LAPORAN TUGAS AKHIR

PERANCANGAN MEJA KERJA PENGELASAN PADA AKTIVITAS PRAKTIKUM PROSES MANUFAKTUR DENGAN METODE KANSEI ENGINEERING DAN PENDEKATAN ERGONOMI DI LABORATORIUM PROSES MANUFAKTUR TEKNIK INDUSTRI UNISSULA

Disusun Untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Sarjana Strata Satu (S1) Pada Program Studi Teknik Industri Fakultas Teknologi Industri Universitas Islam Sultan Agung Semarang

Disusun Oleh:

Fahmi Faisal Thoriqi 31602000029

PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM SULTAN AGUNG SEMARANG 2025

FINAL PROJECT

DESIGN OF WELDING WORK BENCHES FOR MANUFACTURING PROCESS LABORATORY ACTIVITIES USING THE KANSEI ENGINEERING METHOD AND ERGONOMIC APPROACH AT THE MANUFACTURING PROCESS LABORATORY OF THE INDUSTRIAL ENGINEERING DEPARTMENT, UNISSULA

Proposed to complete the requirement to obtain a bachelor's degree (S1) at Department of industrial Engineering, Faculty of Industrial Technology,

University Islam Sultan Agung Semarang

Arranged by:

Fahmi Faisal Thoriqi 31602000029

DEPARTEMENT OF INDUSTRIAL ENGINEERING FACULTY OF INDUSTRIAL TECHNOLOGY SULTAN AGUNG ISLAMIC UNIVERSITY SEMARANG

2025

LEMBAR PENGESAHAN PEMBIMBING

Laporan Tugas Akhir dengan judul "PERANCANGAN MEJA KERJA PENGELASAN PADA AKTIVITAS PRAKTIKUM PROSES MANUFAKTUR DENGAN METODE KANSEI ENGINEERING DAN PENDEKATAN ERGONOMI DI LABORATORIUM PROSES MANUFAKTUR TEKNIK INDUSTRI UNISSULA" ini disusun oleh :

Nama : Fahmi Faisal Thoriqi

NIM : 31602000029 Program Studi : Teknik Indsutri

Telah disahkan oleh dosen pembimbing pada:

Hari

Tanggal

Menyetujui,

Dosen Pembimbing

Rieska Ernawati, ST., MT

NIK. 210-221-096

Mengetahui,

Ketua Program Studi Teknik Industri

Wiwiek Fatmawati, ST., M.Eng

NIK. 210-600-021

LEMBAR PENGESAHAN PENGUJI

Laporan Tugas Akhir dengan judul "PERANCANGAN MEJA KERJA PENGELASAN PADA AKTIVITAS PRAKTIKUM PROSES MANUFAKTUR DENGAN METODE KANSEI ENGINEERING DAN PENDEKATAN ERGONOMI DI LABORATORIUM PROSES MANUFAKTUR TEKNIK INDUSTRI UNISSULA" ini telah dipertahankan didepan dosen penguji Tugas Akhir pada :

Hari :

Tanggal

TIM PENGUJI

Anggota Penguji 1

Anggota Penguji 2

Muhammad Sagaf, ST., MT

NIK. 210-621-055

Dana Prianjani, ST., MT

NIK. 06-2601-9302

Ketua Tim Penguji

Muhammad Sagaf, ST., MT

NIK. 210-621-055

SURAT PERNYATAAN KEASLIAN TUGAS AKHIR

Yang bertanda tangan dibawah ini:

Nama : Fahmi Faisal Thoriqi

NIM : 31602000029

Judul Tugas Akhir : PERANCANGAN MEJA KERJA PENGELASAN

PADA AKTIVITAS PRAKTIKUM PROSES MANUFAKTUR DENGAN METODE *KANSEI ENGINEERING* DAN PENDEKATAN ERGONOMI DI LABORATORIUM PROSES MANUFAKTUR TEKNIK

INDUSTRI UNISSULA

Dengan bahwa ini saya menyatakan bahwa judul dan isi Tugas Akhir yang saya buat dalam rangka menyelesaikan Pendidikan Strata Satu (S1) Teknik Industri tersebut adalah asli dan belum pernah diangkat, ditulis ataupun dipublikasikan oleh siapapun baik keseluruhan maupun sebagian, kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka, dan apabila di kemudian hari ternyata terbukti bahwa judul Tugas Akhir tersebut pernah diangkat, ditulis ataupun dipublikasikan, maka saya bersedia dikenakan sanksi akademis. Demikian surat pernyataan ini saya buat dengan sadar dan penuh tanggung jawab.

Semarang, Agustus 2025

Yang Menyatakan

Fahmi Faisal Thoriqi

PERNYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH

SayabYang bertanda tangan dibawah ini:

Nama : Fahmi Faisal Thoriqi

NIM : 31602000029

Program Studi : Teknik Industro Fakultas : Teknologi Industri

Alamat Asal : Desa Kembang 05/02, Dukuhseti, Pati, Jawa Tengah

Dengan ini menyatakan Karya Ilmiah Berupa Tugas Akhir dengan judul:

"Perancangan Meja Kerja Pengelasan Pada Aktivitas Praktikum Proses Manufaktur Dengan Metode Kansei Engineering Dan Pendekatan Ergonomi Di Laboratorium Proses Manufaktur Teknik Industri Unissula"

Menyetujui merupakan hak milik Universitas Islam Sultan Agung serta memberikan Hak Bebas Royalti Non-Ekslusif untuk disimpan, dialih mediakan, dikelola dan pangkalan data publikasi di internet dan media lain untuk kepentingan akademis selama tetap menantumkan nama penulis sebagaihak milik pencipta. Pernyataan ini saya buat sungguh-sungguh, apabila kemudian nanti terbukti ada pelanggaran Hak Cipta / Plagiarisme dan Karya Ilmiah inim maka segala bentuk tuntutan hukum yang akan timbul saya akan tanggung jawab secara pribadi tanpa melibatkan Universitas Islam Sultan Agung.

Semarang, Agustus 2025

Yang Menyatakan

Fahmi Faisal Thorigi

HALAMAN PERSEMBAHAN

Alhamdulillahhi Robbil Allamin.

Segala puji syukur bagi Allah SWT yang telah melimpahkan segala rahmatnya sehingga saya bisa menyelesaikan laporan tugas akhir saya dengan baik. Karya ini saya persembahkan untuk :

Kedua orang tua saya yaitu Ayah dan Bunda tercinta ananda ber-terimakasih banyak atas dukungan dan pengorbanannya yang sudah memberikan cinta dan kasih sayang yang tulus beserta doa yang tak akan pernah ananda lupakan

Ucapan rasa terimakasih tidak lupa saya ucapkan kepada teman teman saya baik teman satu kampus dan satu fakultas saya maupun teman saya yang berada di luar kampus yang sudah memberikan dukungan dan juga doa kepada saya agar bisa menyelesaikan laporan tugas akhir ini dengan baik

Terimakasih pula tidak lupa saya ucapkan kepada semua Dosen dan juga aktivis
Fakultas Teknologi Industri Unissula yang sudah membentu dan juga
membimbing saya selama saya menimba ilmu di dunia perkuliahan ini, Semoga
anda semua senantiasa dalam ridho Allah SWT serta diberi kebahagian di dunia
dan akhirat.

HALAMAN MOTTO

"Allah tidak membebani seseorang melainkan sesuai dengan kesanggupannya" (QS. Al-Baqarah: 286)

"Karena sesungguhnya sesudah kesulitan itu ada kemudahan. Sesungguhnya sesudah kesulitan itu ada kemudahan"

(Q.S Al- Insyirah: 5-6)

"Pada akhirnya takdir Allah selalu baik, walaupun terkadang perlu air mata untuk menerimanya"

(Umar Bin Khattab)

"It does not matter how slowly you go as long as you do not stop." (Tidak masalah seberapa lambat kamu berjalan selama kamu tidak berhenti.)

(Kong Qiu)

KATA PENGANTAR

Assalamualaikum Wr. Wb.

Dengan mengucapkan puji dan syukur kehadirat kepada Allah SWT atas segala rahmat, karunia, taufiq dan hidayah-Nya, sehingga saya dapat menyelesaikan laporan Tugas Akhir dengan judul "PERANCANGAN MEJA KERJA PENGELASAN PADA AKTIVITAS PRAKTIKUM PROSES MANUFAKTUR DENGAN METODE *KANSEI ENGINEERING* DAN PENDEKATAN ERGONOMI DI LABORATORIUM PROSES MANUFAKTUR TEKNIK INDUSTRI UNISSULA". Tidak lupa sholawat serta salam semoga selalu tercurah kepada Nabi kita Nabi Muhammad SAW.

