan teknologi ditunjukkan pada Tabel 2.1 berikut ini.

Tabel 2. 1 Hasil Studi Literatur Solusi Sejenis

Judul	Usulan Solusi	Hasil/Evaluasi (Kekurangan/Kelebihan)
Rancang	Proyek ini mengusulkan solusi	Hasil:
Bangun Mesin	berupa pembuatan mesin	pengujian menunjukkan bahwa
Dan ayına Biii	pengupas biji kopi dengan	mesin mampu mencapai
Pengupas Biji	kapasitas 60 kg/jam untuk	kecepatan pisau sebesar 1,423
Kopi dengan	menggantikan proses manual	m/s, daya total 0,669 HP, daya
Kapasitas	yang lambat dan	pada belt 0,89 kW, dan momen
777	meningkatkan kualitas hasil	inersia total 0,1128 kg·m².
60kg/Jam [2]	pengolahan. Mesin ini	Dengan hasil ini, mesin dapat
	dirancang menggunakan	memenuhi target kapasitas
\	motor AC sebagai penggerak	yang dirancang serta
	utama dengan sistem transmisi	memberikan hasil yang lebih
	berbasis pulley dan belt.	konsisten dibandingkan
	Desainnya mencakup	metode manual. Pengujian
	komponen utama seperti pisau	dilakukan dalam kondisi
	pengupas, poros, pasak, dan	laboratorium untuk
	sistem transmisi yang	memastikan keandalan mesin.
	dirancang untuk efisiensi daya	Kelebihan:
	serta meminimalkan rugi-rugi.	Kelebihan dari mesin ini adalah
	Tahapan pembuatan meliputi	efisiensi waktu dalam proses

	Usulan Solusi	Hasil/Evaluasi	
Judul		(Kekurangan/Kelebihan)	
	1 ' 41 ' 1'4 1		
	desain teknis, perakitan, dan	pengupasan biji kopi,	
	pengujian untuk memastikan	peningkatan kapasitas	
	mesin mampu beroperasi	pengolahan hingga 60 kg/jam,	
	dengan optimal.	dan kualitas hasil yang lebih	
		baik. Desain modularnya	
		memudahkan perawatan dan	
		penggantian komponen.	
		Kekurangan:	
	SLAM S	seperti tidak adanya analisis	
		biaya produksi, keterbatasan	
		analisis terhadap kekuatan	
\\\		rangka, pengelasan, dan vibrasi	
\\		selama operasi. Selain itu,	
\\\		mesin ini memerlukan sumber	
		daya listrik yang stabil karena	
		menggunakan motor AC, yang	
\ \\	UNISSUL	bisa menjadi kendala di	
	معتنسلطان أجونج الإسلامية	beberapa daerah. Pengujian	
\		yang baru dilakukan di	
		laboratorium juga menjadi	
		batasan, sehingga kinerja mesin	
		di lapangan memerlukan	
		evaluasi lebih lanjut.	
Rancang	Desain mesin ini memberikan	Hasil:	
Bangun Mesin	solusi terhadap beberapa	Mesin pengupas kulit kopi	
Pengupas Biji	masalah yang dihadapi dalam	basah dengan kapasitas 120	
Kopi dengan	pengupasan kopi secara	kg/jam dirancang untuk	
	manual atau menggunakan	meningkatkan efisiensi proses	

	** • • • • •	Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
Kapasitas 210	mesin sebelumnya, seperti	pengupasan kopi di Indonesia.
Kg/Jam [3]	waktu produksi yang panjang,	Mesin ini berhasil melampaui
	tenaga kerja yang tinggi, dan	target awal dengan mencapai
	masalah penyumbatan pada	kapasitas produksi 156 kg/jam,
	roller. Dengan menggunakan	berdasarkan hasil pengujian
	teknologi modern, mesin ini	yang menggunakan 3 kg biji
	mampu bekerja lebih cepat,	kopi basah dan membutuhkan
	hemat tenaga, dan	waktu rata-rata 23 detik. Mesin
	memberikan hasil yang lebih	ini menggunakan motor bensin
	baik.	7,0 HP dengan putaran 2200
		RPM, sabuk V-belt tipe B 54,
\\		serta poros tipe ST 37. Sistem
\\		transmisinya terdiri dari pulley,
// :		sabuk, sprocket, dan rantai,
		yang dirancang secara khusus
\\\		untuk memastikan performa
	UNISSUL	optimal.
\	معتنسلطان أجونج الإسلامية	Kekurangan:
'		Terdapat beberapa kekurangan
		pada mesin ini. Salah satunya
		adalah kebisingan yang
		dihasilkan oleh penggunaan
		rantai sebagai elemen
		transmisi, yang lebih berisik
		dibandingkan dengan roda gigi.
		Selain itu, rantai memiliki
		keterbatasan dalam kapasitas
		daya dan kecepatan transmisi.

		Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
	UNISSUL RESPUBLIES	Kompleksitas perawatan juga menjadi tantangan karena sistem transmisi mesin ini terdiri dari banyak komponen yang memerlukan perawatan berkala. Kelebihan: Desainnya yang modular memungkinkan perakitan yang mudah, serta semua komponennya dirancang untuk memastikan daya tahan dan efisiensi tinggi. Mesin ini juga menggunakan sumber daya yang terjangkau, yakni motor bensin, yang lebih mudah diakses di daerah-daerah tertentu. Dengan hasil yang memuaskan, mesin ini diharapkan mampu menjadi solusi untuk meningkatkan produktivitas dan efisiensi dalam industri kopi nasional.
Perancangan	Mesin penggiling biji kopi	Hasil:
Mesin	dirancang untuk meningkatkan	Pengujian mesin menunjukkan
Pengupas	efisiensi pengolahan kopi,	bahwa daya yang diperlukan
Kopi dengan	terutama pada tahap	adalah 220,75 watt dengan
Menggunakan	penggilingan, dengan	diameter poros 17 mm dan

	Usulan Solusi	Hasil/Evaluasi	
Judul		(Kekurangan/Kelebihan)	
Dua Rol	menggunakan motor listrik	tegangan geser yang terjadi	
Pengupas [4]	sebagai penggerak utama.	sebesar 0,33 kg/mm², jauh	
	Mesin ini menggunakan sistem	lebih kecil dari batas aman	
	transmisi berbasis sabuk-V	sebesar 2,8 kg/mm². Kecepatan	
	dan puli untuk	linier sabuk mencapai 5,58 m/s	
	mentransmisikan tenaga.	dengan panjang sabuk 980 mm.	
	Desainnya mencakup	Mesin ini memiliki kapasitas	
	komponen seperti pisau	pemakaian bantalan hingga	
	penggiling, poros, bantalan,	368,40 jam dan menggunakan	
	dan hopper untuk	puli berdiameter 76,2 mm.	
	memasukkan serta	Kelebihan:	
\\\	mengeluarkan biji kopi.	Mesin ini dapat mempercepat	
\\	Dengan daya motor sebesar 1	proses penggilingan biji kopi	
// :	HP dan putaran 1400 rpm,	dengan hasil yang lebih	
	mesin ini dirancang agar	seragam dibandingkan metode	
\\\	mampu menggiling biji kopi	manual 2. menggunakan motor	
\\\	menjadi bubuk dengan ukuran	listrik yang efisien dan	
\	hingga 10 mm secara efisien.	komponen mekanis sederhana	
,		seperti sabuk-V dan puli.	
		Komponen seperti poros dan	
		bantalan dirancang dengan	
		perhitungan teknis untuk	
		memastikan keandalan serta	
		ketahanan Ukuran hasil	
		penggilingan dapat diatur	
		hingga 10 mm, cocok untuk	
		kebutuhan pengolahan kopi	
		skala kecil hingga menengah.	

	Haulan Caluai	Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
		Kekurangan: Mesin ini lebih
		cocok untuk skala kecil hingga
		menengah, sehingga kurang
		ideal untuk produksi massal.
		Membutuhkan sumber daya
		listrik yang stabil untuk
		beroperasi. Tidak mencakup
		proses lainnya seperti
	SLAM S	pengupasan kulit kopi,
		sehingga memerlukan mesin
		tambahan untuk proses
\\		pascapanen lengkap.
Rancang	Usulan solusi yang diberikan	Hasil: Mesin pengupas kulit
Bangun Mesin	untuk mengatasi permasalahan	ari biji kopi dirancang untuk
Pengupas Biji	pada mesin pengupas kulit ari	meningkatkan kualitas
Kopi dengan	biji kopi adalah dengan	pengolahan kopi, terutama
Kapasitas	melakukan pengisian biji kopi	pada tahap pengupasan kulit ari
30kg/Jam [5]	ke dalam huller secara	ketiga yang sering menjadi
\	bertahap agar proses	masalah utama dalam proses
	pengupasan dan pemisahan	tradisional. Mesin ini memiliki
	berjalan lancar serta hasil	kapasitas 30 kg/jam dengan
	kupasan lebih maksimal.	spesifikasi meliputi dimensi
	Selain itu, perlu dilakukan	panjang 640 mm, lebar 380
	pengaturan celah antara screw	mm, tinggi 400 mm, dan berat
	dan dinding huller yang sedikit	±100 kg. Ditenagai motor
	lebih besar dari diameter biji	listrik berkapasitas 1 HP
	kopi untuk mengurangi jumlah	dengan kecepatan 1400 rpm,
	biji yang hancur. Modifikasi	mesin ini dilengkapi poros

		Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
	desain mesin juga disarankan guna meningkatkan kualitas, higienitas, dan kapasitas produksi, khususnya untuk kopi robusta. Pemilihan material pada proses modifikasi harus mempertimbangkan kekuatan, harga, biaya pengerjaan, kemudahan perakitan, dan perawatan.	berbahan S35 C-D dan sabuk sepanjang 965 mm. Mesin mampu mengupas hingga lapisan kulit ari ketiga, meningkatkan mutu dan nilai jual kopi, khususnya jenis robusta, di pasaran Kekurangan: Terdapat beberapa kekurangan pada mesin ini. Proses pengupasan dan pemisahan tidak selalu berjalan lancar jika jumlah kopi yang dimasukkan terlalu banyak, yang dapat memengaruhi hasil. Selain itu, jarak antara diameter screw dan dinding terlalu sempit, menyebabkan biji kopi rentan hancur. Oleh karena itu, diperlukan modifikasi untuk meningkatkan efisiensi, kualitas, dan higienitas proses. Mesin juga memerlukan perawatan rutin untuk menjaga performanya. Kelebihan: Utama mesin ini adalah efisiensinya dalam

	W. I. G. I.	Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
		dengan kualitas tinggi,
		sehingga cocok untuk
		digunakan oleh usaha kecil dan
		rumahan. Dengan
		pengoperasian yang relatif
		sederhana, mesin ini membantu
		menghemat waktu dan tenaga,
		sekaligus meningkatkan
	SLAM S	produktivitas pengolahan kopi.
		Untuk optimalisasi lebih lanjut,
		disarankan untuk melakukan
\\		modifikasi // pada bahan
\\		komponen dan motor listrik,
\\\		serta memasukkan biji kopi
		secara bertahap untuk
\\\		mencegah kerusakan biji.
Rancang	Penelitian ini menawarkan	Hasil: Mesin ini mampu
Bangun Mesin	solusi untuk meningkatkan	menghasilkan kapasitas
Pengupas Biji	efisiensi pengolahan kopi	produksi rata-rata 38,4 kg/jam
Kopi Basah	basah dengan merancang	dengan tingkat keberhasilan
dengan	mesin pengupas kulit kopi	66,86%. Daya yang dibutuhkan
Material Baja	berbasis motor listrik. Mesin	untuk pengoperasian sebesar
Astm A.36 [6]	ini dirancang untuk	2,9181 HP, dengan kecepatan
	menggantikan metode manual	putaran 1420 rpm. Sistem ini
	yang menghabiskan banyak	mempermudah proses
	waktu dan tenaga. Dengan	pengupasan kulit kopi basah,
	menggunakan motor listrik 1	memberikan hasil biji kopi
	phase berdaya 2HP, sistem ini	

	Hala Glad	Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
		operasional relatif rendah
		berkat penggunaan motor
		listrik dibandingkan mesin
		berbahan bakar bensin. Sistem
		transmisi yang menggunakan
		v-belt juga menawarkan daya
		tahan yang baik dan perawatan
		mudah.
	SLAM SIL	
Analisis	Dalam upaya meningkatkan	Hasil: Penelitian menghasilkan
Kinerja Mesin	kinerja dan keselamatan mesin	rancangan mesin pengupas biji
Pengupas Biji	pengupas biji kopi basah	kopi basah yang menggunakan
Kopi Basah	dengan penggerak puli dan V-	motor bensin 5,5 HP dengan
dengan	belt, terdapat beberapa usulan	kecepatan 3600 Rpm,
Penggerak Puli	solusi yang dapat diterapkan.	menghasilkan kapasitas kerja
dan V-Belt [7]	Pertama, disarankan untuk	sebesar 720 kg/jam. Sistem
\ \\	menambahkan karet pada	transmisi menggunakan puli
\	dudukan motor bensin guna	dan V-belt tipe A-71, dengan
\	mengurangi getaran yang	kecepatan linier sabuk sebesar
	terjadi selama pengoperasian	4,44 m/s. Mesin ini dirancang
	mesin. Selanjutnya, perlu	untuk meningkatkan efisiensi
	disediakan penutup atau	dan kualitas proses pengupasan
	pelindung pada bagian sistem	biji kopi basah, memudahkan
	transmisi untuk meningkatkan	pekerjaan petani, serta
	keamanan operator. Selain itu,	memberikan hasil yang
	mata pisau penggilas	konsisten.
	sebaiknya diberi penutup agar	Kekurangan: Getaran yang
	penggunaan mesin menjadi	Signifikan: mesin

		Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
	lebih aman. Untuk tempat	menghasilkan getaran pada
	keluarnya biji kopi, disarankan	motor bensin yang dapat
	agar ditambahkan tutup guna	memengaruhi stabilitas mesin.
	mencegah biji kopi tercampak	Keamanan Kurang Optimal:
	saat kecepatan mesin	Tidak adanya pelindung pada
	ditingkatkan. Terakhir, hasil	sistem transmisi dan mata pisau
	penelitian ini diharapkan dapat	penggilas meningkatkan risiko
	digunakan sebagai referensi	kecelakaan operator.
	dalam pengembangan mesin	Pengendalian Output: Biji kopi
	serupa di masa mendatang.	yang keluar cenderung
		tercampak saat kecepatan
\\		mesin ditingkatkan, karena
\\		sal <mark>uran</mark> keluar tidak memiliki
\\\		penutup. Perawatan:
		Dibutuhkan perawatan rutin
\\\	200	terhadap komponen seperti V-
	UNISSUL	belt dan sproket untuk menjaga
\	معندسلطان أجونج الإسلامية	kinerja optimal.
\		Keunggulan:
		1. Efisiensi Tinggi: Dengan
		kapasitas pengupasan
		hingga 720 kg/jam, mesin ini
		sangat cocok untuk
		memenuhi kebutuhan petani
		skala besar. Kemudahan
		Penggunaan: Sistem
		mekanisnya mempermudah