Selama penyusunan Laporan Tugas Akhir ini, banyak bantuan seperti bimbingan, motivasi, saran dan doa yang saya dapatkan dari berbagai pihak. Oleh karena itu, pada kesempatan ini dengan segenap kerendahan hati, tak lupa penulis sampaikan rasa hormat dan terima kasih yang mendalam kepada:

- 1. Allah SWT atas segala karunia-Nya hingga Laporan Tugas Akhir ini dapat diselesaikan.
- Bapak dan Ibu saya, terima kasih atas semua pengorbanan, dukungan, semangat dan doa-doa yang setiap hari dipanjatkan. Semoga seluruh pengorbanan bapak dan ibu untuk saya dibalas dengan kebaikan dan keberkahan dari Allah SWT. Aamiin.
- 3. Ibu Dr.Novi Marlyana ST., MT selaku Dekan di Fakultas Teknologi Industri.
- 4. Ibu Wiwiek Fatmawati. ST., M.Eng selaku Ketua Program Studi Teknik Industri.
- Ibu Rieska Ernawati, ST.,MT. selaku dosen pembimbing yang telah memberikan banyak masukan, bimbingan, serta saran. Mohon maaf atas segala kesalahan, kekhilafan dan keterbatasan yang saya miliki.
- 6. Tim Penguji selaku dosen penguji yang bersedia memberi masukan berupa saran dan kritik untuk memperbaiki penyusunan laporan tugas akhir.
- 7. Bapak Ibu Dosen Teknik Industri Universitas Islam Sultan Agung yang telah membimbing dan mengajar selama perkuliahan.

- 8. Bapak Akhmad Syakhroni, ST., M.Eng selaku Kepala Laboratorium Teknik Industri UNISSULA.
- 9. Teman-teman yang selalu ada pertama kali dalam waktu suka maupun duka. Terima kasih untuk segalanya, untuk semua semangat, motivasi, bantuan, dan doa yang telah kalian diberikan. Bagiku sungguh sangat istimewa dan luar biasa. Meskipun kita tidak bisa wisuda bersama-sama, namun ku berjanji untuk dapat selalu membantu sebisa mungkin. Semoga tali persaudaraan ini tak lekang oleh waktu dan semoga kita sukses selalu dalam mengejar mimpi kita masing-masing. Amin, Barakallah.
- Serta semua pihak yang telah membantu dalam penyusunan Laporan Tugas Akhir ini.

Penulis menyadari bahwa masih terdapat banyak kekurangan dalam laporan Tugas Akhir ini, oleh karena itu kritik dan saran dari pembaca masih sangat diharapkan. Penulis berharap semoga laporan Tugas Akhir ini dapat dikembangkan kembali dan bermanfaat bagi banyak orang. Aamiin.

Wassalamu'alaikum. Wr. Wb.

Semarang, Agustus 2025 Yang Menyatakan,

Penulis

DAFTAR ISI

HALAM	AN JUDUL	.i
FINAL I	ROJECT	ii
LEMBA	R PENGESAHAN PEMBIMBINi	ii
LEMBA	R PENGESAHAN PENGUJI	V
SURAT	PERNYATAAN KEASLIAN TUGAS AKHIR	v
PERNY	TAAAN PERSETUJUAN PUBLIKASI KARYA ILMIAHv	'n
HALAM	AN PERSEMBAHANv	ii
	AN MOTTOvi	
KATA P	ENGANTAR	iii
	R ISI	
	R TABELx	
DAFTAI	R GAMBARxv	 111
DAFTAI	RNLAMPIRANx	X
	хх	
	CTx	
BAB I P	ENDAHULUA <mark>N</mark>	1
1.1	Latar Belakang	1
1.2	Perumusan Masalah	3
1.3	Pembatasan Masalah	3
1.4	Tujuan Penelitian	4
1.5	Manfaat Penelitian	4
1.6	Sistematika Penulisan	5
BAB II	TINJAUAN PUSTAKA DAN LANDASAN TEORI	7
2.1	Tinjauan Pustaka	7
2.2	Landasan Teori	36
	2.2.1 Meja Kerja	36
	2.2.2 Meja Kerja Praktikum Pengelasan	37
	2.2.3 Kansei Engineering	39
	2.2.4 Ergonomi	14

		2.2.5 A	ntropometri	. 45
	2.3	Hipotesi	s dan Kerangka Teoritis	. 50
		2.3.1 H	ipotesis	. 50
		2.3.2 K	erangka Teoritis	. 52
BA	B III	METOD	E PENELITIAN	. 53
	3.1	Pengum	pulan Data	. 53
	3.2	Teknik F	Pengumpulan Data	. 53
	3.3	Pengujia	n Hipotesa	. 53
	3.4	Metode	Analisis	. 54
	3.5	Pembaha	asan	. 54
	3.6	Penarika	n Kesimpulan	. 54
	3.7	Flowcha	urt Penelitian	. 54
BA	B IV	HASIL P	PENELITIAN DAN PEMBAHASAN	. 56
	4.1.	Pengum	pulan Data	. 56
	4.2.	Peneliti	an Awal	. 56
	4.3.	Penyusi	unan <mark>K</mark> uesioner	. 57
		4.3.1 I	Penen <mark>tu</mark> an <i>Ka<mark>nsei</mark> Word</i> 57	5
		4.3.2	Penyus <mark>unan Evalua</mark> si Semantic Differential	. 60
	4.4	Data Ha	nsil Rekap Kuesioner Semantic Differential	. 61
	4.6	Uji Vali	ditas	. 64
	4.7	Uji Rea	libilitas	. 65
	4.8	Analisa	Faktor	. 66
	4.9	Konsep	Desain Alternatif dan Spesifikasi	. 67
	4.10) Pemilil	nan Konsep Desain	. 69
	4.11	Data H	asil Rekap Kuesioner Atribut Bobot	. 70
	4.12	. Gamba	r Detail Konsep Desain Terpilih	. 74
	4.13	Pengun	npulan Data Antropometri	. 76
	4.14	Penguk	turan Antropometri Statis dan Dinamis 30 Sampel	. 78
	4.15	Uji Ke	cukupan, Uji Keseragaman, Perhitungan Persentil	. 80
		4.15.1	Uji kecukupan data	. 80
		4.15.2	Uji Keseragaman Data	. 92

	4.15.3	Perhitungan Data Persenti	102	
	4.15.4	Perhitungan Data Persentil	107	
	4.15.5	Gambar Desain	108	
	4.15.6	Detail Komponen Penyusun Produk	108	
	4.15.7	Bill Of Material	114	
	4.15.8	Operation Process Chart (OPC)	115	
	4.15.9	Flow Process Chart (FPC)	117	
	4.15.10	Assembly Process Chart (APC)	119	
BAB V	KESIMP	ULAN & SARAN	120	
5.1	Kesimp	ulan	120	
5.2	Saran	SLAW S	121	
DAFTA	DAFTAR PUSTAKA120			

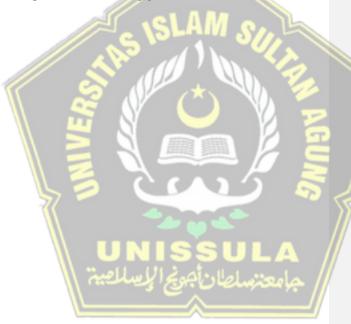
DAFTAR TABEL

Tabel 2. 1 Literatur Review	•••••		•••••	1
Tabel 2. 2 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 3 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 4 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 5 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 6 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 7 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 8 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 9 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 10 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 11 Literatur Review	.Kesalahan!	Bookmark	tidak	<mark>ditentuk</mark> ar
Tabel 2. 12 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 13 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 14 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 15 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 16 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 17 Literatur Re <mark>view</mark>	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 18 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 19 Literatur Review	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 20 Antropometri Statis				4
Tabel 2. 21 Antropometri Statis	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 22 Antropometri Statis	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 2. 23 Antropometri Dinamis	•••••		•••••	4
Tabel 2. 24 Tabel Perhitungan Persentil	•••••		•••••	5
Tabel 4. 1 Hasil Kuesioner Responden				5
Tabel 4. 2 Pengumpulan Kansei Word	•••••	••••••	•••••	5
Tabel 4. 3 Pengumpulan Kansei Word	.Kesalahan!	Bookmark	tidak	ditentukar
Tabel 4. 4 Pengelompokkan Kansei Word	bernilai sam	ıa	•••••	5
Tabel 4. 5 Pengelompokkan Kansei Word	bernilai sam	aKesalahan	1!	Bookmar
tidak ditentukan.				