	W. L. G.L.	Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
	SISLAM SIL	pengoperasian dibandingkan metode tradisional. 2. Hasil Berkualitas: Mesin dapat memisahkan kulit biji kopi dengan baik, menghasilkan biji kopi berkualitas tinggi. 3. Desain Kokoh: Rangka mesin dirancang menggunakan bahan baja karbon rendah yang ringan namun kuat untuk menopang komponen. 4. Transmisi Andal:
	UNISSUL	Penggunaan puli dan V-belt memastikan transmisi daya yang efisien dan efektif.
Teknologi	Solusi yang diusulkan dalam	Hasil: Hasil dari implementasi
Proses	pembuatan mesin pengupas	mesin ini adalah peningkatan
Pembuatan	kulit ari kopi adalah dengan	efisiensi dalam proses
Mesin	mengembangkan mesin	pengupasan kopi, dengan
Pengupas Kulit	berbasis mekanik yang dapat	waktu yang diperlukan jauh
Ari Kopi	mengupas kulit kopi secara	lebih singkat dibandingkan
Kering dengan	efisien dan cepat. Mesin ini	metode tradisional. Mesin ini
Kapasitas 100	dirancang untuk mengurangi	mampu mengupas kulit kopi
Kg / Jam [8]	waktu dan tenaga yang diperlukan dalam proses pengupasan, menggantikan	dengan kapasitas 100 kg/jam, menghasilkan produk akhir

Judul	Usulan Solusi	Hasil/Evaluasi (Kekurangan/Kelebihan)
	metode manual yang masih	dengan kualitas yang lebih baik
	banyak digunakan oleh petani	dan konsisten.
	kopi.	Kekurangan: Meskipun mesin
		ini meningkatkan efisiensi,
		terdapat beberapa kekurangan
		seperti risiko biji kopi pecah
		selama proses pengupasan,
	01.088	yang dapat mempengaruhi
	SISLAIN SIL	kualitas akhir produk. Selain
		itu, biaya awal untuk
	(*)	pembuatan dan perawatan
		mesin bisa menjadi hambatan
\\		bagi petani kecil.
	= C(A) 5	Keunggulan: Keunggulan
77	4,000	utama dari mesin ini adalah
///	HALLOCHI	kemampuannya untuk menghemat waktu dan tenaga
	UNISSULA	kerja secara signifikan. Mesin
\	معتبسطان جهيء المستصب	ini juga dirancang untuk
	^	meningkatkan kualitas dan
		konsistensi hasil akhir, yang
		penting untuk memenuhi
		standar pasar yang lebih tinggi.
		Selain itu, mesin ini
		mendukung modernisasi dan
		efisiensi dalam proses
		pertanian kopi.

		Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
Upaya	Solusi berupa modifikasi dan	Hasil: penelitian menunjukkan
Peningkatan	perbaikan pada mesin	bahwa mesin hasil modifikasi
Kualitas dan	pengupas kulit tanduk kopi	memiliki kapasitas kerja
Kapasitas	tipe silinder berulir dengan	sebesar 29,411 kg/jam dengan
Produksi	tujuan meningkatkan kualitas	persentase biji pecah 12,534%,
Mesin	hasil pengupasan dan kapasitas	biji tidak terkupas 5,3%, dan
Pengupas Kulit	kerja. Perubahan dilakukan	biji tertinggal di dalam mesin
Kopi	pada desain silinder, celah	0,7%. Analisis ekonomi
Kering[9]	pengupasan, serta pengaturan	menunjukkan biaya pokok
	putaran mesin untuk	produksi sebesar Rp
	meminimalkan biji pecah dan	400,033/kg pada tahun pertama
\\	biji tidak terkupas. Pendekatan	dan Rp 404,888/kg pada tahun
	ini diharapkan dapat mengatasi	kelima, dengan titik impas
// :	masalah yang selama ini	(BEP) antara 3.745,768 kg
	dihadapi petani, seperti	hingga 4.664,963 kg. Nilai
	rendahnya kapasitas, tingginya	NPV sebesar Rp 67.685.947
\ \\	tingkat kerusakan biji, dan	dan IRR 46,47% menandakan
V	hasil kupasan yang kurang	bahwa usaha ini layak
\	bersih.	dija <mark>l</mark> ankan.
		Kelebihan: dari inovasi ini
		adalah meningkatnya efisiensi
		proses pengupasan
		dibandingkan metode manual,
		kapasitas kerja yang lebih
		besar, penggunaan komponen
		yang mudah didapat, serta hasil
		analisis ekonomi yang
		menunjukkan kelayakan

		Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
		investasi. Selain itu, desain
		yang ergonomis memudahkan
		pengoperasian dan perawatan.
		kekurangan: adalah tingkat
		biji pecah yang masih cukup
		tinggi (12,534%) sehingga
		berpotensi menurunkan mutu
		kopi, ketergantungan hasil pada
	SLAM S	keterampilan operator, serta
		peningkatan biaya produksi
		dari tahun ke tahun akibat
\\		penyusutan alat. Mesin ini juga
		kurang fleksibel jika digunakan
\\\		untuk biji kopi dengan kadar air
		yang terlalu tinggi atau terlalu
\\\	-200	rendah.
Pengembangan	Usulan solusi berupa	Hasil: Rancangan
Mesin	pengembangan mesin	menghasilkan varian ke-3
Pengupas Kulit	pengupas kulit kopi	sebagai pilihan terbaik
Kopi	menggunakan metode	berdasarkan kriteria teknis dan
Menggunakan	perancangan VDI 2221, yang	ekonomi. Mesin ini
Metode VDI	menekankan aspek realistis,	menggunakan penggerak
2221[10]	estetika, dan ergonomi.	motor bensin dan sistem
	Perancangan dilakukan	transmisi puli, dengan
	dengan Autodesk Fusion 360	komponen yang mudah
	untuk pembuatan model 3D	diperoleh. Secara keseluruhan,
	dan menggunakan material	mesin ini dianggap mampu
	standar yang mudah	membantu petani

	W. I. G.I.	Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
	ditemukan di pasaran. Mesin	meningkatkan produktivitas
	ini dirancang agar dapat	dan kualitas hasil pengupasan,
	digunakan oleh semua	serta berpotensi menjadi mesin
	kalangan petani kopi, dengan	investasi dalam usaha tani kopi.
	tujuan meningkatkan efisiensi	Kelebihan: Mesin pengupas
	dan kecepatan proses	kulit kopi ini adalah desainnya
	pengupasan kulit kopi,	yang optimal berdasarkan
	menggantikan metode manual	metode VDI 2221, kemudahan
	yang memakan waktu dan	perawatan, penggunaan
	tenaga, serta mengurangi	komponen standar yang
	tingkat kerusakan biji kopi.	tersedia luas, serta efisiensi
		waktu dan tenaga kerja bagi
\\\		petani. Mesin ini juga bersifat
		ergonomis dan dapat
57		dioperasikan dengan mudah.
\\\		Kekurangan: Belum adanya
\\\	UNISSUL	data uji kinerja rinci seperti
\	معتنسلطان أجونج الإسلامية	kapasitas kerja, persentase biji
1		pecah, dan biaya produksi yang
		sesungguhnya di lapangan,
		sehingga efektivitasnya baru
		dinilai dari perancangan, bukan
		dari pengujian langsung. Selain
		itu, penggunaan motor bensin
		memerlukan perawatan mesin
		pembakaran dan bahan bakar,
		yang mungkin menjadi kendala

	TI I GI	Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
		bagi sebagian petani di daerah
		terpencil.
Perancangan	Solusi yang diusulkan dalam	Hasil: pengujian menunjukkan
Mesin	penelitian ini adalah	bahwa mesin ini memiliki
Pengupas Dan	merancang mesin pengupas	kapasitas efektif 5,2 kg/jam
Pemisah Kulit	dan pemisah kulit ari kacang	dengan tingkat kehilangan biji
Buah Kopi	tanah tipe silinder horizontal	hanya 2,1% dan tingkat
Kering[11]	dengan memanfaatkan putaran	kebersihan mencapai 97,9%,
	silinder pengupas yang dilapisi	sehingga dapat meningkatkan
	amplas sebagai media	efisiensi kerja dibandingkan
	pengupas, serta sistem	pengupasan manual
\\	penyaringan untuk	Kelebihan: dari rancangan ini
\\	memisahkan kulit ari dari biji	adalah mampu menghemat
// :	kacang.	waktu dan tenaga,
		menghasilkan pengupasan
		yang bersih dengan kerusakan
	UNISSUL	biji minimal, serta konstruksi
\	معننسلطان أجونج الإسلامية	yang relatif sederhana sehingga
\		mudah dioperasikan dan
		dirawat.
		Kekurangan: terletak pada
		kapasitas yang masih terbatas
		untuk skala industri besar dan
		ketergantungan pada sumber
		listrik, sehingga mobilitasnya
		kurang fleksibel. Secara
		keseluruhan, mesin ini efektif
		untuk membantu proses

	The Levi C. L.	Hasil/Evaluasi
Judul	Usulan Solusi	(Kekurangan/Kelebihan)
		pascapanen kacang tanah pada
		skala rumah tangga atau usaha
		kecil-menengah.
Rancang	Usulan solusi berupa	Hasil: penelitian menunjukkan
Bangun	pembuatan alat pengupas kulit	bahwa alat memiliki kapasitas
Pengupas Kulit	tanduk kopi mekanis dengan	kerja sebesar 29,411 kg/jam
Tanduk Kopi	sistem silinder berulir untuk	dengan persentase biji pecah
Mekanis[12]	memperluas bidang	12,534%, biji tidak terkupas
	pengupasan, sehingga dapat	5,3%, dan biji tertinggal di
	mengurangi penumpukan biji	dalam alat 0,7%. Biaya pokok
	kopi dan meminimalkan biji	produksi berkisar dari Rp
\\	pecah. Alat ini menggunakan	400,033/kg pada tahun pertama
	motor listrik berdaya 1 HP	hingga Rp 404,888/kg pada
\\	dengan desain yang	tahun kelima, dengan titik
	memungkinkan proses	impas (BEP) dari 3.745,768 kg
	pengupasan berjalan cepat,	hingga 4.664,963 kg. Nilai
///	kapasitas besar, dan hasil	NPV sebesar Rp 67.685.947
V	kupasan yang bersih.	pada tingkat bunga 7,5%
\		menunjukkan usaha ini layak
		dijalankan, sementara IRR
		sebesar 46,47% menandakan
		keuntungan yang tinggi jika
		bunga pinjaman bank lebih
		rendah dari nilai tersebut.
		Kelebihan: alat ini adalah
		mampu meningkatkan efisiensi
		pengupasan dibandingkan
		metode manual, mengurangi

Judul	Haulan Calvai	Hasil/Evaluasi
	Usulan Solusi	(Kekurangan/Kelebihan)
	UNISSUL Zuellugie	tenaga kerja dan waktu proses, serta menggunakan komponen yang mudah didapat dan dirakit. Analisis ekonomi juga menunjukkan kelayakan usaha yang tinggi, dan desain mekanisnya memudahkan pemisahan ampas dengan biji kopi. Kekurangan: meliputi persentase biji pecah yang masih cukup tinggi sehingga berpotensi menurunkan mutu biji kopi, ketergantungan hasil pada keterampilan operator, serta jarak rotor dan stator yang tetap sehingga berisiko menyebabkan biji pecah bila posisi masuk tidak tepat. Selain itu, biaya produksi meningkat setiap tahun akibat penyusutan alat, dan alat ini kurang fleksibel digunakan untuk biji kopi dengan kadar air jauh di atas atau di bawah 12%.

2.2 Dasar Teori

Bua kopi adalah komoditas unggulan yang membutuhkan proses pengolahan bertahap untuk menjaga kualitasnya. Pada proses pengupasan merupakan bagian penting untuk memastikan kualitas biji kopi sesuai standar, baik untuk pasar lokal maupun ekspor biji kopi merupakan komoditas utama yang melalui berbagai tahap pengolahan untuk memastikan kualitas, mulai dari pemisahan kulit, fermentasi, hingga penyortiran Warna bua kopi menjadi indikator penting yang mencerminkan tingkat kematangan, kualitas, dan bebas dari cacat [13].

Perancangan alat pengupas kulit kopi melibatkan penggunaan mekanisme yang dirancang untuk memisahkan kulit kopi dari bijinya secara efisien dan efektif. Alat ini memanfaatkan komponen seperti motor penggerak, drum penggilas, dan sistem transmisi yang terdiri dari sabuk dan pulley untuk menggerakkan proses pengupasan. Prinsip kerjanya adalah buah kopi dimasukkan melalui hopper, kemudian digilas oleh drum penggilas untuk memisahkan kulit dari bijinya. Biji dan kulit kopi yang telah terpisah kemudian dialirkan ke saluran keluar yang berbeda. Dalam perancangan, performa alat diukur melalui beberapa parameter utama. Kecepatan pengupasan menunjukkan waktu yang diperlukan untuk memproses sejumlah buah kopi, yang menjadi indikator efisiensi alat dalam meningkatkan produktivitas. Kualitas pengupasan menjadi aspek penting, yaitu kemampuan alat untuk menghasilkan biji kopi yang bersih dari kulit dengan tingkat Efisiensi energi juga dipertimbangkan, kerusakan biji yang minimal. menggambarkan jumlah daya yang dikonsumsi per kilogram buah kopi yang diproses [14].

Ketepatan dalam perhitungan daya, ukuran komponen, dan desain mekanis menjadi faktor penting untuk memastikan sistem bekerja optimal sesuai kebutuhan industri kopi. Prototipe alat diuji secara langsung untuk mengevaluasi kinerjanya, melibatkan parameter seperti kapasitas produksi, waktu proses, dan kualitas hasil akhir. Hasil pengujian ini menjadi dasar untuk penyempurnaan desain alat sebelum diproduksi untuk kebutuhan skala industri atau rumah tangga [15].

2.2.1 Buah Kopi dan Pentingnya Pengolahan

Buah kopi komoditas unggulan yang membutuhkan proses pengolahan bertahap untuk menjaga kualitasnya. Pengupasan kulit kopi merupakan bagian penting untuk memastikan kualitas biji kopi sesuai standar, baik untuk pasar lokal maupun ekspor.

Gambar 2.1 Tanaman Buah Kopi

Biji kopi merupakan biji dari buah tanaman kopi, yang dikenal sebagai cherry kopi, dan menjadi bahan utama dalam pembuatan minuman kopi. Jenis biji kopi yang paling umum adalah Arabika (Coffea arabica), dengan cita rasa kompleks dan asam seimbang, serta Robusta (Coffea canephora), yang lebih pahit dan memiliki kandungan kafein lebih tinggi [16].

Pentingnya pengolahan biji kopi terletak pada kemampuannya untuk menentukan kualitas dan cita rasa akhir. Proses pengolahan bertujuan untuk menghilangkan lapisan buah yang meliputi pulp, lendir, dan kulit keras, serta meningkatkan karakteristik rasa melalui fermentasi, pencucian, dan pengeringan. Pengolahan yang tepat dapat memperkuat kompleksitas rasa, seperti keasaman, manis, atau tubuh kopi, sekaligus mencegah cacat kualitas yang dapat merusak biji kopi. Oleh karena itu, tahap pengolahan sangat penting untuk memastikan kopi yang dihasilkan memiliki cita rasa yang optimal.

Pengolahan buah kopi tidak hanya menentukan cita rasa akhir, tetapi juga memengaruhi ekonomi petani, keberlanjutan lingkungan, dan pengalaman konsumen. Oleh karena itu, perhatian terhadap teknik dan detail dalam proses ini sangat penting untuk menghasilkan kopi berkualitas tinggi yang memenuhi harapan pasar global.

2.2.2 Proses Pengupasan Kulit Kopi

Pengupasan kulit kopi bertujuan memisahkan kulit tanduk tanpa merusak biji. Yang dikupas dimasukkan dalam alat pengupas sederhana dengan penggerak manual menggunakan tenaga manusia di dalam proses pengupasan kulit kopi yang dikupas adalah buah kopi yang suda matang biasanya berwarna merah. Proses pengupas memberikan tekanan dan gesekan dari tuas yang digerakkan menggerakkan gilingan yang di bawah dengan menghasilkan buah kopi yang telah terkelupas.

Gambar 2.2 Alat pengupas kulit kopi konvesional

2.2.3 Komponen Elektronik Alat Pengupas Kulit Kopi

1. Motor AC

Motor AC (*Alternating Current*) adalah jenis motor listrik yang menggunakan arus bolak-balik untuk menggerakkan mesin. Motor listrik berperan penting sebagai penggerak utama yang banyak digunakan pada sektor industri maupun transportasi [17]. Motor AC memiliki dua jenis utama, yaitu motor fasa satu dan motor fasa tiga. Motor fasa satu banyak digunakan untuk aplikasi dengan daya rendah hingga menengah, sementara motor fasa tiga lebih efisien untuk aplikasi dengan kebutuhan daya besar seperti di industri.

Gambar 2. 3 Motor AC

Motor AC bekerja dengan cara menghasilkan medan magnet yang berputar, yang kemudian menggerakkan rotor dalam motor tersebut. Proses ini memungkinkan motor AC untuk menjalankan berbagai perangkat dengan kecepatan dan efisiensi yang sesuai dengan kebutuhan[18].

Spesifikasi motor yang akan digunakan adalah sebagai berikut:

Tabel 2.2 Spesifikasi motor

Tegangan	220V
Arus	2,6 A
Output	0,37 kW
Speed	2760 rpm

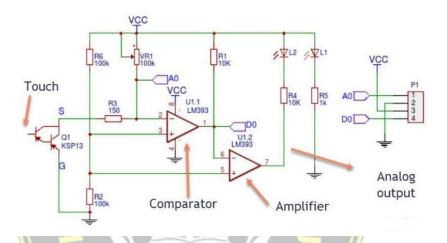
2. Arduino Nano

Arduino Nano adalah salah satu varian mikrokontroler dari keluarga Arduino yang dirancang dengan ukuran kecil dan efisien, sehingga cocok untuk proyek elektronik yang memerlukan desain ringkas. Mikrokontroler ini menggunakan chip ATmega328 (pada versi lama) atau ATmega4809 (pada versi terbaru), dengan arsitektur 8-bit. Arduino Nano memiliki ukuran sekitar 18 x 45 mm, membuatnya sangat praktis untuk digunakan pada prototipe kecil maupun aplikasi tertanam (embedded systems). Meskipun kecil, Nano memiliki 22 pin input/output digital, termasuk 6 pin yang dapat digunakan sebagai output PWM dan 8 pin sebagai input analog. Komunikasi data dapat dilakukan melalui USB mini-B atau serial UART, I2C, dan SPI.



Gambar 2. 4 Arduino Nano

Keunggulan lain dari Arduino Nano adalah kemampuannya untuk dihubungkan langsung ke breadboard, sehingga mempermudah pengembangan dan pengujian sirkuit elektronik. Mikrokontroler ini juga hemat daya, menjadikannya ideal untuk proyek berbasis baterai seperti sensor portabel, perangkat IoT, atau robotik kecil. Karena kompatibel dengan perangkat lunak Arduino IDE, pemrogramannya sangat mudah dipelajari, bahkan untuk pemula. Selain itu, Arduino Nano memiliki ekosistem yang luas, dengan banyak library dan tutorial yang tersedia, sehingga mendukung berbagai macam aplikasi, mulai dari proyek hobi hingga penelitian[19].


3. Sensor Metal Touch

Sensor Metal Touch KY-036 adalah modul sensor yang dirancang untuk mendeteksi sentuhan logam atau perubahan kecil pada konduktivitas listrik. Sensor ini bekerja berdasarkan prinsip deteksi kapasitansi atau resistansi, sehingga dapat merespons saat sebuah objek logam atau jari manusia menyentuh bagian sensitif dari sensor. Modul ini terdiri dari komponen utama seperti pelat sensor (probe), komparator (biasanya IC LM393), dan potensiometer yang memungkinkan penyesuaian sensitivitas.

Gambar 2. 5 Sensor Metal Touch KY-036

Sensor memiliki 3 komponen utama pada papan sirkuitnya. Pertama, unit sensor di bagian depan modul yang mengukur area secara fisik dan mengirimkan sinyal analog ke komponen kedua, yitu amplifier. Amplifier memperkuat sinyal sesuai dengan nilai resistansi potensiometer, dan mengirimkan sinyal ke keluaran analog modul. Komponen ketiga adalah pembanding yang mengaktifkan keluaran digital dan LED jika sinyal berada di bawah nilai tertentu. Anda dapat mengontrol sensitivitas dengan menyesuaikan potensiometer.

Gambar 2. 6 Skema elektrikal modul

Output dari sensor ini dapat berupa sinyal digital atau analog, tergantung pada konfigurasi dan kebutuhan pengguna. Pada mode digital, sensor akan memberikan nilai *HIGH* atau *LOW* sesuai dengan keberadaan sentuhan logam, sedangkan mode analog menghasilkan nilai tegangan proporsional yang dapat digunakan untuk analisis lebih lanjut. KY-036 sering digunakan dalam aplikasi seperti saklar sentuh, detektor konduktivitas, atau bahkan dalam sistem keamanan untuk mendeteksi kontak fisik. Kombinasi keandalan, kemudahan penggunaan, dan kemampuan untuk dihubungkan dengan mikrokontroler seperti Arduino membuat KY-036 menjadi pilihan populer dalam berbagai proyek elektronik[20].

Tabel 2. 3 Spesifikasi Sensor Metal Touch KY-036

No	Pin Sensor	Keterangan
1	AO	Memberikan sinyal analog sesuai
		intensitas sentuhan pada logam
2	DO	Memberikan sinyal digital
		HIGH/LOW bedasarkan ambang
		batas yang diatur dengan
		potensiometer
3	GND	Sambungan ke ground pada
		mikrokontroler yang digunakan
	01.00	(arduino)
4	VCC	Sambungan ke sumber tegangan
		kerja sensor metal touch ky-036
	(*)	(3.3V-5V)

4. Modul Relay 1 Chanel

Relay adalah saklar mekanik yang dikendalikan atau dikontrol secara elektronik. Saklar yang dalam posisi OFF ke ON mengalami perubahan saat diberikan energi magnetik pada armatur relay. Saklar atau relay dikendalikan menggunakan tegangan listrik yang diberikan ke induktor pembangkit magnet untuk menarik tuas armatur pada saklar ketika arus listrik mengalir melalui kumparan elektromagnet, medan magnet yang dihasilkan akan menarik armatur dan mengubah posisi kontak saklar. Hal ini memungkinkan rangkaian listrik berdaya tinggi untuk terhubung atau terputus, tergantung pada konfigurasi relay (Normally Open atau Normally Closed) [21].

Gambar 2. 7 Relay Modul spdt 5v

Relay memiliki berbagai aplikasi dalam sistem elektronik dan listrik, seperti pengendalian motor, pencahayaan, atau perangkat keamanan. Dalam otomasi industri, relay digunakan untuk mengontrol mesin berdasarkan sinyal dari sensor. Relay juga sering digunakan pada mikrokontroler seperti Arduino untuk mengontrol perangkat listrik seperti lampu atau kipas yang membutuhkan tegangan dan arus tinggi. Salah satu keuntungan utama relay adalah isolasi listrik antara sirkuit kontrol dan sirkuit beban, yang membantu melindungi komponen sensitif dari kerusakan akibat lonjakan arus atau tegangan tinggi [22].

5. Catu Daya 12 V (Power Supply)

Power supply merupakan alat yang digunakan sebagai penyedia daya untuk satu atau lebih beban listrik. Untuk itu dibutuhkan power supply yang keluaran tegangannya dapat diatur sesuai dengan beban yang di gunakan. Catu daya 12 V merupakan perangkat yang berfungsi menyediakan suplai tegangan DC sebesar 12 volt dengan arus tertentu sesuai kebutuhan beban. Sumber daya ini dapat berupa adaptor, adaptor switching, atau rangkaian regulator DC yang dirancang agar dapat menghasilkan tegangan stabil dan bebas gangguan. Tegangan 12 V dipilih karena banyak komponen elektronik, motor DC, modul sensor, hingga modul driver motor dirancang untuk bekerja pada rentang tegangan ini [23].

Gambar 2. 8 Catu Daya 12 V 3 A

Memiliki fungsi untuk mendukung kerja seluruh rangkaian secara stabil. Tanpa catu daya yang memadai, komponen seperti mikrokontroler, sensor, aktuator, hingga rangkaian inverter tidak akan berfungsi optimal. Dalam sistem pengendali motor, catu daya sering dipisahkan antara sumber untuk rangkaian kendali (seperti Arduino) dan sumber untuk beban berat seperti motor, agar sinyal kendali tetap bersih dari gangguan.

Dalam implementasinya, catu daya biasanya dilengkapi dengan pengaman berupa sekering, rangkaian filter, atau proteksi arus lebih. Hal ini bertujuan agar suplai listrik tetap aman bagi rangkaian, terutama saat beban motor tiba-tiba menarik arus lebih besar dari yang diperkirakan. Dengan demikian, keberadaan catu daya menjadi salah satu elemen penting dalam keseluruhan sistem.

6. Arduino Nano Expansion Board

Arduino Nano Expansion Board merupakan papan tambahan yang dirancang khusus untuk mempermudah koneksi Arduino Nano dengan komponen lain. Arduino Nano yang berukuran kecil sering kali membuat sambungan kabel menjadi kurang rapi atau sulit diatur. Dengan expansion board, pengguna cukup menancapkan Arduino Nano ke soket yang sudah disiapkan dan menyambungkan komponen pendukung melalui terminal screw atau header pin.

Gambar 2. 9 Arduino Nano Expansion Board

Expansion board ini yaitu sebagai jembatan distribusi sinyal input dan output. Beberapa expansion board bahkan sudah dilengkapi terminal power tambahan, converter tegangan, atau port relay untuk memudahkan integrasi dengan motor, sensor, maupun modul komunikasi. Dengan demikian, prototyping rangkaian menjadi lebih cepat dan rapi karena tidak perlu menyolder banyak kabel langsung ke papan Arduino. mempermudah perawatan dan penggantian Arduino. Jika terjadi kerusakan pada board utama, pengguna hanya perlu mencabut modul Arduino Nano dari expansion board, lalu menggantinya dengan yang baru tanpa perlu membongkar keseluruhan rangkaian.

7. Saklar Button

Saklar ON/OFF merupakan salah satu komponen penting dalam sistem kelistrikan yang digunakan untuk memutus dan menghubungkan aliran arus listrik. Saklar ini bekerja secara manual dengan dua posisi utama posisi menyala (ON) yang mengalirkan arus, dan posisi mati (OFF) yang memutus arus. Jenis saklar seperti pada gambar sering disebut saklar rocker, di mana pengguna cukup menekan bagian atas atau bawah tuas untuk mengubah posisi. Umumnya digunakan pada peralatan rumah tangga, panel kontrol mesin, atau rangkaian motor listrik skala kecil.

Gambar 2. 10 Saklar ON/OFF

Secara konstruksi, saklar ini memiliki empat terminal dua sebagai input dari sumber listrik, dan dua lainnya sebagai output ke beban. Material bodi terbuat dari plastik isolator tahan panas, sementara kaki-kaki terminal menggunakan logam konduktif seperti kuningan. Beberapa tipe dilengkapi lampu indikator untuk menunjukkan posisi ON. Saklar ini dikenal tahan lama, mudah dipasang, dan mampu bekerja pada arus dan tegangan menengah sesuai spesifikasi. Penempatan dan koneksi terminal harus diperhatikan dengan benar untuk menghindari hubungan pendek atau kerusakan rangkaian.

8. Saklar Button (RESET)

Saklar button reset adalah komponen elektronik yang digunakan untuk memberikan sinyal pemulihan atau restart pada sebuah sistem mikrokontroler, seperti Arduino atau sistem berbasis logika digital lainnya. Saklar ini bersifat momentary, artinya hanya aktif saat ditekan dan akan kembali ke posisi semula saat dilepas. Fungsinya adalah untuk mengirimkan sinyal *LOW* sesaat ke pin reset, yang akan membuat sistem menghentikan seluruh aktivitas dan memulai kembali dari awal program. Tombol ini penting digunakan saat terjadi kendala pada sistem, atau saat pengguna ingin mengulang siklus kerja perangkat dari awal tanpa perlu mencabut sumber daya listrik.

Gambar 2. 11 Button Reset

Secara konstruksi, tombol reset biasanya memiliki dua kaki yang dihubungkan ke jalur ground dan pin reset pada mikrokontroler melalui resistor pull-up. Ketika tombol ditekan, pin reset akan dihubungkan langsung ke ground sehingga menyebabkan tegangan turun secara tiba-tiba (drop voltage) yang dibaca sebagai perintah untuk mereset. Bentuknya kecil dan dirancang untuk pemasangan langsung ke PCB (Printed Circuit Board). Dalam konteks alat otomatis seperti pengupas kulit kopi berbasis Arduino, tombol reset berguna saat proses kerja perlu dimulai ulang karena kesalahan pemrosesan atau setelah dilakukan perubahan program.

9. LED (Indicator)

LED merupakan keluarga dari dioda (family of diodes) yang terbuat dari material semikonduktor. LED indikator pada sensor berfungsi sebagai penanda visual bahwa sistem sedang bekerja atau mendeteksi suatu kondisi tertentu. Dalam konteks sistem otomatis berbasis mikrokontroler seperti Arduino, LED ini akan menyala saat sensor mendeteksi sinyal atau nilai tertentu yang memenuhi syarat logika program. Misalnya, pada alat pengupas kulit kopi otomatis, LED dapat difungsikan untuk menyala ketika sensor mendeteksi keberadaan buah kopi atau saat motor mulai beroperasi. Dengan adanya LED ini, pengguna dapat mengetahui status sistem secara langsung tanpa perlu melihat monitor atau serial output [24].