Tabel 4. 6 Penetapan Elemen Desain Berdasarkan Kansei Word
Tabel 4. 7 Penetapan Elemen Desain Berdasarkan Kansei Word Kesalahan!
Bookmark tidak ditentukan.
Tabel 4. 8 Kuesioner Evaluasi Kansei Word dengan Menggunakan Possitive Word
dan Negative Word
Tabel 4. 9 Kuesioner Evaluasi Kansei Word dengan Menggunakan Possitive Word
dan Negative WordKesalahan! Bookmark tidak ditentukan.
Tabel 4. 10 Penjelasan Kansei Possitive Word dan Negative Word
Tabel 4. 11 Rekapapitulasi Kuesioner Semantic Differential
Tabel 4. 12 Rekapitulasi Kuesioner Semantic Differential.Kesalahan! Bookmark
tidak ditentukan.
Tabel 4. 13 Rekapitulasi Data Kuesioner Semantic Differential
Tabel 4. 14 Rekapitu <mark>lasi</mark> Data Ku <mark>esione</mark> r <i>Semantic Differential</i> Kes <mark>alah</mark> an!
Bookmark tidak ditentukan.
Tabel 4. 15 Uji Valid <mark>it</mark> as Iterasi <mark>Per</mark> tama64
Tabel 4. 16 Uji Valid <mark>ita</mark> s Iteras <mark>i Per</mark> tamaKesalahan! Bookmark tidak ditentuk <mark>an</mark> .
Tabel 4. 17 Uji Validit <mark>as</mark> Iteras <mark>i Ked</mark> ua
Tabel 4. 18 Uji Hasil Uj <mark>i R</mark> ealib <mark>ilitas66</mark>
Tabel 4. 19 Uji KMO dan Bartlett's66
Tabel 4. 20 Hasil Uji MSA66
Tabel 4. 21 Hasil Uji MSAKesalahan! Bookmark tidak ditentukan.
Tabel 4. 22 Kuesioner penentuan bobot atribut desain dengan mengalokasikan nilai
100% kedalam kolom bobot
Tabel 4. 23 Kuesioner penentuan rating atribut yang terdapat pada konsep desain
dengan pengisian rating 1-5
Tabel 4.24 Rekap Kuesioner untuk Mengetahui Bobot Atribut dalam
mengalokasikan nilai 100%
Tabel 4.25 Rekap Kuesioner untuk Mengetahui Bobot Atribut dalam
mengalokasikan nilai 100%Kesalahan! Bookmark tidak ditentukan.
Tabel 4.26 Rekap Kuesioner untuk Mengetahui Rating Atribut Konsep Desain 1

Tabel 4.27 Rekap Kuesioner untuk Mengetahui Rating Atribut Konsep Desain 1
Tabel 4. 28 Rekap Kuesioner untuk Mengetahui Rating Atribut Konsep Desain 2
Tabel 4. 29 Rekap Kuesioner untuk Mengetahui Rating Atribut Konsep Desain 2
Tabel 4. 30 Pengolahan Data Seleksi Konsep
Tabel 4. 31 Pengolahan Data Seleksi KonsepKesalahan! Bookmark tidak
ditentukan.
Tabel 4. 32 Pengukuran Antropometri
Tabel 4. 33 Pengukuran AntropometriKesalahan! Bookmark tidak ditentukan.
Tabel 4. 34 Data Antropometri
Tabel 4. 35 Uji Kecukupan Data Antropometri Tinggi Badan Tegak80
Tabel 4. 36 Uji Kecukupan Data Antropometri Tinggi Badan Tegak Kesalahan!
Bookmark tidak ditentukan.
Tabel 4. 37 Uji Kecukupan Data Antropometri Tinggi mata berdiri
Tabel 4. 38 Uji Kecukupan Data Antropometri Tinggi mata berdiri Kesalahan!
Bookmark tidak ditentukan.
Tabel 4. 39 Uji Kecukupan Data Antropometri Tinggi bahu berdiri
Tabel 4. 40 Uji Kecukupan Data Antropometri Tinggi bahu berdiri Kesalahan!
Bookmark tidak ditentukan.
Tabel 4. 41 Uji Kecukupan Data Antropometri Tinggi pinggang berdiri 85
Tabel 4. 42 Uji Kecukupan Data Antropometri Tinggi pinggang berdiri Kesalahan!
Bookmark tidak ditentukan.
Tabel 4. 43 Uji Kecukupan Data Antropometri Jangkaauan Tangan Ke Depan 87
Tabel 4. 44 Uji Kecukupan Data Antropometri Jangkaauan Tangan Ke Depan
Tabel 4. 45 Uji Kecukupan Data Antropometri Jangkaauan Tangan ke Atas 89
Tabel 4. 46 Uji Kecukupan Data Antropometri Rentangan Tangan
Tabel 4. 47 Uji Kecukupan Data Antropometri Rentangan Tangan Kesalahan!
Bookmark tidak ditentukan

Fabel 4. 48 Rekapitulasi Hasil Uji Kecukupan Data Antropometri 92
Tabel 4. 49 Rekapitulasi Hasil Uji Keseragaman Data Antropometri102
Tabel 4. 50 Rekapitulasi Hasil Uji Keseragaman Data Antropometri Kesalahan!
Bookmark tidak ditentukan.
Tabel 4. 51 Rekapitulasi Persentil Data Antropometri 107
Tabel 4. 52 Hasil Ukuran Rancangan
Tabel 4. 53 Komponen yang Dibuat dan Dibeli
Tabel 4. 54 Part List112
Tabel 4. 55 Part ListKesalahan! Bookmark tidak ditentukan.
Tabel 4. 56 Part ListKesalahan! Bookmark tidak ditentukan.
Tabel 4. 57 Bill Of Material114
Tabel 4. 58 <i>Bill Of Mater<mark>ial</mark></i> Kesalahan! Bookmark tidak <mark>ditentuk</mark> an.
Tabel 4. 59 Operation Process Chart116
Tabel 4. 60 Flow Process Chart118



DAFTAR GAMBAR

Gambar 1.1 Praktikum Proses Manufaktur Teknik Industri UNISSULA	2
Gambar 1.2 Hasil Kuesioner	3
Gambar 2.1 Antropometri dimensi tubuh	46
Gambar 2.2 Kerangka Teoritis	52
Gambar 3.1 Diagram Alir	55
Gambar 4.1 Konsep Desain Pertama	68
Gambar 4.2 Konsep Desain Kedua	69
Gambar 4.3 Konsep Desain Terpilih (Konsep Desain 2)	75
Gambar 4.4 Kerangka Meja	
Gambar 4.5 Tiang cekam	
Gambar 4.6 Alas meja	7 6
Gambar 4.7 Rak Penyimpanan	76
Gambar 4.8 Roda Karet	76
Gambar 4.9 Grafik <mark>Uji K</mark> eser <mark>agam</mark> an Data Tinggi Badan Tegak	94
Gambar 4.10 Grafik U <mark>ji</mark> Kese <mark>ragam</mark> an Data Tinggi Mata Berdiri	95
Gambar 4.11 Grafik Uj <mark>i Keseragam</mark> an Data Tinggi Bahu Berdiri	96
Gambar 4.12 Grafik Uji Keseragaman Data Tinggi Pinggang Berdiri	98
Gambar 4.13 Grafik Uji K <mark>es</mark> eragaman Data Jangkauan Tangan ke Depan	99
Gambar 4.14 Grafik Uji Ke <mark>se</mark> ragam <mark>an D</mark> at <mark>a Jangkauan Tangan ke Atas</mark>	. 100
Gambar 4.15 Grafik Uji Kes <mark>er</mark> agaman Data Rentangan Tangan	. 101
Gambar 4.16 Gambar Desain Produk	. 108
Gambar 4.17 Gambar Tampak Depan	. 108
Gambar 4.18 Gambar Tampak Belakang	. 109
Gambar 4.19 Gambar Tampak Kanan	. 109
Gambar 4.20 Gambar Tampak Kiri	110
Gambar 4.21 Gambar Tampak Isometrik	110
Gambar 4.22 Bill Of Material	114
Gamhar 4.23 Assembly Process Chart	119

DAFTAR LAMPIRAN

Lampiran 1 : Survei Keluhan Pada Fisik Praktikan	124
Lampiran 2 : Survei Kansei Words	125
Lampiran 3 : Kuesioner Semantic Differential Meja Kerja Pengelasan	126
Lampiran 4 : Kuesioner Atribut	127
Lampiran 5 : Dokumentasi	128
Lampiran 7: Makalah	129
Lampiran 8: Hasil Turnitin	139
Lampiran 9: Lembar Logbook dan Revisi Penguji	141

ABSTRAK

Dikomentari [MS1]: Baca panduan TA dg baik, bagaimana cara penulisan abstrak yg benar. Ukuran font, spasi dll

Praktikum proses manufaktur, khususnya pada modul pengelasan, di Laboratorium Teknik Industri Universitas Islam Sultan Agung sering kali dilakukan dengan meja kerja yang belum memenuhi standar kenyamanan dan ergonomi. Kondisi ini akan berpotensi mengalami keluhan muskuloskeletal mahasiswa. Dari hasil survei menggunakan kuesioner Nordic Body Map menunjukkan adanya keluhan nyeri pada punggung, leher, kaki, lengan atas, lengan bawah, dan pergelangan tangan. Kondisi ini diperburuk oleh fasilitas meja kerja pengelasan yang kurang sesuai dengan prinsip ergonomi, sehingga diperlukan perancangan ulang yang mampu mengakomodasi kebutuhan pengguna serta meningkatkan kenyamanan dan keselamatan kerja. Penelitian ini bertujuan untuk merancang meja kerja pengelasan ergonomis yang sesuai dengan preferensi emosional mahasiswa menggunakan metode Kansei Engineering dan pendekatan ergonomi. Tahapan penelitian meliputi identifikasi masalah melalui observasi dan kuesioner, penentuan kansei words, penyusunan dan pengujian kuesioner semantic differential, analisis faktor, perancangan konsep desain, serta pengukuran antropometri 30 responden untuk menentukan dimensi optimal. Validasi dilakukan melalui uji validitas, reliabilitas, serta perhitungan persentil untuk memastikan kesesuaian dimensi dengan populasi pengguna. Hasil penelitian menghasilkan konsep meja kerja pengelasan yang mengutamakan kenyamanan, keamanan, kemudahan penggunaan, dan efisiensi. Dimens<mark>i meja</mark> disesuaikan dengan data antropometri mahasiswa, dilengkapi fitur seperti rak penyimpanan, tiang cekam, dan roda karet untuk mobilitas. Pemilihan desain akhir didasarkan pada bobot atribut dan penilaian responden, dengan hasil desain yang mampu mengurangi risiko postur kerja membungkuk serta meminimalkan potensi cedera MSDs. Desain ini diharapkan dapat meningkatkan kenyamanan, keselamatan, dan produktivitas praktikan, serta menjadi referensi pengembangan fasilitas praktikum yang ergonomis di masa mendatang.

Kata Kunci: Ergonomi, Kansei Engineering, Meja Kerja Pengelasan

ABSTRACT

Manufacturing process practicums, particularly in the welding module, at the Sultan Agung Islamic University Industrial Engineering Laboratory are often conducted using workbenches that do not meet comfort and ergonomic standards. This condition has the potential to cause musculoskeletal complaints among students. The results of a survey using the Nordic Body Map questionnaire showed complaints of pain in the back, neck, legs, upper arms, forearms, and wrists. This condition is exacerbated by welding workbench facilities that are not in accordance with ergonomic principles, thus requiring a redesign that can accommodate user needs and improve work comfort and safety. This study aims to design an ergonomic welding workbench that suits students' emotional preferences using the Kansei Engineering method and an ergonomic approach. The research stages included problem identification through observation and questionnaires, determination of Kansei words, preparation and testing of semantic differential questionnaires, factor analysis, design concept development, and anthropometric measurements of 30 respondents to determine the optimal dimensions. Validation was carried out through validity and reliability tests, as well as percentile calculations to ensure the suitability of the dimensions for the user population. The results of the study produced a welding workbench concept that prioritizes comfort, safety, ease of use, and efficiency. The dimensions of the table are adjusted to the anthropometric data of students and equipped with features such as storage shelves, clamping poles, and rubber wheels for mobility. The final design selection was based on attribute weights and respondent assessments, with the resulting design capable of reducing the risk of hunched work postures and minimizing the potential for MSDs. This design is expected to improve the comfort, safety, and productivity of practitioners, as well as serve as a reference for the development of ergonomic practicum facilities in the future.

Keywords: Ergonomic, Kansei Engineering, Welding Workbench

BAB I PENDAHULUAN

1.1 Latar Belakang

Gangguan Muskuloskeletal merupakan istilah umum untuk berbagai kondisi yang mempengaruhi otot, tendon, ligamen, tulang, saraf, dan struktur pendukung lainnya di seluruh tubuh. Kondisi ini dapat menyebabkan nyeri, kekakuan, kelemahan, dan keterbatasan gerak (Tarwaka, 2004).

(NIOSH, 1997) menjelaskan bahwa keluhan muskuloskeletal adalah keluhan yang berada pada bagian otot skeletal atau otot rangka yang dirasakan oleh seseorang mulai dari keluhan sangat ringan hingga sangat sakit. Apabila otot menerima beban statis secara berulang dan dalam jangka waktu cukup lama maka akan dapat menyebabkan keluhan berupa kerusakan pada sendi, ligamen dan tendon. Faktor penyebab terjadinya keluhan muskuloskeletal adalah peregangan otot yang berlebihan, aktivitas berulang, sikap kerja tidak alamiah, penyebab sekunder dan penyebab kombinasi (Tarwaka, 2004). Studi tentang muskuloskeletal pada berbagai jenis industri telah banyak dilakukan dan hasil studi menunjukkan bahwa bagian otot yang sering dikeluhkan adalah otot rangka yang meliputi otot leher, bahu, lengan, tangan, jari, punggung, pinggang, dan otot bagian bawah (Tarwaka, 2004). Dari berbagai macam penelitian tersebut dapat diketahui keluhan penyakit yang sering diderita oleh pekerja adalah WMSDs (Work Related Musculoskeletal Disorders), hal tersebut salah satunya dipengaruhi adanya posisi kerja. Posisi kerja mengacu pada bagaimana postur tubuh yang dilakukan, posisi kerja yang nyaman dan aman akan mempengaruhi produktivitas kerja yang lebih baik(Lawi et al., 2023).

Praktikum proses manufaktur, khususnya pada sub-bagian pengelasan, di Teknik Industri Universitas Islam Sultan Agung sering kali melibatkan postur tubuh yang tidak ergonomis dalam jangka waktu lama. Hal ini dapat berakibat pada berbagai gangguan muskuloskeletal (GMS) pada para praktikan, seperti nyeri punggung, leher, bahu, dan pergelangan tangan. Gangguan muskuloskeletal ini

tidak hanya dapat menyebabkan ketidaknyamanan dan menurunkan produktivitas, tetapi juga berpotensi menimbulkan cedera serius dan permanen.

Pada survei yang telah dilakukan sebelumnya dengan beberapa praktikan praktikum proses manufaktur yang ada di Program Studi Teknik Industri UNISSULA. Dimana pada survei tersebut mendapatkan hasil kuesioner yang terdapat dimana setidaknya ada praktikan yang mengalami keluhan kesakitan di beberapa bagian seperti pada punggung, leher, kaki, lengan atas, lengan bawah, dan pada pergelangan tangan pada Gambar 1.2.

Gambar 1.1 Praktikum Proses Manufaktur Teknik Industri UNISSULA

Dari Gambar 1.1, Postur kerja yang dilakukan oleh praktikan pada praktikum proses manufaktur Teknik Industri UNISSULA ini masih banyak yang tidak menerapkan sisi ergonomis saat menggunakan fasilitas yang ada. Pada penelitian kali ini peneliti melakukan pengamatan terhadap masa kerja praktikan yang ada di praktikum proses manufaktur dimana pengamatan itu dilakukan pada saat praktikan melakukan praktikum.

Berdasarkan hasil kuesioner pada Gambar 1.2, pengumpulan data dilakukan dengan menyebarkan kuisioner praktikan di Teknik Industri UNISSULA sebagai langkah awal untuk mengetahui bagian tubuh mana saja yang dikeluhkan praktikan. Berdasarkan hasil *survey* yang didapatkan, para praktikan mulai merasakan keluhan pada bagian tubuh yaitu nyeri punggung, nyeri leher, nyeri kaki, nyeri lengan atas, nyeri lengan bawah, dan nyeri pergelangan tangan. Dengan mengidentifikasi faktor-faktor penyebab gangguan muskuloskeletal seperti postur tubuh yang tidak ergonomis, penggunaan alat yang kurang sesuai, dan kondisi lingkungan kerja,

penelitian ini dapat memberikan rekomendasi konkret untuk perbaikan fasilitas praktikum proses manufaktur. Ini dapat membantu mencegah terjadinya cedera lebih lanjut dan meningkatkan kenyamanan selama praktikum.

Gambar 1.2 Hasil Kuesioner

1.2 Perumusan Masalah

Berdasarkan uraian latar belakang diatas, perumusan masalah yang menjadi objek kajian dari penelitian ini sebagai berikut :

- 1. Bagaimana cara mengidentifikasi kebutuhan mahasiswa selama menggunakan meja kerja pengelasan pada praktikum proses manufaktur?
- Bagaimana cara menerapkan usulan perbaikan meja kerja pengelasan yang ergonomis pada praktikum Proses Manufaktur Teknik Industri UNISSULA?
- 3. Bagaimana cara merancang meja kerja pengelasan yang ergonomis dan sesuai dengan preferensi mahasiswa praktikum proses manufaktur?

1.3 Pembatasan Masalah

Agar tujuan awal penelitian tidak menyimpang maka dilakukan pembatasan masalah yaitu sebagai berikut :

 Penelitian ini difokuskan pada desain meja kerja pengelasan untuk aktivitas praktikum proses manufaktur di Laboratorium Teknik Industri UNISSULA.

- 2. Objek penelitian yang diamati adalah mahasiswa yang praktikum pada proses manufaktur modul pengelasan.
- 3. Studi kasus pada Laboratorium Proses Manufaktur Teknik Industri UNISSULA.
- Pengukuran ergonomis difokuskan pada postur tubuh, tinggi meja, dan elemen desain lainnya yang relevan dengan kenyamanan pengguna selama praktikum.
- Perancangan desain meja kerja pengelasan yang statis, tidak mempertimbangkan aspek dinamis seperti gerakan tubuh saat pengelasan.

1.4 Tujuan Penelitian

Adapun tujuan dari penelitian di Laboratorium Proses Manufaktur Teknik Industri UNISSULA adalah sebagai berikut:

- Mengidentifikasi masalah ergonomi dan preferensi emosional yang dihadapi mahasiswa saat menggunakan meja kerja pengelasan pada praktikum proses manufaktur.
- Memberikan rekomendasi desain meja kerja pengelasan yang dapat meningkatkan kenyamanan, keselamatan, dan efisiensi dalam aktivitas praktikum proses manufaktur.
- 3. Merancang meja kerja pengelasan yang ergonomis dan sesuai dengan preferensi mahasiswa.