Gambar 2. 12 LED (Indicator)

Secara teknis, LED dihubungkan ke pin output digital mikrokontroler dengan tambahan resistor pembatas arus untuk mencegah kerusakan komponen. Dalam program, kondisi nyala dan mati *LED* dikendalikan melalui perintah logika seperti digital Write (pin, *HIGH*) untuk menyalakan dan digital Write (pin, *LOW*) untuk mematikan. Fungsi *LED* indikator sangat berguna terutama dalam tahap pengujian sistem, karena dapat membantu apakah sensor dan program sudah berjalan sesuai perintah. Selain itu, dalam kondisi lapangan, *LED* juga membantu operator untuk memastikan bahwa alat dalam keadaan aktif dan tidak mengalami gangguan.

2.2.4 Komponen Mekanik Alat Pengupas Kulit Kopi

1. Rangka Alat

Rangka alat berfungsi sebagai struktur utama yang menopang seluruh komponen, baik elektrik maupun mekanik. Material yang digunakan biasanya dari baja ringan atau besi hollow agar kuat namun tidak terlalu berat. Rangka juga dirancang sedemikian rupa agar alat tetap stabil saat beroperasi serta tahan terhadap getaran dari motor penggerak. Ketahanan rangka sangat penting agar alat tidak bergeser selama digunakan.

Gambar 2. 13 Rangka Alat

2. Corong Penampung

Corong penampung berperan sebagai tempat masuknya buah kopi sebelum masuk ke dalam ruang pengupasan. Biasanya terbuat dari plat galvanis atau stainless steel yang tahan terhadap karat, karena proses ini melibatkan buah kopi basah. Desain corong dibuat dengan sudut kemiringan tertentu agar buah kopi dapat mengalir ke sistem pengupas secara gravitasi tanpa hambatan. Ukuran corong disesuaikan agar bisa menampung jumlah buah kopi yang sesuai kapasitas alat.

Gambar 2. 14 Corong

3. Pulley

Pulley adalah mekanisme terdiri dari roda pada sumbu atau poros yang mungkin memiliki alur yang melingkar. Sebuah tali, kabel, sabuk, biasanya berlangsung selama roda dan di dalam alur, jika ada. Pulley digunakan untuk mengubah arah atau meneruskan suatu gaya, mengirimkan gerak rotasi, atau merealisasikan dari keuntungan mekanis atau sistem rotasi linier gerak. Belt dan sistem katrol ditandai oleh dua atau lebih katrol Belt yang sama [25].

Gambar 2. 15 Pulley

Bahan pembuatan pulley biasanya berasal dari logam seperti aluminium atau besi tuang yang tahan terhadap gesekan dan beban putar. Pulley memiliki alur pada permukaannya untuk menahan posisi sabuk agar tidak mudah tergelincir saat berputar. Untuk menjamin kinerja optimal, posisi pemasangan pulley harus presisi dan sejajar antara poros motor dan poros penggerak. Ketidaksejajaran dapat menyebabkan sabuk aus lebih cepat atau bahkan terlepas saat alat beroperasi. Dalam sistem transmisi mekanik, keberadaan pulley menjadi komponen penting yang menentukan kelancaran dan efisiensi proses pengupasan kulit kopi secara keseluruhan.

4. Belt

Sabuk atau belt berfungsi sebagai penghubung antara pulley motor dan pulley pengupas. Belt memungkinkan transfer energi putar dari motor ke sistem pengupas dengan cara yang efisien dan minim suara. Jenis belt yang digunakan umumnya adalah belt tipe V karena memiliki daya cengkeram tinggi dan tahan

terhadap slip. Selain itu, belt harus dijaga ketegangannya agar tidak mudah lepas atau longgar saat digunakan dalam jangka waktu lama.

Gambar 2. 16 Belt

Material sabuk biasanya terbuat dari karet sintetis yang diperkuat dengan serat nilon atau bahan lain yang tahan terhadap tarikan dan panas. Sabuk harus dipasang dengan ketegangan yang sesuai terlalu kencang dapat mempercepat keausan komponen, sedangkan terlalu longgar menyebabkan tenaga tidak tersalurkan dengan optimal. Perawatan berkala seperti pemeriksaan kekencangan dan kebersihan permukaan sabuk perlu dilakukan untuk menjaga kinerja sistem transmisi tetap stabil. Dalam sistem pengupas kulit kopi, sabuk menjadi penghubung vital yang memastikan sinkronisasi gerakan antar komponen berjalan secara efisien dan konsisten.

2.3 Analisis Stakeholder

Permasalahan utama yang sering dihadapi petani kopi adalah menurunnya kualitas biji kopi akibat variasi tingkat kematangan hasil panen. Untuk mengatasi tantangan ini, dirancang sebuah alat pengupas kulit kopi yang mampu memisahkan kulit dari bijinya dengan efisien dan otomatis. Alat ini memiliki bentuk yang kokoh dengan rangka besi sebagai penopang utama, dilengkapi komponen seperti hopper, drum penggilas, sistem transmisi, dan saluran pemisah. Proses dimulai dari hopper, yang berfungsi sebagai tempat penampungan awal buah kopi sebelum dimasukkan

ke drum penggilas. Drum penggilas ini, yang digerakkan oleh motor listrik berkapasitas 0,37 kW, memiliki permukaan bergerigi untuk memisahkan kulit dari biji kopi tanpa merusak bijinya.

Motor listrik sebagai penggerak utama dihubungkan ke drum penggilas melalui sistem transmisi yang menggunakan pulley dan sabuk V-belt, memastikan putaran yang stabil dan efisien. Setelah proses pengupasan, biji kopi yang telah bersih dan kulit kopi terpisah secara otomatis melalui saluran pemisah yang dirancang dengan kemiringan tertentu untuk mempermudah aliran material. Alat ini juga dirancang hemat energi dengan konsumsi daya rendah, menjadikannya ekonomis untuk digunakan secara berkelanjutan.

2.4 Analisis Aspek yang Mempengaruhi Sistem

Adapun aspek yang mempengaruhi sistem alat pengupas kulit kopi sebagai berikut:

2.4.1 Aspek Ekonomi

1. Biaya Produksi dan Perawatan

Pengembangan alat ini perlu mempertimbangkan biaya produksi yang efisien, agar mudah dijangkau oleh petani. Serta teknologi yang digunakan harus tahan lama dan mudah dirawat dengan tujuan mengurangi biaya operasional jangka panjang.

2. Sumber Daya Murah

Penggunaan alat ini semoga membantu mengurangi penggunaan tenaga manual, sehingga diharapkan dapat memangkas baya pengolahan.

2.4.2 Aspek Teknis

1. Efektivitas Pengupasan Terhadap Biji Kopi

Pengupasan kulit kopi merupakan tahap yang sangat penting dalam proses pengolahan kopi karena tahap ini memengaruhi kualitas biji kopi yang dihasilkan. Proses pengupasan bertujuan untuk menghilangkan lapisan pelindung luar buah kopi, seperti kulit tanduk atau lapisan lain, sehingga biji kopi yang bersih dan utuh dapat dihasilkan. Jika pengupasan dilakukan

dengan baik, biji kopi yang diperoleh akan memiliki rasa yang lebih murni, lebih mudah dipanggang, dan memiliki kualitas yang lebih tinggi.

2. Ketahanan Alat

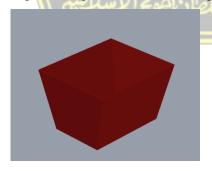
Alat ini perlu dirancang tahan terhadap kondisi berat beban yang dapat ditampung dalam kekuatannya dan tahan terhadap kondisi dari tempat alat tersebut berada seperti kelembapan, panas suhu suatu ruangan, atau ketahanan ketika alat tersebut tidak digunakan.

2.5 Spesifikasi Sistem

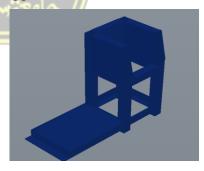
Berdasarkan kajian literatur, dasar teori, dan informasi yang diperoleh, berikut adalah spesifikasi dan kriteria alat pengupas kulit kopi yang akan dirancang menggunakan motor AC:

- Dimensi Rangka: Rangka alat terbuat dari bahan baja untuk kekuatan dan daya tahan tinggi memiliki panjang 66 cm lebar 30 cm dan tinggi 138,5 cm
- Motor AC: Menggunakan motor AC untuk memberikan tenaga yang cukup untuk menggerakkan komponen pengupas kulit kopi.
- Sistem Pengupasan: Alat dilengkapi dengan dua unit rol pengupas yang terbuat dari bahan karet atau baja tahan karat untuk memastikan pengupasan kulit kopi secara merata.
- Sumber Tenaga: Alat ini menggunakan motor AC sebagai sumber penggerak utama untuk proses pengupasan, dengan energi listrik sebagai sumber utama untuk mengoperasikan komponen lainnya seperti sensor dan relay.
- Metal Touch Sensor: Digunakan untuk mendeteksi keberadaan tangan pada area pengupasan untuk memastikan keamanan pengguna.

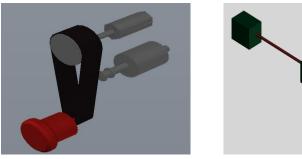
BAB 3. USULAN SOLUSI

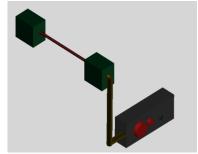

3.1 Usulan Solusi 1

Usulan solusi 1 adalah sistem pengupas kulit kopi otomatis dengan sistem pengaman metal touch. Solusi ini diusulkan karena selama ini petani kopi hanya menggunakan tenaga manual untuk menggiling buah kopi, hal ini tentu saja memerlukan waktu dan energi ekstra bagi petani untuk menggiling buah kopi. Maka perlu sistem pengupas buah kopi otomatis untuk mempermudah petani dalam mengolah kopi.

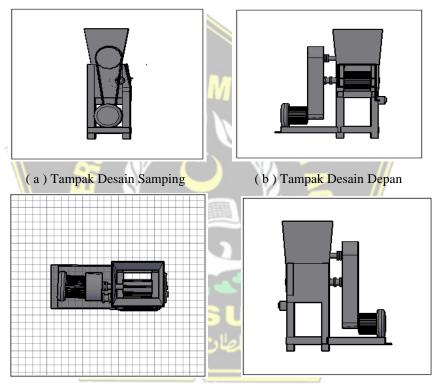

3.1.1 Desain Sistem 1

1. Desain Mekanik


Desain alat pengupas kulit kopi yang dirancang untuk memisahkan kulit kopi dari bijinya. Alat ini menggunakan motor AC berdaya 0,5 HP sebagai penggerak utama yang bertugas memutar drum penggilas untuk melakukan proses pengupasan. Drum penggilas dibuat dari material kuat dan tahan aus, seperti baja tahan karat, agar mampu menangani beban kerja yang tinggi dan mempertahankan performa dalam jangka waktu lama. Untuk memasukkan buah kopi ke dalam sistem, alat ini dilengkapi dengan hopper atau wadah yang dirancang agar buah kopi dapat mengalir dengan lancar ke drum penggilas.



(b)Rangka Penopang

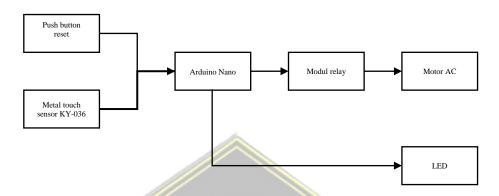


(c) Penggerak Pulley dan Motor

(d) Posisi Sensor Metal dan Kontrol

Gambar 1 Desain Arsitektur Alat 1

(c) Tampak Desain Atas


(d) Tampak Desain Belakang

Gambar 3. 2 Tampak Desain samping,depan,atas,dan belakang

2. Desain Elektronik

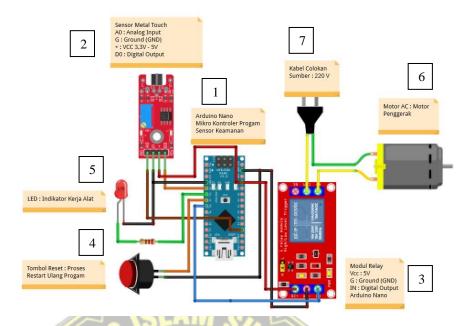
Selain komponen mekanis, alat ini juga dilengkapi dengan sistem kontrol motor listrik dan keselamatan berbasis elektronik. Sensor *Metal Touch KY-036* digunakan untuk mendeteksi keberadaan logam asing di dalam sistem, yang berpotensi merusak komponen atau membahayakan operator. Sensor ini bekerja bersama dengan Arduino, yang berfungsi sebagai otak sistem kontrol. Arduino menerima sinyal dari sensor dan memerintahkan relay modul untuk memutus aliran

daya ke motor jika diperlukan, sehingga alat dapat berhenti secara otomatis saat terjadi masalah. Sistem ini dirancang untuk meningkatkan efisiensi, kualitas pengupasan, dan keselamatan operasional alat.

Gambar 3. 3 Diagram Blok Sistem

Sistem pada diagram blok ini memiliki tiga bagian utama, yaitu input, proses, dan output.

1. Input

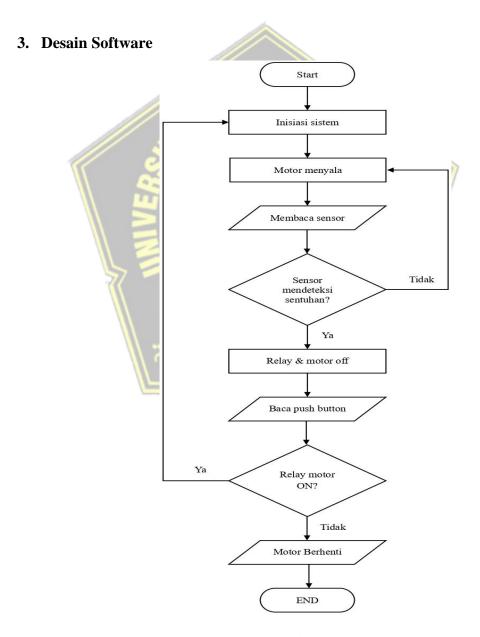

Terdapat *push button reset* yang berfungsi untuk mengatur ulang sistem secara manual, serta *metal touch sensor KY-036* yang berfungsi mendeteksi adanya sentuhan logam dari pengguna. Kedua input ini akan mengirimkan sinyal ke Arduino Nano.

2. Proses

Pada bagian proses terdapat *arduino nano* berperan sebagai pusat kendali yang membaca dan mengolah sinyal dari input sesuai dengan program yang telah ditanamkan. Jika sensor KY-036 mendeteksi sentuhan, Arduino akan memproses perintah untuk menyalakan LED sebagai indikator serta mengaktifkan *modul relay*. Apabila push button ditekan, maka Arduino akan memproses perintah reset sehingga sistem kembali ke kondisi awal.

3. Output

Hasil dari proses Arduino ditampilkan melalui *LED* yang menyala sebagai tanda bahwa sistem bekerja, serta modul relay yang berfungsi menghubungkan arus listrik untuk menyalakan *motor AC* sehingga motor dapat beroperasi.