1.5 Manfaat Penelitian

Adapun manfaat yang di peroleh dari penelitian yang di lakukan di Laboratorium Proses Manufaktur Teknik Industri UNISSULA adalah sebagai berikut:

1. Bagi Tempat Penelitian

Meningkatkan kesehatan dan keselamatan para praktikan di Laboratorium Proses Manufaktur Teknik Industri UNISSULA, mengurangi risiko gangguan muskuloskeletal dan cedera pada para praktikan, meningkatkan kenyamanan dan produktivitas para praktikan selama praktikum

pengelasan, menciptakan lingkungan belajar yang aman dan ergonomis, dan memberikan sumbangan pengetahuan dalam bidang ergonomi dan desain tempat kerja.

2. Bagi Peneliti

Memberi kesempatan pada peneliti untuk menerapkan teori-teori yang telah dipelajari dan berfikir secara sistematis serta diharapkan dapat meningkatkan pengetahuan dan pemahaman penulis mengenai metode perancangan dan penerapannya suatu mesin atau produk pada proses pengelasan praktikum proses manuufaktur.

3. Bagi Institusi Pendidikan

Dengan adanya penelitiain ini, diharapkan dapat menjadi referensi serta inspirasi baru bagi mahasiswa yang membaca maupun yang akan mengambil tugas akhir tentang perancangan meja kerja menggunakan metode *Kansei Engineering* dan pendekatan ergonomi pada periode mendatang.

1.6 Sistematika Penulisan

Laporan penelitian Tugas Akhir ini agar tersusun dengan baik maka dibuatlah tata urutan penelitian laporan dengan urutan sebagai berikut:

BAB I PENDAHULUAN

Pada bab ini berisikan pembahasan tentang latar belakang penelitian, objek penelitian, perumusan masalah, pembatasan masalah, tujuan penelitian, manfaat penelitian dan sistematika penelitian laporan penelitian.

BAB II LANDASAN TEORI

Pada bab ini berisikan uraian tentang teori dari buku-buku studi, jurnal dan artikel ilmiah tentang pendukung penelitian serta hasil dari penelitian-penelitian yang telah dilakukan sebelumnya yang akan dijadikan panduan untuk penelitian Tugas Akhir serta digunakan sebagai Panduan perancangan perbaikan produk.

BAB III METODOLOGI PENELITIAN

Pada bab ini berisikan tentang pengumpulan data penelitian dan teknik pengumpulan data penelitian yang akan digunakan, pengujian hipotesa penelitian,

metode analisis, pembahasan, penarikan kesimpulan sementara, dan flowchart penelitian.

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

Pada bab ini berisi tentang pembahasan dari penelitian yang telah dilakukan berdasarkan analisis dan interpretasi penelitian, desain visual 3D perbaikan serta pembuktian dari hipotesa peneliti.

BAB V PENUTUP

Pada bab ini berisi tentang kesimpulan dari hasil penelitian yang telah dilakukan dan penegasan dari pembuktian hipotesa peneliti serta penegasan hasil dari rancangan yang telah dibuat oleh peneliti berdasarkan analisa, interpretasi dan pembuktian hipotesa. Serta saran-saran yang dapat Peneliti sampaikan kepada pembaca untuk dapat membantu penelitian selanjutnya supaya dapat lebih baik lagi

BAB II TINJAUAN PUSTAKA DAN LANDASAN TEORI

2.1 Tinjauan Pustaka

Literature review merupakan referensi-referensi yang berisi tentang teori, temuan, dan penelitian terdahulu yang diperoleh dari bahan acuan untuk dijadikan landasan kegiatan penelitian untuk menyusun kerangka pemikiran yang jelas dari perumusan masalah yang ingin diteliti. Berdasarkan dari beberapa literatur yang didapatkan, ada beberapa metode yang dapat digunakan untuk memilih keputusan metode penelitian yang tepat. Dari Penelitian yang dilakukan oleh Asyari et al. (2023) dengan judul "Evaluasi Postur Kerja Dan Perancangan Ulang Set Meja Kerja Pada Teknik Batik Cap dengan Pendekatan Ergonomi-Antropometri dan Metode Kansei Engineering" Menjelaskan bahwa penelitian yang dilakukan dengan metode NBM dan REBA menghasilkan skor evaluasi dengan NBM adalah 79 dan REBA adalah 9, kedua skor termasuk kategori risiko tinggi sehingga perlu dilakukan tindakan perbaikan segera pada fasilitas kerja. Dimensi antropometri yang digunakan adalah tinggi pinggul, tinggi tulang ruas, lebar bahu, panjang rentang tangan ke depan, panjang bahu genggaman tangan ke depan, dan panjang rentangan ke samping. Hasil Kansei Engineering pada penelitian ini adalah nyaman, rapi, aman, tahan lama, dan menarik. Berdasarkan hasil NBM, REBA, dan Pendekatan Antropometri, kemudian dilakukan merancang set meja kerja yang baru dengan menggunakan metode Kansei Engineering. Ukuran desain meja batik cap adalah 121cm x 85cm x 90cm dan meja kompor adalah 43cm x 45cm x 66cm.

Dari Penelitian yang dilakukan oleh Djamal & Kurniawan (2019) dengan judul "Desain Alat Bantu Pengambilan Part Di *Warehouse* PT. XYZ Dengan Aspek Ergonomi" Menjelaskan bahwa penelitian yang dilakukan pada Proses pengambilan part di warehouse PT. XYZ, khususnya di bagian *standard part*, menunjukkan postur kerja yang tidak ergonomis. Hal ini menyebabkan keluhan *musculoskeletal disorders* (MSDs) seperti sakit pinggang, punggung, leher, dan kaki pada operator. Berdasarkan kuesioner *Nordic Body Map* (NBM), ditemukan 98 keluhan dengan kategori sangat tinggi, menunjukkan perlunya tindakan segera

untuk mengatasi masalah tersebut. Dengan Mengurangi atau menghilangkan keluhan MSDs pada operator dengan menerapkan aspek ergonomi menggunakan metode *Rapid Entire Body Assessment (REBA)* dan simulasi *Mannequin Pro* untuk mengetahui efektivitas perancangan alat bantu dalam mengurangi risiko cedera serta melakukan pendekatan *Value Engineering*. Skor REBA sebelum perancangan adalah 9 (kategori risiko tinggi), dan setelah perancangan turun menjadi 3 (kategori risiko rendah), menunjukkan perbaikan signifikan dalam postur kerja. Berdasarkan kuesioner NBM setelah implementasi alat bantu, terjadi penurunan keluhan dari 98 menjadi 66 keluhan, yang turun ke kategori sedang. Simulasi menggunakan *Mannequin Pro* menunjukkan penurunan beban torsi pada punggung dari 97 Nm menjadi 87 Nm, menandakan pengurangan beban fisik pada operator.

Dari Penelitian yang dilakukan oleh Triwarno (2016) dengan judul "Perancangan Ulang Alat Produksi *Shuttlecock* Yang Efisien Dan Ergonomis" Menjelaskan bahwa penelitian yang dilakukan dengan menggunakan metode REBA maka dapat diketahui level risiko postur kerja, dari peta tangan kiri dan peta tangan kanan maka dapat diketahui gerakan-gerakan apa saja yang tidak efektif/efisien dan analisa menggunakan data antropometri dari penelitian yang dilakukan dapat diketahui ukuran yang ideal untuk diterapkan dalam perancangan fasilitas kerja/ alat produksi. Hasil dari tabel *indicator performance* terjadi perubahan pada kecepatan pemotongan yaitu dengan selisih waktu 3,9 detik, terjadi efisiensi waktu proses sebesar 24%, skor REBA mengalami penurunan pada kondisi perbaikan dihasilkan skor 4 dan masuk ke dalam kategori action level 2, persentase keluhan yang dirasakan oleh pekerja pemotongan ujung bulu mengalami penurunan menjadi 25%.

Dari Penelitian yang dilakukan oleh Fauzi & Budiady (2019) dengan judul "Rancangan Meja Kerja Ergonomis Untuk Mengurangi Kelelahan Otot Menggunakan Metode OWAS Dan REBA (Studi Kasus Di Cv. Meteor Custom)" Menjelaskan bahwa penelitian yang dilakukan pada CV. Meteor Custom, Fasilitas kerja yang tidak ergonomis menyebabkan para pekerja mengalami keluhan musculoskeletal disorders (MSDs), seperti nyeri di leher, punggung, pinggang, lengan, dan lutut. Sehingga perlu dilakukan identifikasi tingkat risiko gangguan

muskuloskeletal pada pekerja menggunakan metode OWAS (Ovako Working Posture Analysis System) dan REBA (Rapid Entire Body Assessment) serta merancang meja kerja ergonomis yang dapat mengurangi kelelahan otot dan risiko MSDs dengan mempertimbangkan data antropometri pekerja. Pada metode REBA menunjukkan skor 8–10, mengindikasikan risiko tinggi dengan kebutuhan investigasi dan perubahan segera. Meja dirancang untuk mengurangi postur kerja membungkuk, meningkatkan kenyamanan, serta mengurangi risiko cedera kerja. Perusahaan disarankan untuk segera mengimplementasikan desain meja kerja ergonomis untuk meningkatkan kenyamanan pekerja, mengurangi risiko MSDs, dan menjaga produktivitas.