Gambar 3. 4 Desain rangkaian sistem

Pada usulan sistem Alat Pengupas Kulit Kopi Basah Otomatis Menggunakan Metal Touch Sensor Ky-036 Sebagai Pengaman, maka diperlukan sistem perangkat elektronik. Tabel 3.1 memperlihatkan kebutuhan sistem sesuai yang dibutuhkan.

Tabel 3. 1 Kebutuhan komponen sistem

NO	Na <mark>ma</mark> Alat	Keterangan
1	Arduino Nano	Berfumgsi sebagai pengendali utama
	عرضيه	(mikrokontroler) dalam rangkaian elektronik dengan
		membaca input dari sensor senghingga dapat
		mengontrol output
2	Metal Touch Sensor	Sensor yang dirancang untuk mendeteksi sentuhan
	KY-036	logam, denngan cara kerja berdasarkan prinsip
		deteksi kapasitansi atau resistansi, sehingga dapat
		merespons saat sebuah objek
3	Relay	Berfungsi sebagai sakelar dimana di sistem ini
		sebagai alat untuk meyalakan dan mematikan motor
		AC

4	Push Button	Digunakan untuk memberikan sinyal pemulihan
		atau restart dimanba pada sistem ini untuk merestart
		program
5	LED	Sebagai indikator penanda bila motor berhenti
		karena ada sentuhan
6	Motor AC	Sebagai penggerak utama alat pengupas kulit kopi
7	Kabel Colokan	Digunakan untuk penghubung sumber listrik AC

Gambar 3. 5 Flowchart

Berikut mengenai penjelasan mengenai bagain progam pada alur flowchart:

1. Inisiasi Sistem

Program Arduino pada gambar 3.6 ini dirancang Program Arduino yang dibuat memiliki alur kerja yang sebenarnya sesuai dengan flowchart yang ditunjukkan. Pada bagian awal flowchart terdapat blok *inisialisasi sistem*, hal ini sejalan dengan fungsi *setup*()

```
void setup() {
  // === Inisialisasi sistem (flowchart: "Inisiasi sistem") ===
  pinMode(digitalPin, INPUT);
  pinMode(analogPin, INPUT);
  pinMode(ledPin, OUTPUT);
  Serial.begin(9600);
```

2. Motor Menyala

Pada program yang mengatur pin input-output serta menyalakan komunikasi serial. Setelah sistem siap, flowchart menunjukkan kondisi motor menyala, dan dalam program ini motor diwakili oleh LED

```
digitalWrite(ledPin, ledState); // Motor/LED kondisi awal
}
```

3. Membaca Sensor

Selanjutnya, program membaca sensor menggunakan perintah digitalVal = digitalRead (digitalpin) pada blok membaca sensor pada flowchart.

```
// === Membaca sensor (flowchart: "Membaca sensor") ===
digitalVal = digitalRead(digitalPin);
```

4. Sensor mendeteksi sentuan

Keputusan apakah sensor mendeteksi sentuhan direpresentasikan oleh logika analogVal = analogRead(analogPin); Serial.print("----"); Serial.println(analogVal);

```
// Cetak nilai analog ketika sensor disentuh
analogVal = analogRead(analogPin);
Serial.print("----");
Serial.println(analogVal);
```

5. Relay & motor off

Jika kondisi ini terpenuhi, maka status LED dibalik melalui 1edState = !ledState; digitalWrite(ledPin, ledState);, yang sepadan dengan langkah relay & motor off pada flowchart. Keputusan apakah relay motor dalam kondisi ON digantikan oleh variabel ledState, karena jika bernilai HIGH berarti motor dianggap hidup, sedangkan LOW berarti motor berhenti. Apabila motor dalam kondisi OFF, maka alur akan berhenti sesuai dengan blok motor berhenti pada flowchart.

```
// === Relay & motor off (flowchart: "Relay & motor off") ===

ledState = !ledState;

digitalWrite(ledPin, ledState);
```

6. Membaca push button

Selain itu, flowchart menunjukkan adanya proses *baca push button* yang dalam program ini diwakili *if* (*ledState* == *HIGH*)

```
// === Baca push button (flowchart: "Baca push button") ===
// Dalam program ini push button diganti sensor KY-036
if (ledState == HIGH) {
```

7. Relay motor ON

kondisi *relay motor ON*?, yang dalam program direpresentasikan oleh variabel *digitalerite(ledpin,HIGH)*; Jika bernilai HIGH, berarti motor dianggap masih hidup,

```
// === Relay motor ON? (flowchart: decision diamond) ===
// Jika HIGH, motor (LED) masih nyala
digitalWrite(ledPin, HIGH);
} else {
```

8. Motor berhenti

Pada saat motor berhenti, alur program sesuai $motor\ berhenti \to END$ pada flowchart. Dengan demikian, pada progam arduino $digitalwrite(ledpin,\ LOW)$; motor berhenti

```
// === Motor berhenti → END (flowchart: "Motor berhenti") === digitalWrite(ledPin, LOW);
}
```

9. End

Pada saat motor berhenti, alur program selesai dengan diakhirinya proses progam pada flowchart

3.1.2 Rencana Anggaran Desain Sistem 1

Tabel 3. 2 Rencana anggaran pengembangan sistem 1

NO	Nama Barang	Jumlah	Harga	Harga Total		
KON	MPONEN ELEKTRIK					
1	Ardui <mark>no</mark> nano	1 Pcs	Rp. 90.000	Rp. 90.000		
2	Metal Touch Sensor KY-036	1 Pcs	Rp. 30.000	Rp. 30.000		
3	Motor AC 1 phase 0,5 HP	1 Pcs	Rp. 820.000	Rp. 820.000		
4	Power supply 12 VDC	1 Pcs	Rp. 40.000	Rp. 40.000		
5	Relay arduino	1 Pcs	Rp. 38.000	Rp. 38.000		
6	Arduino Expansion Board	1 Pcs	Rp. 15.000	Rp. 15.000		
7	Box	1 Pcs	Rp. 15.000	Rp. 15.000		
8	Resistor	5 Pcs	Rp. 200	Rp. 1.000		
9	Kabel jumper 40 pcs	1 Pcs	Rp. 15.000	Rp. 15.000		
10	LED	5 Pcs	Rp. 200	Rp. 1.000		
11	Kabel 0,75×2	5 Pcs	Rp. 6.000	Rp. 30.000		
KON	MPONEN MEKANIK	I	1	<u>'</u>		
1	Coffe pluper set	1 Pcs	Rp. 2.000.000	Rp. 2.000.000		

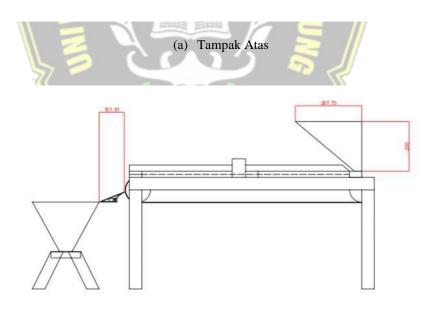
	TOTAL			Rp. 3.205.000
3	Pully	1 Pcs	Rp. 80.000	Rp. 80.000
2	V-belt	1 Pcs	Rp. 30.000	Rp. 30.000

3.1.3 Analisa Risiko Desain 1

Adapun analisis risiko dari Desain 1 adalah sebagai berikut:

- Dari aspek operasional design 1 memiliki risiko dapat masuknya benda asing yang dapat mengakibatkan cacatnya mata pisau atau dapat menghentikan putaran dari mesin.
- 2. Pengubahan alat pengupas kopi menjadi otomatis juga menjadikan ketergantungan dengan energi listrik. Hal ini dapat menjadi kendala bila terjadi pemadaman listrik
- 3. Komponen transmisi seperti pulley dan sabuk berpotensi mengalami ketegangan berlebih atau aus jika tidak dirawat secara berkala, yang dapat mengurangi efisiensi kerja dan meningkatkan risiko kerusakan sistem.
- 4. Sistem pisau berputar dalam ruang terbuka memiliki potensi risiko keselamatan bagi operator apabila tidak dilengkapi pelindung yang memadai, terutama saat proses pembersihan atau perawatan dilakukan tanpa pemutusan arus listrik.


3.1.4 Pengukuran Performa


Sistem pengupas kulit kopi otomatis dengan sistem pengaman infrared. Sistem ini menggunakan motor listrik 1 fasa sebagai penggerak otomatis pengupas kopi yang kecepatan motornya dapat disesuaikan dengan jenis motor yang digunakan, serta terdapat sensor *metal touch/proximity* sebagai pengaman alat bila tanpa sengaja tangan masuk ke corong penggiling mesin listrik akan berhenti otomatis. Dengan ditambahkan sensor pengamanan ini diharapkan dapat meminimalisir kecelakaan kerja dalam proses pengoperasian alat sehingga alat dapat bekerja dengan semestinya dan bekerja sesuai dengan keutuhan yang diperlukan.

3.2 Usulan Solusi 2

Usulan solusi 2 adalah sistem pengupas dan sortir buah kopi. Solusi memberikan tambahan sistem sortir buah kopi berdasarkan warna dari buah kopi namun tanpa pengaman tambahan. Solusi ini memberikan kemudahan ekstra untuk petani dalam mengolah buah kopi.

3.2.1 Desain Sistem 2

(b) Tampak Samping

Gambar 2 Desain Arsitektur Alat 2

3.2.2 Rencana Anggaran Desain Sistem 2

Tabel 3. 3 Rencana anggaran pengembangan sistem 2

NO	Nama Barang	Jumlah	Harga	Harga Total
KON	MPONEN ELEKTRIK			
1	Arduino mega	1 Pcs	Rp. 200.000	Rp. 200.000
2	Sensor warna	4 Pcs	Rp. 85.000	Rp. 340.000
3	Motor servo	4 Pcs	Rp. 55.000	Rp. 220.000
4	Motor DC 12 v	1 Pcs	Rp. 100.000	Rp. 100.000
5	Motor drive module	2 Pcs	Rp. 20.000	Rp. 40.000
6	Motor dinamo 200 watt	1 Pcs	Rp. 300.000	Rp. 300.000
7	Kabel adapter DC	1 Pcs	Rp. 100.000	Rp. 100.000
KON	MPONEN MEKANIK	11	0//	
1	Konveyor	1 Pcs	Rp. 1.000.000	Rp. 1.000.000
2	PVC board 30 × 40 cm	5 Pcs	Rp. 15.000	Rp. 75.000
3	Coffe pluper set	1 Pcs	Rp. 1.500.000	Rp. 1.500.000
4	Alu <mark>m</mark> inium siku 3 m	2 Pcs	Rp. 50.000	Rp. 100.000
5	Pully	2 Pcs	Rp. 50.000	Rp. 100.000
6	Van belt	1 Pcs	Rp. 50.000	Rp. 50.000
	TOTA	Rp. 4.125.000		

3.2.3 Analisa Risiko Desain 2

Adapun analisis risiko dari Desain 2 adalah sebagai berikut:

- 1. Dari aspek ekonomi design 2 memerlukan anggaran yang relatif lebih mahal.
- Pengubahan alat pengupas kopi menjadi otomatis juga menjadikan ketergantungan dengan energi listrik. Hal ini dapat menjadi kendala bila terjadi pemadaman listrik
- 3. Dari aspek waktu desain 2 bergantung pada jumlah jalur penyortiran yang akan dibuat. Semakin banyak jalur maka akan semakin cepat penyortiran

buah kopi namun anggaran pengembangan juga tentu akan meningkat seiring bertambahnya jalur penyortiran.

3.2.4 Pengukuran Performa

Sistem pengupas dan sortir buah otomatis menggunakan motor listrik 1 fasa sebagai penggerak pengupas kulit kopi. Serta buah kopi berdasarkan warna menggunakan sensor warna yang akan mendeteksi satu persatu buahh kopi yang kemudian bila terdapat buah kopi yang berwarna hijau servo akan membuka jalur baru sehingga buah kopi berwarna hijau tidak ikut terkupas pada pengupas.

3.3 Analisis dan Penentuan Usulan Solusi/Desain Terbaik

Berdasarkan kedua solusi tadi, solusi 1 dipilih menjadi solusi yang terbaik karena pada solusi 1 memberikan keuntungan yang lebih baik. Solusi 1 memberikan desain yang lebih sederhana sehingga alat maupun pemeliharaan alat akan lebih mudah dan tidak memerlukan biaya yang terbilang mahal. Selain lebih murah, solusi 1 memberikan efisiensi waktu lebih baik. Karena pada solusi 2 memerlukan waktu lebih untuk menyortir buah kopi yang berwarna hijau. Penyortiran warna menggunakan sensor warna dinilai tidak lebih efisien dengan melakukan penyortiran secara manual.

Dengan efisiensi waktu yang lebih baik solusi 1 juga akan menggunakan daya yang lebih sedikit karena operasional alat akan menjadi lebih ringan. Selain itu, solusi 1 juga memiliki keunggulan dari sisi kestabilan kerja alat. Dengan rancangan yang tidak terlalu kompleks, potensi terjadinya gangguan teknis

Berdasarkan perbandingan kedua alternatif, Solusi 1 dipilih sebagai opsi terbaik karena menawarkan keuntungan lebih besar dengan desain sederhana yang memudahkan perawatan serta menekan biaya pembuatan. Solusi ini juga lebih efisien dari segi waktu, sebab Solusi 2 membutuhkan proses tambahan untuk menyortir buah kopi berwarna hijau yang dinilai lebih praktis dilakukan secara manual. Selain menghemat waktu, Solusi 1 juga mengonsumsi daya listrik lebih sedikit berkat operasional alat yang lebih ringan. Dari sisi kestabilan, rancangan yang tidak terlalu kompleks pada Solusi 1 meminimalkan potensi gangguan teknis, sehingga lebih andal digunakan dalam jangka panjang.