Dari Penelitian yang dilakukan oleh Hidayat (2017) dengan judul "Perancangan Ulang (*Redesign*) Tempat Tidur Untuk Lansia Dengan Metode *Kansei Engineering* dan Pendekatan *Gerontology*" Menjelaskan bahwa penelitian yang dilakukan dari hasil observasi awal, tempat tidur untuk lansia saat ini masih sulit digunakan. Para lansia melaporkan kesulitan saat naik dan turun dari tempat tidur, serta ketidaknyamanan di pinggang dan punggung. Untuk mengatasi masalah ini, desain tempat tidur dilakukan perbaikan. Dari hasil survei diperoleh 7 kata-kata kansei word pada tempat tidur lansia yaitu mudah digunakan, empuk, unik, awet, santai, multifungsi, dan aman. Prototipe baru dibuat dengan menggunakan gambar AutoCAD 3D. Perbaikan desain yaitu Rangka tempat tidur yang dapat disesuaikan dengan ukuran lansia, Sandaran kepala yang mendukung posisi setengah berbaring, Alat bantu bangun berbentuk tabung untuk kenyamanan genggaman, dan Meja makan yang praktis dan dapat dilipat untuk mempermudah aktivitas lansia.

Dari Penelitian yang dilakukan oleh Purwandari et al. (2022) dengan judul "Perancangan Filament Extruder pada Mesin Pengolah Sampah Plastik Terintegrasi "Creatics" Menggunakan Metode TRIZ dan AHP" Menjelaskan bahwa penelitian yang dilakukan Indonesia menghadapi masalah serius dalam pengelolaan sampah plastik, dengan 1,3 juta ton sampah plastik yang tidak terkelola setiap tahunnya. Plastik yang sulit terurai menyebabkan dampak lingkungan yang buruk. Salah satu solusi adalah dengan mendaur ulang plastik menjadi produk bernilai ekonomi. Dalam penelitian ini, Metode Teorija Rezhenija Izobretatelskih Zadach (TRIZ)

digunakan sebagai metode pengembangan produk untuk menentukan spesifikasi produk. Dalam proses pemilihan alternatif konsep diguakan metode pengambilan keputusan *Analytical Hierarchy Process* (AHP). Hasil yang diperoleh dengan Metode TRIZ adalah parameter yang penting dan perlu diutamakan dalam melakukan perancangan *filament extruder*, yaitu kehandalan produk, penggunaan energi dari pemindahan obyek, dan kekuatan produk. Rancangan produk yang terpilih berdasarkan Metode AHP adalah filament extruder berbahan dasar stainless steel agar tahan terhadap karat dan memanfaatkan kipas angin dalam proses pendinginan filamen.

Dari Penelitian yang dilakukan oleh Thobarsi et al. (2020) dengan judul "Perancangan Produk Multifunction Box Yang Ergonomis Dengan Menggunakan Metode *Pahl & Beitz*" Menjelaskan bahwa penelitian yang dilakukan pada Mahasiswa kos sering mengalami keterbatasan ruang untuk menyimpan barang dan belajar dengan nyaman. *Furniture* yang ada di pasaran kurang fleksibel dan hanya berfungsi sebagai tempat penyimpanan. Penelitian ini merancang *Multifunction Box* yang ergonomis dengan fitur meja, kursi lipat, tempat printer, dan penyimpanan dalam satu produk. Perancangan menggunakan metode *Pahl & Beitz* serta dimensi disesuaikan dengan data antropometri mahasiswa. Hasil penelitian menunjukkan bahwa produk ini lebih nyaman, fleksibel, dan hemat ruang dibandingkan *furniture* biasa. Konsumen menilai desainnya lebih ergonomis, praktis, dan sesuai untuk kamar kos.

Dari Penelitian yang dilakukan oleh Simangunsong et al. (2023) dengan judul "Rancang Bangun Alat Panen Kelapa Sawit Mekanis Menggunakan Metode Triz" Menjelaskan bahwa penelitian yang dilakukan terdapat Petani kelapa sawit di Desa Kenaman, Kalimantan Barat masih menggunakan alat panen manual (egrek dan dodos), yang kurang efisien, tidak ergonomis, dan membutuhkan tenaga besar. Penelitian ini merancang alat panen mekanis *adjustable* yang lebih efektif, ergonomis, dan aman, menggunakan metode TRIZ untuk mengatasi kontradiksi desain serta menyesuaikannya dengan data antropometri petani. Hasilnya adalah alat dengan mata pisau fleksibel, gagang teleskopik yang dapat dibongkar pasang, dan berat sekitar 5 kg. Dengan panjang gagang 5,7meter (egrek) dan 5,6 meter

(dodos), alat ini lebih nyaman, aman, dan hemat energi dibandingkan alat konvensional.

Dari Penelitian yang dilakukan oleh Hasibuan & Sutrisno (2017) dengan judul "Perancangan Produk Tas Travel Multifungsi Dengan Menggunakan Metode *Quality Function Deployment* (QFD)" Menjelaskan bahwa penelitian yang dilakukan terdapat peningkatan mobilitas masyarakat membuat kebutuhan akan tas travel multifungsi semakin tinggi. Namun, tas yang ada di pasaran masih kurang fleksibel, minim fitur tambahan, dan belum optimal dalam ergonomi serta daya tahan. Penelitian ini merancang tas travel multifungsi yang ergonomis menggunakan metode QFD untuk memahami kebutuhan konsumen dan membandingkan desain dengan produk pesaing. Hasilnya adalah tas berukuran 51×26×43 cm, berbahan polimer, dengan gagang setinggi 45 cm, serta dilengkapi tempat minum dan jas hujan. Evaluasi menunjukkan bahwa tas ini lebih unggul dalam desain, bahan, dan fungsionalitas, serta lebih praktis untuk berbagai kondisi perjalanan.

Dari Penelitian yang dilakukan oleh Dewi et al. (2020) dengan judul "Perancangan Kontainer Berpendingin pada Sepeda Motor dengan Metoda QFD dan TRIZ". Pada penelitian ini dijelaskan bahwa Sayuran mudah rusak setelah dipanen, tetapi banyak produsen belum memiliki sistem distribusi yang efisien, menyebabkan kualitas menurun saat sampai ke konsumen. Kendala utama adalah suhu penyimpanan yang tidak stabil, minimnya solusi pendinginan, dan distribusi yang kurang efisien. Penelitian ini merancang kontainer berpendingin untuk sepeda motor guna menjaga kesegaran sayuran selama distribusi, menggunakan metode QFD dan TRIZ untuk mengidentifikasi kebutuhan dan menyelesaikan kontradiksi teknis. Hasilnya adalah kontainer berpendingin yang efisien, mempertahankan kesegaran sayuran, dan memiliki kapasitas angkut optimal. Produk ini berpotensi dikembangkan lebih lanjut untuk distribusi daging dan buah-buahan.

Dari Penelitian yang dilakukan oleh Siregar & Adhinata (2017) dengan judul "Perancangan Produk Tempat Tisu Multifungsi Dengan Menggunakan *Quality Function Deployment* (QFD)". Pada penelitian ini dijelaskan bahwa Tempat tisu umumnya hanya berfungsi sebagai wadah tanpa inovasi tambahan. Padahal,

ada peluang untuk merancang produk yang lebih multifungsi, ergonomis, dan sesuai dengan kebutuhan konsumen. Penelitian ini menggunakan metode QFD dan rekayasa nilai untuk merancang tempat tisu multifungsi, mengevaluasi alternatif desain, serta meningkatkan kualitas produk dengan biaya lebih efisien. Hasilnya adalah tempat tisu dengan fitur tambahan yang lebih fungsional dan bernilai jual lebih tinggi. Selain itu, biaya produksi dapat ditekan tanpa mengurangi kualitas produk.

Dari Penelitian yang dilakukan oleh Nurhayati (2022) dengan judul "Pendekatan Quality Function Deployment (QFD) dalam proses pengembangan desain produk Whiteboard Eraser V2". Pada penelitian ini dijelaskan bahwa Penghapus papan tulis sering mengalami kerusakan cepat, seperti kain sobek, bekas tinta menempel, dan body yang mudah pecah atau terlalu berat. Penelitian ini merancang whiteboard eraser V2 menggunakan metode QFD, dengan desain yang lebih ergonomis, tahan lama, dan sesuai kebutuhan pengguna. Hasilnya adalah penghapus dengan bahan lebih kuat, desain lebih menarik, serta kain penghapus yang dapat diganti. Pengujian menunjukkan bahwa produk ini lebih nyaman, efisien, dan memiliki daya tahan lebih baik dibandingkan produk di pasaran.

Dari Penelitian yang dilakukan oleh Prabowo & Zoelangga (2019) dengan judul "Pengembangan Produk Power Charger Portable dengan Menggunakan Metode *Quality Function Deployment* (QFD)". Pada penelitian ini dijelaskan bahwa Meningkatnya penggunaan handphone membuat kebutuhan daya baterai semakin tinggi, sementara *charger portable* yang ada masih bergantung pada listrik PLN. Penelitian ini merancang *charger portable* inovatif yang menggunakan energi kinetik dari gerakan tubuh, sehingga dapat digunakan kapan saja tanpa listrik PLN. Metode QFD digunakan untuk menyesuaikan desain dengan kebutuhan pengguna, terutama yang memiliki mobilitas tinggi seperti pendaki gunung dan pelancong. Hasilnya, charger ini lebih efisien, praktis, dan ramah lingkungan dibandingkan *charger portable* konvensional.

Dari Penelitian yang dilakukan oleh Jatmiko & Dharmastiti (2018) dengan judul "Pengembangan Alat Ukur Evaluasi Dan Perancangan Produk Kursi Roda". Pada penelitian ini dijelaskan bahwa di Yogyakarta, banyak penyandang disabilitas

belum mendapatkan kursi roda yang sesuai, karena desain yang ada masih seragam dan kurang fleksibel. Penelitian ini mengembangkan metode evaluasi kursi roda berbasis PEQ serta menganalisis kebutuhan pengguna dengan Factor Analysis dan QFD. Hasilnya adalah desain kursi roda dengan tiga roda dan fitur tambahan yang lebih nyaman, aman, fleksibel, dan ergonomis, sehingga meningkatkan mobilitas dan kualitas hidup pengguna.

Dari Penelitian yang dilakukan oleh Lestari & Imtihan (2020) dengan judul "Perancangan Produk Aquascape Dengan Metode *Quality Function Deployment* (QFD)". Pada penelitian ini dijelaskan bahwa Industri *aquascape* menghadapi persaingan ketat, namun masih minim inovasi desain, kurang efisien dalam penggunaan listrik, dan belum sepenuhnya memenuhi kebutuhan konsumen. Penelitian ini merancang produk *aquascape* multifungsi (*3-in-1*) menggunakan metode QFD, dengan fokus pada pencahayaan tanaman, stabilitas suhu air, dan estetika ruangan. Hasilnya, produk ini lebih inovatif, hemat energi, dan tahan lama, serta lebih unggul dibandingkan produk serupa di pasaran.

Dari Penelitian yang dilakukan oleh Prasetyo et al. (2021) dengan judul "Perancangan Alat Bantu Mandi dan Aktifitas Toilet Portabel Tunadaksa Bagian Bawah". Pada penelitian ini dijelaskan bahwa Penyandang tunadaksa bagian bawah kesulitan mandi dan menggunakan toilet secara mandiri, terutama karena kurangnya alat bantu portabel yang kompatibel dengan kloset jongkok, yang umum di Indonesia. Penelitian ini merancang alat bantu mandi dan toilet portabel yang dapat digunakan di dalam maupun luar rumah, dengan desain yang kompatibel untuk kloset duduk dan jongkok, menggunakan metode *Front-End Process* dan TRIZ. Hasilnya adalah alat bantu yang lebih praktis, ringan, dan aman, serta mampu meningkatkan kemandirian dan mobilitas penyandang tunadaksa.

Dari Penelitian yang dilakukan oleh Saragih et al. (2023) dengan judul "Perbaikan Rancangan Produk Mesin Oven Pengering Kerupuk Energi Biomassa Menggunakan Metode *Quality Function Deployment* (QFD) Dan *Theory of Inventive Problem Solving* (TRIZ)". Pada penelitian ini dijelaskan bahwa Produksi kerupuk masih bergantung pada pengeringan tradisional, yang tidak stabil, memakan waktu lama, dan sulit mengontrol suhu serta kelembaban. Penelitian ini

merancang mesin oven pengering berbasis energi biomassa yang lebih efisien, hemat energi, dan dapat mengontrol suhu dengan lebih baik, menggunakan metode QFD, TRIZ, dan *Concurrent Engineering*. Hasilnya adalah mesin oven dengan bahan plat besi, blower 150-250 watt, dan dimensi 200×78×80 cm. Dengan tungku terbagi dua dan material aluminium, mesin ini lebih hemat energi, cepat, fleksibel, dan tahan lama, meningkatkan efisiensi produksi kerupuk.

Dari Penelitian yang dilakukan oleh Pakpahan et al. (2023) dengan judul "Perbaikan Rancangan Automatic Liquid Filler dengan Pendekatan Concurrent Engineering Menggunakan Metode Quality Function Deployment dan TRIZ". Pada penelitian ini dijelaskan bahwa Proses pengisian cairan secara manual di UMKM parfum masih tidak efisien, dengan kendala seperti ketidaktepatan volume, waktu pengisian lama, dan kurangnya otomatisasi. Penelitian ini merancang alat pengisi cairan otomatis menggunakan metode QFD dan TRIZ untuk meningkatkan akurasi sensor dan fleksibilitas ukuran. Hasilnya, alat ini lebih akurat, efisien, dan dapat digunakan untuk berbagai jenis wadah, sehingga meningkatkan produktivitas di UMKM parfum.

Dari Penelitian yang dilakukan oleh Siagian et al. (2023) dengan judul "Perancangan Produk Alat Penyangrai dan Penggiling Kopi Otomatis Menggunakan Metode *Nigel Cross*". Pada penelitian ini dijelaskan bahwa Proses penyangraian dan penggilingan kopi di industri kecil dan rumah tangga masih dilakukan secara manual, yang kurang efisien, membutuhkan banyak tenaga kerja, dan memakan waktu lama. Penelitian ini merancang alat penyangrai dan penggiling kopi otomatis menggunakan metode *Nigel Cross* dan QFD untuk meningkatkan efisiensi dan menyesuaikan desain dengan kebutuhan pengguna. Hasilnya adalah alat otomatis dengan sensor bunyi, desain lebih stabil, dan biaya produksi lebih rendah, menjadikannya solusi ideal untuk industri kecil dan rumah tangga.

Dari Penelitian yang dilakukan oleh Ainul (2024) dengan judul "Redesain Mesin Pencacah Rumput Dengan Metode *Teoriya Resheniya Izobretatelskih Zadatch* (TRIZ)". Pada penelitian ini dijelaskan bahwa Peternak di Kabupaten Sleman membutuhkan mesin pencacah rumput yang lebih fleksibel dan tahan lama, karena mesin yang tersedia sulit dipindahkan dan pisau mudah berkarat. Penelitian

ini merancang mesin pencacah rumput baru menggunakan metode TRIZ, dengan fokus pada portabilitas, keamanan, dan daya tahan pisau. Hasilnya adalah mesin dengan 4 pisau stainless steel (3 mm), ukuran lebih portabel, dan sistem perlindungan operator, menjadikannya lebih efisien, aman, dan sesuai kebutuhan peternak.

Dari Penelitian yang dilakukan oleh Agam (2017) dengan judul "Redesign Kemasan Produk Egg Roll Menggunakan Metode Kansei Engineering dan Value Engineering" yang dilakukan pada UMKM Diva Cookies di Bojonegoro bertujuan untuk mengidentifikasi dan merancang ulang kemasan produk egg roll yang selama ini dinilai kurang menarik dan tidak informatif. Permasalahan utama terletak pada kemasan yang hanya berupa kotak karton tipis tanpa atribut penting seperti logo halal, informasi produk, serta tampilan visual yang tidak mampu menarik minat konsumen. Melalui metode Kansei Engineering, peneliti berhasil mengidentifikasi enam atribut utama desain kemasan berdasarkan persepsi konsumen, yaitu warna cerah, berlogo, kemasan vertikal, informatif, inovatif, dan kuat. Atribut-atribut ini kemudian diolah menggunakan metode Value Engineering untuk menghasilkan lima alternatif desain kemasan. Dari hasil penilaian responden, desain berbentuk segienam dipilih sebagai alternatif terbaik dengan skor total tertinggi (3,95), serta memberikan efisiensi biaya sebesar 18,9% dibandingkan kemasan lama. Penelitian ini memberikan solusi desain kemasan yang tidak hanya menarik secara visual, tetapi juga efisien secara ekonomis dan sesuai dengan kebutuhan pasar.