3.4 Gantt Chart

Tabel 3. 4 Gantt Chart

No	Kegiatan/ Capaian	S	epte	emb	er	•	Okt	obe	r	N	ove	mb	er	D	ese	mbe	er	J	Janı	ıar	i
NO		1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
1	Penentuan kelompok captone design			S P I																	
2	Menentukan topik masalah yang akan diangkat				S P I	S P I	S P I		/												
3	Identifikasi masalah dimitra	100						P I			9										
4	Menentukan solusi 1	~ ~	- O/A	١,	5	1)	7	S P I	Ų	しく										
5	Menentukan solusi 2	100			10		*		S p I			7									
6	Menentukan spesifikasi teknis dan design alat		ω			7	WORA			P	S	I	CHAR			/					
7	Perancangan RAB			Y	N		9		7				I								
8	Penulisan proposal Tugas Akhir 1	ا بين	J I	N ارس	ا ء ال	5	9	ما ا	ا ال	L	A مام			P	S	I	S P I				
9	Pengumpulan dan seminar proposal Tugas Akhir 1						<u> </u>						//								

Keterangan:

S: Muhammad Shofa

P: Panggah Kurniawan

I: Muhamad Khoerul Ibad

3.5 Realisasi Pelaksanaan Tugas Akhir 1

Tabel 3. 5 Realisasi pelaksanaan Tugas Akhir 1

No	Hari, tanggal	Aktivitas	Pelaksana
1	Jum'at, 20	 Penentuan kelompok 	Semua anggota
	September	 diskusi mengenai masalah yang 	
	2024	akan diangkat	
2	Jum'at, 27	– Mencari permasalahan yang	Semua anggota
	September	akan diangkat	
	2024	– Diskusi mengenai tema	
	al	penelitian capstone design	
3	Jum'at, 4	– Mencari publikasi atau	Semua anggota
	Oktober 2024	sejenisnya yang sesuai dengan	
		tema permasalahan	
		– Review jurnal maupun	
	\\ \	publikasi	
4	Jum'at, 11	Penetapan tema	Semua anggota
	Oktober 2024	– Membuat matriks penelitian	
	\\	mengenai tema yang ditentukan	
5	Jum'at, 18	Observasi lapangan	Semua anggota
	Oktober 2024	– Pengambilan data dan	
		permasalahan di lapangan	
		– Lokasi Desa Grugu Kec.	
		Kaliwiro Kab. Wonosobo	
6	Jumat, 25	 Menentukan spesifikasi alat 	Semua anggota
	Oktober 2024	 Design prototipe alat 	
7	Jum'at 1	- Pembuatan design alat dengan	Semua anggota
	November	Autocad	
	2024	 Spek alat dan dimensi alat 	

No	Hari, tanggal	Aktivitas	Pelaksana
		- Modul dan komponen yang	
		digunakan	
8	Jumat, 22	Pembuatan tinjauan pustaka	Semua anggota
	November	Penentuan RAB	
	2024		
9	Jumat, 29	 Penulisan laporan BAB 1 	Semua anggota
	November		
	2024		
10	Jum'at, 6	 Penulisan laporan BAB 2 	Semua anggota
	Desember	COLAM O	
	2024	S 13 1 3 1	
11	Jum'at, 13	 Penulisan laporan BAB 3 	Semua anggota
	Desember	(*)	
	2024		
12	Jum'at, 20	– Perubahan penggunaan solusi	Semua anggota
	Desember	design alat yang akan digunakan	//
	2024		

BAB 4. HASIL RANCANGAN DAN METODE PENGUKURAN

4.1 Hasil Rancangan Sistem

Pada proses perancangan sistem Alat Pengupas Kulit Kopi motor listrik AC Basah Dilengkapi Sistem Safety Otomatis Menggunakan Sensor KY-036 penulis melakukan pengembangan dari berbagai penelitian yang serupa sebelumnya. Dimana pada penelitian sebelumnya belum ada penambahan sistem pengaman pada alat pengupas kulit kopi. Berikut merupakan rincian bagian hasil rancangan sistem secara umum yaitu:

4.1.1 Rangkaian Elektronik

Pada proses realisasi alat untuk Tugas Akhir 2 ini, penulis menggunakan komponen yang telah ditentukan untuk membuat rangkaian elektronik, dengan komponen-komponen sebagai berikut:

Tabel 4. 1 Komponen yang digunakan

NO	Komponen
1	Arduino Nano
2	Metal Touch Sensor KY-036
3	Motor AC 1 fasa 0,37 kW
4	Relay Modul
5	Regulator 5 V

Gambar 4. 1 Rangkaian Safety Alat Pengupas Kulit Kopi

Komponen-komponen rangkaian yang digunakan dalam rangkaian sebagai berikut:

1. Arduino Nano

Arduino Nano adalah papan rangkaian kecil yang bisa diprogram. Fungsinya untuk mengatur dan mengendalikan berbagai alat elektronik seperti sensor atau relay. Biasanya digunakan dalam proyek-proyek otomatisasi atau kendali sederhana karena bentuknya yang kecil tetapi cukup lengkap.

2. Sensor KY-036 Metal Touch

Sensor ini berfungsi mendeteksi sentuhan pada permukaan logam. Saat disentuh, sensor akan mengirim sinyal ke Arduino. Sering digunakan sebagai tombol sentuh atau sistem keamanan karena hanya aktif saat disentuh oleh tangan manusia.

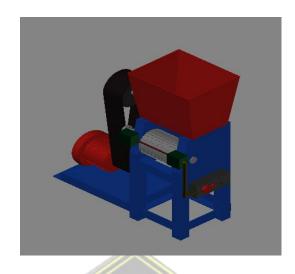
3. Motor AC

Motor AC 1 fasa 0,5 HP adalah motor listrik yang bekerja dengan sumber tegangan satu fasa, umumnya 220–240 Volt seperti listrik rumah tangga. Motor ini memiliki daya keluaran sekitar 0,37 kW atau setara dengan 0,4 HP.

4. Relay Modul

Relay adalah sakelar elektronik yang bisa dikendalikan oleh Arduino. Modul relay digunakan untuk menghubungkan Arduino dengan perangkat listrik lain, seperti motor atau lampu, agar bisa dinyalakan atau dimatikan secara otomatis.

5. Regulator


Regulator berfungsi untuk mengatur dan menstabilkan tegangan listrik yang masuk ke rangkaian. Dengan regulator, perangkat seperti Arduino dapat bekerja dengan aman tanpa kelebihan tegangan.

Penentuan arah koneksi antar input, output, maupun kontrol harus ditentukan agar tidak terjadi kesalahan saat sistem bekerja. Seluruh sistem dirancang dengan koneksi sebagai berikut:

- 1. Metal Touch Sensor KY-036
 - DO: terhubung ke pin 2
 - AO: terhubung ke pin A0
 - VCC: terhubung ke pin 5V Arduino nano
 - GND: terhubung ke pin GND Arduino Nano
- Power Suply: terhubung ke sumber tegangan listrik 220 V diubah ke dc 12
 V dan regulator menjadi 5 V sebagai penyuplai sumber untuk kerja arduino nano
- 3. Modul Relay: pin pada relay input,ground dan vcc terhubung ke pin arduino nano sementara COM terhubung ke kabel fasa (L) motor dan NO keluaran ke motor (agar motor hanya nyala saat relay aktif)
- 4. Push Button: terhubung ke pin D4 pada arduino nano sebagai tombol reset progam
- 5. LED: terhubung ke pin D13 pada arduino nano
- 6. Saklar : terhubung ke fasa (L) dan netral (N) dari sumber listrik, untuk memutus aliran listrik sebagai saklar (ON/OFF)
- 7. Motor AC: terhubung ke fasa (L) dan netral (N) dari sumber listrik 220V

4.1.2 Gambar Desain 3 Dimensi

Desain gambar 3D alat saat ini masih dalam tahap pengembangan. Pengembangan lebih lanjut dapat berubah untuk menyesuaikan seluruh peralatan yang digunakan agar alat dapat terlihat sederhana dan kompak. Pada tahap perencanaan komponen elektronik dengan komponen mekanik penempatannya akan terpisah guna meminimalisir getaran yang dihasilkan oleh komponen mekanik yang akan berdampak pada komponen elektronik. *Software* Autocad digunakan untuk merancang alat.

Gambar 4. 2 Desain 3D Alat Pengupas Kulit Kopi Basah

Desain pada gambar tersebut menggambarkan sebuah mesin penghancur atau pengupas mekanik yang bekerja dengan sistem transmisi sabuk. Pada bagian atas mesin terdapat sebuah hopper berbentuk kotak tegak lurus yang berfungsi sebagai wadah penampung bahan baku awal sebelum masuk ke proses penghancuran. Hopper ini dirancang dengan kapasitas cukup besar agar dapat menampung bahan dalam jumlah banyak dan memudahkan pengguna dalam proses pengisian. Di bawah hopper, bahan akan langsung mengalir ke ruang penghancur atau pengupas melalui gravitasi. Penempatan hopper yang tinggi juga memberikan tekanan alami pada bahan yang masuk ke dalam sistem kerja mesin.

Pada sisi samping mesin, terlihat sistem transmisi sabuk-pulley yang terhubung dari motor penggerak ke poros utama. Sabuk ini berfungsi untuk mentransfer daya dari motor listrik menuju sistem pemutar atau penghancur yang berada di dalam struktur mesin. Pemilihan transmisi sabuk memungkinkan putaran motor dapat dikonversikan menjadi torsi yang sesuai untuk kebutuhan penghancuran, terutama jika bahan yang diproses cukup keras atau tebal. Sabuk ini juga memberikan fleksibilitas terhadap getaran dan perbedaan poros, serta memudahkan proses perawatan dan penggantian jika terjadi kerusakan. Penggunaan dua pulley dengan ukuran berbeda memungkinkan penyesuaian rasio kecepatan putaran antara motor dan poros penghancur. Dengan demikian, desain

ini tidak hanya mempertimbangkan kekuatan mesin, tetapi juga efisiensi kerja serta umur komponen mekanis.

Di bagian bawah, terdapat motor listrik sebagai sumber tenaga utama mesin. Motor ini diletakkan di atas dudukan rangka yang terbuat dari bahan besi, memberikan kestabilan dan kekuatan terhadap getaran saat mesin bekerja. Seluruh rangka mesin dibuat dengan struktur kotak dari besi atau baja yang dilas agar tahan terhadap beban dan tekanan selama proses kerja berlangsung. Posisi motor yang terpisah namun terhubung dengan sabuk juga berfungsi untuk menghindari overheating pada motor akibat dekat dengan ruang penghancur. Desain terbuka di beberapa bagian rangka memberikan kemudahan dalam proses perawatan dan pengecekan berkala. Secara keseluruhan, desain ini menunjukkan sebuah sistem mesin sederhana namun efektif yang menggabungkan prinsip gravitasi, transmisi mekanik, dan stabilitas rangka dalam satu kesatuan alat yang efisien untuk proses industri skala kecil hingga menengah.

Motor ini diletakkan di atas dudukan rangka yang terbuat dari bahan besi, memberikan kestabilan dan kekuatan terhadap getaran saat mesin bekerja. Seluruh rangka mesin dibuat dengan struktur kotak dari besi atau baja yang dilas agar tahan terhadap beban dan tekanan selama proses kerja berlangsung. Desain terbuka di beberapa bagian rangka memberikan kemudahan dalam proses perawatan dan pengecekan berkala.

4.1.3 Desain Program Arduino Nano

Proses perancangan desain program dalam pembuatan software dimulai dengan menentukan kebutuhan dalam proses perancangan sistem. Untuk membuat kontrol pada penggerak motor AC kita memerlukan pembuatan program dalam Arduino IDE terlebih dahulu.

Gambar 4. 3 Software Program Arduino Nano

Setelah melakukan desain program dan mengupload program ke arduino nano sehingga arduino nano dapat dirangkai pada rangkaian elektronik sehingga dapat berfumgsi sebagai pengendali utama dalam rangkaian elektronik dengan membaca input dari sensor senghingga dapat mengontrol kerja relay yang dapat mengendalikan motor AC.

4.2 Metode Pengukuran Kinerja Hasil Perancangan

Untuk memastikan Alat Pengupas Kulit Kopi Basah Dilengkapi Sistem Keamanan Otomatis Menggunakan Matal Touch Sensor KY-036 ini berfungsi secara optimal, diperlukan suatu metode yang terstruktur untuk mengukur kinerja alat dari berbagai aspek. Pengukuran kinerja bertujuan untuk mengevaluasi apakah alat dapat bekerja secara efisien jika dibandingkan dengan pengupasan manual. untuk memastikan Alat Pengupas Kulit Kopi Basah Dilengkapi Sistem Keamanan Otomatis Menggunakan Metal Touch Sensor KY-036 ini berfungsi secara optimal, diperlukan suatu metode yang terstruktur untuk mengukur kinerja alat dari berbagai aspek. Pengukuran kinerja bertujuan untuk mengevaluasi apakah alat dapat bekerja secara efisien jika dibandingkan dengan pengupasan manual. Aspek yang diukur meliputi kecepatan proses, akurasi pengupasan, tingkat kerusakan biji kopi, serta keamanan pengguna. Selain itu, evaluasi dilakukan untuk menentukan daya tahan

alat dalam kondisi operasional berulang. Hal ini bertujuan untuk memastikan alat tidak hanya meningkatkan efisiensi tetapi juga memenuhi kebutuhan pengguna dalam aspek kenyamanan, kepraktisan, dan keselamatan selama pengoperasian.

4.2.1 Parameter yang diukur

Alat Pengupas Kulit Kopi Basah Dilengkapi Sistem *Safety* Otomatis Menggunakan Metal Touch Sensor KY-036 berfokus pada parameter-parameter berikut:

1. Keamanan Alat

Pada alat pengupasan akan dilengkapi dengan sistem pengaman, apabila sensor keberadaan tangan pada bak penampung alat akan otomatis berhenti. Sehingga pengenalan tangan diperlukan untuk melakukan pengamanan.

2. Efisiensi Waktu

Penggunaan alat harus dapat memangkas waktu pengupasan jika dibandingkan dengan pengupasan secara manual.

3. Konsumsi Energi

Menyesuaikan dengan daya yang digunakan mitra maka alat harus dapat beroperasi pada daya yang digunakan.

4.2.2 Definisi Kriteria Kinerja

Kriteria kinerja Alat Pengupas Kulit Kopi Basah Dilengkapi Sistem Safety Otomatis Menggunakan Metal Touch Sensor KY-036 adalah sebagai berikut:

1. Akurasi dan Respons

Kemampuan respons alat dalam mendeteksi tangan manusia sebagai pengaman alat.

2. Stabilitas

Pemantauan alat akan dipantau secara berkelanjutan dalam kurun waktu tertentu untuk mengukur stabilitas alat.

3. Efisiensi

Untuk mengetahui tingkat efisiensi hasil pengupasan alat akan dibandingkan dengan hasil pengupasan manual.

4.2.3 Langkah Pengukuran

Berikut adalah langkah-langkah dalam pengukuran kinerja alat untuk memastikan sistem berfungsi optimal dan sesuai kebutuhan otomatisasi pada pengupasan:

1. Persiapan Alat

Persiapkan seluruh komponen seperti Alat pengupas, motor AC, sensor metal touch, relay modul, pulley, dan belt telah terpasang dengan benar. Lakukan kalibrasi sensor untuk memastikan data yang diperoleh akurat.

2. Instalasi Program

Unggah Program ke dalam mikrokontroler Arduino nano pastikan Program telah benar agar Program dapat bekerja dengan benar dan sesuaikan pin data dengan benar dan pastikan Arduino nano mendapat sumber yang sesuai agar dapat bekerja dengan optimal

3. Pengumpulan Data

- a. Sensor mendeteksi sentuhan di dalam tempat yang berisiko tinggi terjadi kecelakaan kerja
- b. Motor bergerak menggerakkan pulley dan pengupas untuk bekerja mengupas kulit kopi dalam penampung

Dari kedua data yang didapat, bekerja secara bersamaan ketika alat sedang beroperasi

4. Analisis Data

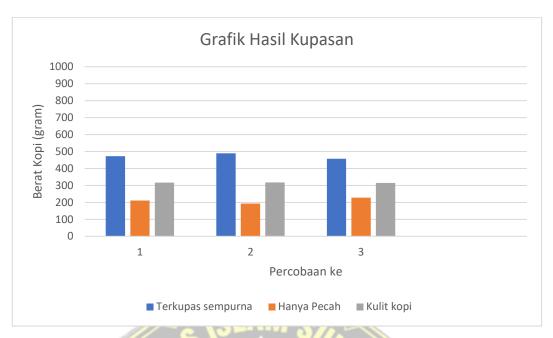
Data yang dikumpulkan dianalisis untuk mengevaluasi performa alat dalam mendeteksi kondisi hasil buah kopi yang telah dikupas secara aktual. Grafik data historis di buat dalam memahami persentase hasil buah kopi yang terkelupas.

5. Tindakan Preventif

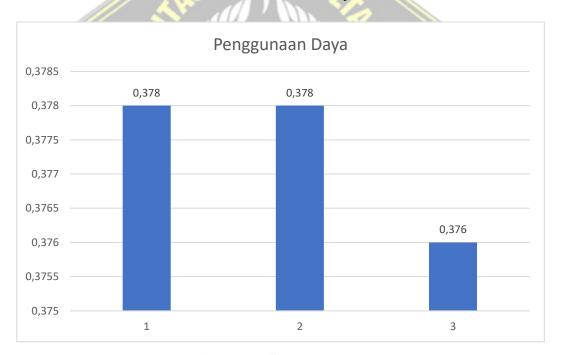
Berdasarkan hasil pemantauan, pengguna dapat mereset ulang pada tombol di box control ketika sistem keamanan bekerja guna memulai kinerja alat kembali ke keadaan awal (mati)

BAB 5. HASIL PENGUKURAN DAN ANALISIS

5.1 Analisis Hasil


Analisis hasil pengukuran pada sistem pengupas kulit kopi otomatis ini bertujuan untuk mengevaluasi apakah alat telah bekerja sesuai dengan rancangan, serta menilai efektivitasnya dari segi teknis maupun dari sisi pengguna. Analisis ini mencakup evaluasi terhadap keakuratan sensor dalam mendeteksi objek (tangan), keandalan kerja motor pengupas, kestabilan catu daya, serta kenyamanan dan kemudahan penggunaan alat berdasarkan hasil observasi langsung maupun umpan balik dari pengguna di lapangan.

5.1.1 Pengujian Alat Pengupas Kulit Kopi


Pengujian alat ini bertujuan untuk mengevaluasi tingkat efisiensi baik dari hasil pengupasan, maupun dalam konsumsi penggunaan daya listrik. Pengujian dilakukan sebanyak tiga kali dengan melakukan pengujian menggunakan 1 kg buah kopi, dengan data hasil pengujian dapat dilihat pada tabel 5.1 berikut:

Tabel 5. 1 Pengujian Alat

Pengujian	Berat	Hasil (gram)		Waktu	Daya	RPM	
ke	(gram)	Terkupas	Hanya	Kulit	(detik)	terpakai	
	\\\~~	sempurna	pecah	kopi	`//	(KVA)	
1	1000	472	211	317	14	0,378	1578
2	1000	489	193	318	14	0,378	1578
3	1000	457	228	315	14	0,376	1578
Rata-	Rata	472,6	210,6	316,7	14	0,377	1578

Gambar 5. 1 Grafik Hasil Kupasan

Gambar 5. 2 Grafik Penggunaan Daya

Pada hasil pengujian alat terlihat hasil pengupasan dengan menggunakan buah kopi seberat 1 kg akan masing-masing percobaan akan menujukan hasil yang tidak jauh berbeda. Pada percobaan pertama akan menghasilkan buah yang terkupas bersih seberat 472 gram, buah yang hanya pecah seberat 211 gram, dan kulit kopi seberat 317 gram. Pada percobaan kedua akan menghasilkan buah yang terkupas

bersih seberat 489 gram, buah yang hanya pecah seberat 193 gram, dan kulit kopi seberat 211 gram. Pada percobaan ketiga akan menghasilkan buah yang terkupas bersih seberat 457 gram, buah yang hanya pecah seberat 228 gram, dan kulit kopi seberat 315 gram. Sehingga didapat rata-rata hasil pengupasan sebagai berikut:

1. Terkupas bersih

$$Terkupas\ bersih = \frac{472 + 489 + 457}{3} = 472,66\ gram$$

$$Persentase = \frac{Terkupas\ bersih}{Berat\ kopi\ total} \times 100\%$$

$$Persentase = \frac{472,66}{1.000} \times 100\% = 47,27\%$$

2. Hanya pecah

$$Hanya\ pecah = \frac{211 + 193 + 228}{3} = 210,66\ gram$$

$$Persentase = \frac{Hanya\ pecah}{Berat\ kopi\ total} \times 100\%$$

$$Persentase = \frac{210,66}{1,000} \times 100\% = 21,06\%$$

3. Kulit kopi

$$Kulit \ kopi = \frac{317 + 318 + 315}{3} = 316,66 \ gram$$

$$Persentase = \frac{Kulit\ kopi}{Berat\ kopi\ total} \times 100\%$$

$$Persentase = \frac{316,66}{1,000} \times 100\% = 31,66\%$$

Jadi, dengan menggunakan mesin, buah kopi yang digiling seberat 1 kg akan menghasilkan rata-rata buah yang terkupas sempurna seberat 472,66 gram (47,26%), yang hanya pecah seberat 210,66 gram (21,06%), dan kulit kopi seberat 316,66 gram (31,66%).

Pada hasil pengujian alat juga terlihat bawa daya terpakai dengan tiga kali percobaan dengan hasil pada pengujian pertama didapat penggunaan dayanya sebesar 0,378 kVA, pada percobaan kedua juga menunjukkan hasil 0,378 kVA, dan pada percobaan ketiga menunjukkan hasil penggunaan daya sebesar 0,376 kVA, sehingga didapat rata-rata penggunaan dayanya.

$$Rata - rata\ penggunaan\ daya = \frac{0,378 + 0,378 + 0,376}{3} = 0,3773\ kVA$$

Jadi, daya yang terpakai rata-rata adalah sebesar 0,3773 kVA.

Pada tiga percobaan terlihat waktu yang diperlukan untuk menggiling 1 kg buah kopi terlihat konstan dengan memerlukan waktu 14 detik. Untuk penggunaan 1 jam penggiling, maka buah kopi yang dapat tergiling seberat:

$$1 jam penggunaan alat = \frac{3600}{14} = 257,14 kg$$


Jadi, dalam 1 jam penggunaan alat dapat menggiling buah kopi seberat 257,14 kg.

5.1.2 Pengujian Sensor Pengupas Kulit Kopi

Analisis hasil pengukuran pada sistem sensor pengupas kulit kopi otomatis ini bertujuan untuk mengevaluasi apakah alat telah berfungsi sesuai dengan rancangan, serta untuk menilai efektivitas sistem dari segi teknis maupun dari sudut pandang pengguna. Analisis ini mencakup evaluasi terhadap keakuratan sensor dalam mendeteksi kehadiran benda asing seperti tangan manusia, keandalan kerja motor pengupas, efisiensi pemisahan kulit dan biji, ketahanan perangkat keras, serta pengalaman pengguna berdasarkan hasil observasi langsung maupun umpan balik dari pengguna di lapangan.

Tabel 5. 2 Pengujian sensor terhadap respons motor

Percobaan ke	Sensor	Respons motor
1	Ky-036	4 detik
2	Ky-036	3 detik
3	Ky-036	3 detik

Gambar 5. 3 Grafik respons motor

Pada tiga kali percobaan terlihat waktu respons motor untuk dapat berhenti total setelah sensor tersentuh oleh tangan menunjukkan pada percobaan pertama selama 4 detik, pada percobaan kedua selama 3 detik, dan pada percobaan keetiga selama 3 detik, maka butuh waktu rata-rata untuk motor dapat berhenti total setelah sensor tersentuh tangan adalah selama:

Motor berhenti total =
$$\frac{4+3+3}{3}$$
 = 3,33 detik

Jadi, butuh sekitar 3,33 detik untuk motor dapat berhenti total setelah sensor tersentuh. Hal ini dapat terjadi karena motor terhubung ke beban yang masih menyimpan sisa energi kinetik dari proses pengupasan kulit kopi kopi.

5.1.4 Biaya Operasional dan Evaluasi Penggunaan Alat

Penting untuk mengetahui seberapa besar konsumsi energi listrik yang digunakan. Informasi ini berguna untuk menilai efisiensi energi dan menghitung biaya listrik. Untuk menghitung biaya listrik, kita perlu memahami konsep dasar energi listrik, mengonversi satuan-satuan yang diperlukan, dan kemudian menerapkan tarif listrik yang berlaku. Dalam tabel, daya listrik ditulis dalam satuan kVA (kilovolt-ampere), yang merupakan satuan daya semu. Untuk menghitung

biaya listrik, kita perlu mengubahnya menjadi kW (kilowatt), karena biaya listrik dihitung berdasarkan energi aktif dalam satuan kWh (kilowatt-jam).

Konversi ini memerlukan faktor daya (power factor). Faktor daya menyatakan seberapa efisien daya listrik digunakan. Pada motor listrik yang digunakan pada *nameplate* tertulis power factornya sebesar $\cos \varphi$ 0,92. Maka ratarata biaya yang diperlukan untuk mengoprasikan alat penggiling dengan informasi biaya yang terlihat dari gambar.

Pada gambar merupakan informasi dari PLN tentang tarif listrik rumah tangga dan bisnis per kWh untuk bulan Agustus 2025, berdasarkan keputusan pemerintah melalui kementerian ESDM. golongan tarif listrik untuk berbagai daya (450 VA, 900 VA, 1.300–2.200 VA, 3.500–5.500 VA, 6.000 VA, dan 6.600–200 kVA) dan besaran tarif dalam Rupiah per kWh untuk masing-masing golongan. bahwa tarif berbeda untuk rumah tangga bersubsidi, rumah tangga non-subsidi, dan bisnis.

Ubah satuan daya

$$kW = KVA \times \cos \varphi$$

$$kW = 0.3773 \times 0.92 = 0.3471$$

 Hitung biaya penggunaan alat dalam 1 jam dengan penggunaan daya sebesar 450 VA

$$kWh = 0.3471 \times 1 = 0.3471$$

$$Biaya = 0.3471 \times 415 = Rp. 144.35$$

Jadi, biaya yang diperlukan alat untuk beroperasi per-jamnya adalah sebesar Rp. 144,35

Evaluasi performa alat dapat diperhitungkan guna mengetahui efisiensi dengan perbandingan dalam penggunaan alat manual dengan alat yang menggunakan motor listrik maupun dengan mesin bensin.

Tabel 5. 3 Peforma alat dalam 1 jam

Metode	Hasil Produksi	Biaya Prod <mark>uksi</mark>	Biaya Produksi Per	
	Per Jam (kg)	Perjam (Rp)	kg (Rp)	
Manual	100	10.000	100	
Motor Bensin	156	1.580	10,2	
Motor AC	257,14	144	0,56	

1. Biaya Produksi Perjam

Biaya Produksi Perjam =
$$\frac{Biaya}{Waktu/Jam}$$

a. Manual = Rp 10.000 / jam

Dalam 1 Jam = 100 kg/jam.

Biaya Produksi Perjam =
$$\frac{\text{Rp.}10.000}{1 \text{ Iam}}$$
 = Rp 10.000 / jam

b. Motor bensin 0,85 HP

Dalam 1 Jam = 156 kg/jam

Konsumsi Bensin = 0,158 L/jam

Harga Bensin = Rp 10.000/L

Biaya Bahan Bakar =
$$0.158 \times 10.000 = \text{Rp } 1.580$$

Biaya Produksi Perjam =
$$\frac{\text{Rp.1.580}}{1 \text{ Jam}}$$
 = Rp 1.580 / jam

c. Motor AC (motor listrik)

Dalam 1 Jam =
$$257,14 \text{ kg/jam}$$

Biaya Produksi Perjam =
$$\frac{\text{Rp } 144,35}{1 \text{ Jam}}$$
 = Rp 144,35 / jam

2. Perhitungan Biaya Produksi Per kg

Biaya per
$$kg = \frac{Biaya \text{ produksi per jam}}{Hasil \text{ produksi per jam}}$$

a. Manual
$$=\frac{10.000}{100} = \text{Rp. } 100 \text{ /kg}$$

b. Motor Bensin =
$$\frac{1.580}{156}$$
 = Rp. 10,12 /kg

c. Motor AC =
$$\frac{144,35}{257,14}$$
 = Rp. 0,56 /kg

- 3. Perhitungan Efesiensi Biaya
 - a. Biaya Manual Terhadap Motor Bensin

Biaya per
$$kg = \frac{Biaya \text{ manual}}{Biaya \text{ motor bensin}}$$

Biaya per kg =
$$\frac{\text{Rp.100}}{\text{Rp.10.12}} = 9,88$$

Efesiensi % =
$$\left(1 - \frac{1}{9,88}\right) \times 100\%$$

$$= (1 - 0.1012) \times 100\% = 89.88\%$$

b. Biaya Manual Terhadap Motor AC

Biaya per
$$kg = \frac{Biaya manual}{Biaya motor AC}$$

Biaya per kg
$$=\frac{\text{Rp.}100}{\text{Rp.}0.56} = 178,57$$

Efesiensi % =
$$\left(1 - \frac{1}{178,57}\right) \times 100\%$$

= $(1 - 0.0056) \times 100\% = 99.44\%$

Biaya per
$$kg = \frac{Biaya motor bensin}{Biaya motor AC}$$

Biaya per kg
$$=\frac{\text{Rp.10,12}}{\text{Rp.0.56}} = 18,7$$

Efesiensi % =
$$\left(1 - \frac{1}{18,7}\right) \times 100\%$$

$$= (1 - 0.0553) \times 100\% = 94.47\%$$

Tabel 5. 4 Efesiensi Biaya

Efisiensi Biaya	Manual	Motor Bensin	Motor AC
Manual	-	89 %	99 %
Motor Bensin	89 %	-	94 %
Motor AC	99 %	94 %	-

4. Perhitungan Efesiensi Waktu

Efesiensi (%) =
$$\frac{Output A}{Output B} \times 100\%$$

a. Efisiensi Waktu Motor Bensin Dengan Manual

Efesiensi (%) =
$$\frac{156}{100} \times 100\% = 156\%$$

b. Efisiensi Waktu Motor AC Dengan Manual

Efesiensi (%) =
$$\frac{257,14}{100} \times 100\% = 257,14\%$$

c. Efesiensi Waktu Motor AC Dengan Motor Bensin

Efesiensi (%) =
$$\frac{257,14}{156} \times 100\% = 164,83\%$$

Tabel 5. 5 Efesiensi Waktu

Efisiensi Waktu	Manual	Motor Bensin	Motor AC
Manual	UNIS	156 %	257,14 %
Motor Bensin	156 %	/ جامعتنسلطان	164,83 %
Motor AC	257,14 %	164,83 %	-

5.2 Dampak Implementasi Sistem

Setelah sistem alat pengupas kulit kopi dengan sensor ky-036 (metal touch) berhasil di implementasikan pada proses pengupasan kulit kopi di Kaliwiro, Kab. Wonosobo diperoleh dampak positif di berbagai aspek. Sistem ini dirancang untuk meningkatkan efisiensi dalam proses biji kopi sebelum dijemur yang sebelumnya harus digunakan dengan alat manual sekarang bisa meningkatkan hasil produktivitas dan efisiensi waktu .Berikut merupakan dampak implementasi sistem yang dikaji dari berbagai bidang

5.2.1 Bidang Teknologi

Penerapan alat pengupas kulit kopi berbasis sistem otomatis memberikan kemajuan dalam aspek teknologi pertanian, khususnya pada sektor pasca panen. Alat ini mengintegrasikan motor penggerak dan sensor, yang mampu meningkatkan efisiensi proses pengupasan dan peningkatan keamanan dalam penggunaan alat dibandingkan dengan metode manual konvensional. Kecepatan dan kestabilan kerja mesin memungkinkan hasil yang lebih konsisten serta meminimalisir kesalahan akibat faktor manusia.

Lebih jauh, sistem ini dapat menjadi dasar pengembangan teknologi pertanian skala kecil dan menengah yang mudah diakses oleh masyarakat. Inovasi seperti ini mendorong pemanfaatan teknologi terapan secara luas di sektor agrikultur, dan membuka peluang bagi pengembangan sistem yang lebih kompleks pada masa depan.

5.2.2 Bidang Sosial

Secara sosial, kehadiran alat pengupas ini memberikan dampak positif terhadap kelompok tani atau masyarakat desa yang bergantung pada produksi kopi. Dengan berkurangnya ketergantungan pada tenaga kerja manual, proses kerja menjadi lebih ringan dan cepat, sehingga waktu yang tersedia bisa digunakan untuk aktivitas produktif lainnya. Hal ini mendukung pola kerja yang lebih efisien dan kolaboratif dalam komunitas petani.

Selain itu, penggunaan alat berbasis teknologi memperkenalkan Masyarakat terhadap mekanisasi pertanian yang sederhana namun fungsional. Masyarakat terdorong untuk belajar mengoperasikan dan merawat alat, sehingga keterampilan teknis mereka meningkat. Hal ini secara tidak langsung meningkatkan kualitas SDM di lingkungan sekitar, terutama dalam menyongsong pertanian modern berbasis teknologi.

5.2.3 Bidang Ekonomi

Dari sisi ekonomi, penggunaan alat ini memberikan efisiensi yang berdampak langsung pada pengurangan biaya operasional. Dalam jangka panjang, mesin ini mampu mempercepat proses pengupasan dan meningkatkan jumlah hasil panen yang siap jual, sehingga pendapatan petani atau pelaku usaha kopi dapat meningkat. Biaya untuk upah pekerja pengupas manual pun bisa ditekan.

Penghematan energi juga menjadi nilai tambah alat ini, mengingat konsumsi daya listriknya yang relatif rendah (0,3471 kW). Kombinasi antara efisiensi waktu dan daya listrik menjadikan alat ini sebagai investasi ekonomis yang layak untuk skala rumah tangga atau UMKM pertanian. Alat ini juga dapat mendukung model bisnis berbasis komunitas dengan sistem sewa atau bagi hasil.

5.2.4 Bidang Lingkungan

Penggunaan alat ini juga memiliki implikasi positif terhadap lingkungan. Dengan sistem kerja yang lebih terkontrol dan presisi, limbah hasil pengupasan dapat di minimalisir, dan pengelolaannya mrenjadi lebih mudah. Hal ini membantu mengurangi pencemaran lingkungan akibat sisa-sisa kulit kopi yang tercecer atau tidak dikelola secara baik.

Efisiensi energi menjadi faktor penting lain yang mendukung keberlanjutan. Karena alat ini hanya membutuhkan daya listrik rendah untuk beroperasi, maka jejak energi yang dihasilkan juga kecil. Penggunaan mesin ini mendorong pengolahan hasil pertanian yang ramah lingkungan dan mendukung prinsip pertanian berkelanjutan di tingkat lokal.

BAB 6. PENUTUP

6.1 Kesimpulan

Berdasarkan hasil perancangan, implementasi dan pengujian dari "Rancang Alat Pengupas Kulit Kopi Basah Otomatis Menggunakan *Metal Touch Sensor KY-036* Sebagai Pengaman" yang diterapkan di Kaliwiro, Kabupaten Wonosobo, dapat disimpulkan beberapa poin penting sebagai berikut:

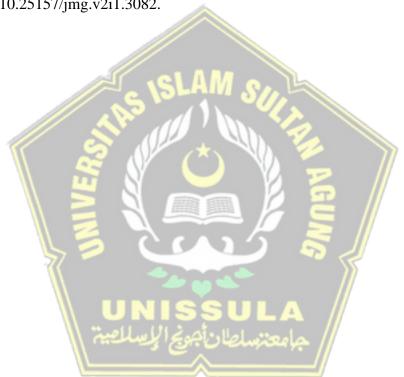
- Sistem pengupas kulit kopi basah yang dirancang menggunakan sensor KY-036 mampu bekerja secara otomatis dengan mendeteksi keberadaan objek. Sensor ini merespons sentuhan dari bagian tubuh manusia dan dapat menonaktifkan motor secara otomatis dan motor akan berhenti total dalam waktu rata-rata 3,33 detik.
- 2. Dari hasil pengujian didapatkan bahwa dengan menggunakan mesin, buah kopi yang digiling seberat 1 kg akan menghasilkan rata-rata buah yang terkupas sempurna sebanyak 47,26%. Hanya pecah sebanyak 21,06% Dan kulit kopi sebanyak 31,66%.
- Implementasi sistem ini terlihat efisien dalam penggunaan daya listrik, di mana hanya memerlukan 0,3773 kVA untuk mengoperasikan seluruh komponen dengan biaya yang diperlukan alat untuk beroperasi perjamnya adalah sebesar Rp. 144,35.
- 4. Menggunakan mesin listrik lebih efisien baik secara operasional maupun hasil produksi dibandingkan dengan penggunaan mesin bensin dan manual.
- 5. Alat ini mampu meningkatkan kualitas hasil panen, sekaligus memberikan edukasi teknologi bagi masyarakat setempat. Penerapan di wilayah Kaliwiro, Kabupaten Wonosobo menunjukkan potensi pengembangan lebih lanjut untuk sistem pascapanen serupa, guna menunjang produktivitas petani kopi lokal secara berkelanjutan.

6.2 Saran

Agar sistem ini dapat lebih optimal dan mampu menjawab tantangan di lapangan secara lebih baik kedepan dengan, beberapa saran pengembangan yang dapat dipertimbangkan adalah sebagai berikut:

- Pada sistem sumbernya catu daya cadangan seperti baterai diperlukan jika dibutuhkan opsi ketika alat jauh dari pasokan sumber listrik atau ketika terjadi pemadaman listrik.
- 2. Pada alat pengupas kulit kopi kecepatan motor ac 2760 rpm juga sebaiknya ditambahkan pengatur kecepatan agar bisa mengatur kecepatan motor ac ketika bekerja sehingga menghindari ketidaksempurnaan pengupasan.
- 3. Dalam pengembangan lebih lanjut bisa diberi tambahan sistem pengereman pada motor sehingga diharap motor bisa langsung berhenti tanpa delay bila sensor mendeteksi sentuhan.

DAFTAR PUSTAKA


- [1] S. P. Collins *et al.*, "Analisis kinerja Perdagangan Kopi," *Anal. kinerja Perdagang. Kopi*, vol. 11, p. 55, 2021.
- [2] M. Nur Kholis, "Rancang Bangun Mesin Pengupas Biji Kopi Dengan Kapasitas 60 kg/jam," vol. 6, no. 3, p. 120, 2017, [Online]. Available: https://repository.its.ac.id/51602/1/ABDUL MAJID 2111030017 %26 M NUR KHOLIS 2110030092.pdf
- [3] S. Jufri, E. Sulfiana, V. Lamba, and P. A. T. I. Makassar, "Rancang Bangun Mesin Pengupas Kulit Kopi Basah Kapasitas 120 Kg / Jam," vol. 1, 2022.
- [4] A. Sodik, K. Suharno, and S. Widodo, "Perancangan Mesin Pengupas Kopi Dengan Menggunakan Dua Rol Pengupas," *Peranc. Mesin Pengupas Kopi Dengan Menggunakan Dua Rol Pengupas*, vol. 1, no. 1, pp. 55–64, 2013, [Online]. Available: https://core.ac.uk/download/pdf/228480297.pdf
- [5] S. Marbun, B. Saragih, and Hasballah, "Rancang Bangun Mesin Pengupas Kulit Ari Biji Kopi Kapasitas 30 Kg/Jam," *J. Teknol. Mesin Uda*, vol. 2, no. 1, pp. 143–150, 2021.
- [6] M. Muryanto, E. Saputra, and T. N. Wibowo, "Rancang Bangun Mesin Pengupas Biji Kopi Basah dengan Material Baja Astm A.36," *Techno (Jurnal Fak. Tek. Univ. Muhammadiyah Purwokerto)*, vol. 24, no. 2, p. 97, 2023, doi: 10.30595/techno.v24i2.19293.
- [7] A. C. B. Sinaga, T. Hasballah, and H. Sitanggang, "Analisis Kinerja Mesin Pengupas Biji Kopi Basah Dengan Penggerak Puli Dan V-Belt," *J. Teknol. Mesin UDA*, vol. 3, no. 2, pp. 24–34, 2022, [Online]. Available: http://jurnal.darmaagung.ac.id/index.php/teknologimesin/article/view/1752
- [8] P. G. Sihombing, "Teknologi Proses Pembuatan Mesin Pengupas Kulit Ari Kopi Kering Dengan Kapasitas 100 Kg / Jam Skripsi," p. 58, 2022.
- [9] E. Budiyanto, L. D. Yuono, and A. Farindra, "Upaya Peningkatan Kualitas dan Kapasitas Produksi Mesin Pengupas Kulit Kopi Kering," *Turbo J. Progr. Stud. Tek. Mesin*, vol. 8, no. 1, 2019, doi: 10.24127/trb.v8i1.926.
- [10] R. Dermawan and V. Hadi, "Pengembangan Mesin Pengupas Kulit Kopi Menggunakan Metode VDI 2221," *Presisi*, vol. 24, no. 2, pp. 55–63, 2022, [Online]. Available: https://ejournal.istn.ac.id/index.php/presisi/article/view/1323

- [11] D. K. vanantius Kelik, Hengky, "Perancangan Mesin Pengupas Dan Pemisah Kulit Buah Kopi Kering," *Peranc. Mesin Pengupas Dan Pemisah Kulit Buah Kopi Kering*, vol. 05, pp. 64–70, 2016.
- [12] A. F. Amran, A. P. Munir, and L. A. Harahap, "Rancang Bangun Alat Pengupas Kulit Tanduk Kopi Mekanis," *Keteknikan Pertan. J.Rekayasa Pangan dan Pert*, vol. 5, no. 1, pp. 149–155, 2017.
- [13] M. P. Sirappa, R. Heryanto, and Y. R. Silitonga, "Standardisasi Pengolahan Biji Kopi Berkualitas," *War. BSIP Perkeb.*, vol. 2, no. 1, pp. 18–25, 2024.
- [14] A. R. Paliling, "Basah Bertenaga Motor Listrik Ac Berbasis Panel Surya Bertenaga Motor Listrik Ac Berbasis Panel," 2023.
- [15] A. Jha, L. Lin, S. M. Short, G. Argentini, G. Gamhewage, and E. Savoia, "Integrating emergency risk communication (ERC) into the public health system response: Systematic review of literature to aid formulation of the 2017 WHO Guideline for ERC policy and practice," *PLoS One*, vol. 13, no. 10, pp. 1–23, 2018, doi: 10.1371/journal.pone.0205555.
- [16] S. Srikandi, A. W. Kristanti, and R. Sutamihardja, "Tingkat Kematangan Biji Kopi Arabica (Coffea arabica L.) Dalam Menghasilkan Kadar Kafein," *J. Sains Nat.*, vol. 9, no. 1, p. 22, 2019, doi: 10.31938/jsn.v9i1.189.
- [17] C. Harahap, D. Despa, and L. Afriani, "Pengendalian Kecepatan Motor Induksi Dengan Cycloconverter Menggunakan Vector Control Dengan Filter Hybrid," *J. Profesi Ins. Univ. Lampung*, vol. 5, no. 2, pp. 7–15, 2024, doi: 10.23960/jpi.v5n2.132.
- [18] M. Enanya, F. Abdel-Kader, N. Elsonbaty, and H. Abdo, "Comparative Study of Induction Motor De-Rating Factors," *Egypt. Int. J. Eng. Sci. Technol.*, vol. 22, no. EIJEST, Vol. 22, 2017, pp. 35–42, 2017, doi: 10.21608/eijest.2017.97192.
- [19] H. Al-Mimi, A. Al-Dahoud, M. Fezari, and M. Sh Daoud, "A Study on New Arduino NANO Board for WSN and IoT Applications," *Int. J. Adv. Sci. Technol.*, vol. 29, no. 4, pp. 10223–10230, 2020.
- [20] R. Electronics, "Metal Touch Sensor Module," *Pengguna. Met. Touch Sens.*, vol. 13, p. 3, 2025.
- [21] A. S. Pramudyo and P. Pakpahan, "Rancang Bangun Pengendali Adaptif Untuk Menjaga Stabilitas Jaringan Akibat Beban Lebih Peralatan Listrik Rumah Tangga," *PROtek J. Ilm. Tek. Elektro*, vol. 3, no. 1, 2016, doi: 10.33387/protk.v3i1.34.
- [22] D. Alexander and O. Turang, "Pengembangan Sisrem Relay Pengenadalian Dan Penghematan Pemakaian Lampu," *Semin. Nas. Inform.*, vol. 2015, no.

November, pp. 75–85, 2015.

- [23] G. S. A. Putra, A. Nabila, and A. B. Pulungan, "Power Supply Variabel Berbasis Arduino," *JTEIN J. Tek. Elektro Indones.*, vol. 1, no. 2, pp. 139–143, 2020, doi: 10.24036/jtein.v1i2.53.
- [24] J. W. Simatupang *et al.*, "Lampu Led Sebagai Pilihan Yang Lebih Efisien Untuk Lampu Utama Sepeda Motor," *J. Kaji. Tek. Elektro*, vol. 6, no. 1, pp. 20–26, 2022, doi: 10.52447/jkte.v6i1.4434.

[25] A. Herdiana, "Analisis Sabuk V Dan Pulley Pada Mesin Pencacah Plastik Kapasitas 25 Kg/Jam," *J. Mesin Galuh*, vol. 2, no. 1, pp. 13–18, 2023, doi: 10.25157/jmg.v2i1.3082.