Tabel 2. 1 Literatur Review

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
1.	Evaluasi postur kerja	Jurnal	Hasyim Asyari,	Kondisi pada meja batik cap	Penelitian ini untuk	Berdasarkan pertimbangan
	dan perancangan	Simposium	Indro Prakoso,	dibagian bantalan yang berguna	mengevaluasi postur tubuh	NBM, REBA, pendekatan
	ulang set meja kerja	Nasional	Reza Azizul Nasa	untuk mengecap tidak rata dan	pembatik dan perancangan	antropometri, dan Kansei
	pada teknik batik cap	RAPI XXII –	Al Hakim, Sugeng	ukuran meja kompor yang tidak	pada set meja kerja untuk	Engineering diperoleh ukuran
	dengan pendekatan	2023	Waluyo, Aprillian	sesuai dengan ukuran kompor	teknik batik cap yang dibuat	desain meja batik cap adalah
	ergonomi-		Salsabillah	sehingga pembatik mengeluhkan	berdasarkan kebutuhan dan	121cm x 85cm x 90cm dan
	antropometri dan		Palumian (ketidaknyamanan ketika	ukuran yang disesuaikan	meja kompor adalah 43cm x
	metode kansei		\\\	membatik.	sehingga pengrajin batik	45cm x 66cm
	engineering (2023)		\\\		dapat membatik dengan	
			///		nyaman.	
2.	Desain alat bantu	Jurnal	Hadi Djamal,	Pada proses pengambilan part di	Tujuan penelitian ini yaitu	Berdasarkan hasil
	pengambilan part di	Integrasi	Nelfiyanti,	bagian <i>standard part</i> di	usulan berupa perancangan	perhitungan REBA,
	warehouse PT. XYZ	Sistem	Muhammad Fery	warehouse PT. XYZ terdapat	alat bantu. Perancangan	perancangan alat bantu meja
	dengan aspek	Industri	Kurniawan	postur kerja yang tidak ergonomi	tersebut berguna untuk	penopang box standard part
	ergonomi (2019)	Volume 6		dalam aplikasinya. Proses yang	memperbaiki postur kerja	turun sebesar 6 poin yaitu
		No.2 agustus		tidak ergonomi tersebut menjadi	sehingga lebih ergonomis.	total nilai REBA setelah
		2019		kendala karena terdapat keluhan	// جامعترساهاد	perancangan sebesar 3 dengan
				musculoskeletal yang dirasakan	//	kategori level rendah. Dari
				operator.		hasil simulasi dengan
						menggunakan software

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
				STAS ISLA	M SULLE	mannequin pro, didapat bahwa postur kerja awal dari proses pengambilan part standard part sebesar 97 Nm. Tetapi setelah dilakukan perancangan alat bantu, torsi menjadi turun dibagian tulang belakang sebesar 10 Nm.
3.	Perancangan ulang	Tugas Akhir	Marsudi	Industri shuttlecock merek	Tujuan dari penelitian yang	Hasil dari tabel <i>indicator</i>
	alat produksi	Marsudi	Triwinarno	LIYA bersifat padat karya	dilakukan yaitu: melakukan	performance terjadi
	shuttlecock yang	Triwinarno		dimana sebagian besar proses	analisa serta evaluasi postur	perubahan pada kecepatan
	efisien dan	(Universitas	\\\	produksinya masih melibatkan	kerja di home industry	pemotongan yaitu dengan
	ergonomis (2016)	Muhammadiy	\	tenaga manusia dengan peralatan	shuttlecock merek LIYA	selisih waktu 3,9 detik, terjadi
		ah Surakarta)	3	yang digunakan bersifat manual	pada karyawan bagian	efisiensi waktu proses sebesar
		(2016)		dan semi manual. Proses	produksi dengan	24%, skor REBA mengalami
				produksi yang masih	menggunakan metode	penurunan pada kondisi
				menggunakan peralatan manual	REBA, mengetahui berapa	perbaikan dihasilkan skor 4
				tersebut terindikasi	tingkat risiko serta jenis	dan masuk ke dalam kategori
				menyebabkan proses produksi	pekerjaan yang paling	action level 2, persentase
				menjadi lebih lama dan	berisiko menimbulkan	keluhan yang dirasakan oleh
				menyebabkan karyawan	keluhan, menentukan	pekerja pemotongan ujung

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
				merasakan keluhan berupa nyeri	rancangan alat yang baik dan	bulu mengalami penurunan
				otot dan kelelahan akibat dari	ergonomis, menentukan	menjadi 25%.
				dimensi alat produksi yang tidak	alternatif gerakan yang baik	
				ergonomis.	untuk mengurangi risiko	
				, 15LA	keluhan.	
4.	Rancangan Meja	JURNAL	Hilman Fauzi,	CV. Meteor Custom	Tujuan penelitian ini adalah	Penelitian ini menghasilkan
	Kerja Ergonomis	REKAYASA	Budiady	memproduksi part atau aksesoris	membuat usulan	desain meja kerja baru yang
	Untuk Mengurangi	dan		kendaraan bermotor Pada proses	perancangan Meja Kerja	ergonomis dengan ukuran
	Kelelahan Otot	OPTIMASI	\\\	produksi pembuatan part atau	Ergonomis Untuk	Tinggimeja 112 cm, Panjang
	Menggunakan	SISTEM	///	aksesoris tersebut, teridentifikasi	Mengurangi Kelelahan Otot	meja 200 cm, dan Lebar Meja
	Metode OWAS dan	INDUSTRI	///	bahwa fasilitas kerja untuk	Menggunakan Metode	75 cm. Dengan ini pekerja
	REBA (Studi Kasus	Volume 02	///	operator tersebut kurang	OWAS Dan REBA.	tidak mengalami kelelahan
	di CV. Meteor	Issue 1 (2020)	\	memadai dan kurang		atau keluhan pada anggota
	Custom)	: 16-21	3	memperhatikan prinsip-prinsip		tubuh yang dapat
				ergonomi terutama pada bagian		mengakibatkan resiko
				pengelasan. Operator tersebut		kecelakaan kerja dan untuk
				bekerja pada posis kerja yang	JOLA /	meringankan para pekerja
				tidak baik, yang menyebabkan	// جامعنزسلطان	dalam upaya memenuhi
				posisi kerja menjadi	//	keadaan stasiun kerja yang
				membungkuk.		ergonomis.

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
5.	Perancangan Ulang	Jurnal Teknik	Rachmad Hidayat	Manula sangat rentan terhadap	Tujuan penelitian ini adalah	Desain ulang tempat tidur
	(Redesign) Tempat	Industri,		penyakit, terutama penyakit	membuat usulan	untuk lansia fokus pada
	Tidur Untuk Lansia	Volume 7 No		persendian tulang. Selain kursi	perancangan tempat tidur	harapan dan kebutuhan
	Dengan Metode	1 Maret 2017		roda otomatis, manula juga	untuk lansia dengan metode	fungsional. Rangka tempat
	Kansei Engineering			memerlukan tempat tidur	Kansei Engineering dan	tidur yang dapat disesuaikan
	dan Pendekatan			multifungsi yang aman. Tempat	pendekatan Gerontology.	dibuat, sandaran kepala
	Gerontology			tidur yang ada saat ini dibuat	Perbaikan dilakukan untuk	dibagi dua, dan alat bantu
				untuk orang dewasa,	mengakomodasi semua	bangun dimasukkan.
			\\\	menyebabkan kesulitan bagi	aktivitas lansia dengan	Pengamatan awal
			///	manula.	penekanan pada ergonomi	menunjukkan lansia kesulitan
			\\\		dan kenyamanan	menggunakan tempat tidur.
					penggunaannya.	Ketidaksesuaian antara
			\			harapan dan kepuasan tercatat
			3			pada rangka tempat tidur dan
						fitur pendukung. Prototipe
				UNIS		dikembangkan menggunakan
				* 011 112 3	JULA /	gambar AutoCAD 3D.
6.	Perancangan	Jurnal AL-	Aprilia Tri	Indonesia menghadapi masalah	Mengembangkan mesin	Berdasarkan data yang diolah
	Filament Extruder	AZHAR	Purwandari1,	serius dalam pengelolaan	pengolah sampah plastik	dengan 39 parameter TRIZ,
	pada Mesin	INDONESIA	Dicky Sumantri,	sampah plastik, dengan 1,3 juta	Creatics agar dapat	tiga atribut dengan nilai
	Pengolah Sampah	SERI SAINS	Niken Parwati,	ton sampah plastik yang tidak	memproduksi filamen 3D	tertinggi untuk

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
	Plastik Terintegrasi	DAN	Ahmad Juang	terkelola setiap tahunnya. Plastik	printer dari sampah plastik.	pengembangan produk
	"Creatics"	TEKNOLOGI	Pratama	yang sulit terurai menyebabkan	Menggunakan metode TRIZ	filament extruder adalah
	Menggunakan	, Vol. 7, No. 2,		dampak lingkungan yang buruk.	untuk mengidentifikasi	keandalan (reliability),
	Metode TRIZ dan	Mei 2022		Salah satu solusi adalah dengan	solusi inovatif dalam	penggunaan energi objek
	AHP			mendaur ulang plastik menjadi	perancangan filament	bergerak (use of energy of
				produk bernilai ekonomi. Mesin	extruder. Menggunakan	moving object), dan kekuatan
				Creatics telah dikembangkan	metode AHP (Analytical	(strength). Mesin terbaik
				untuk mengolah sampah plastik	Hierarchy Process) untuk	yang terpilih menggunakan
			///	menjadi produk daur ulang,	memilih desain terbaik dalam	konsep bongkar pasang,
			///	teta <mark>pi</mark> optimalisasi masih	pengembangan mesin.	bahan stainless steel,
			///	diperlukan agar dapat		pendinginan kipas, penarik
			\\\	menghasilkan filamen 3D printer		dan pengukur otomatis
				yang lebih bernilai ekonomis.		berkala, serta penggulung
			3	77		spool composite 1 kg.
7	Perancangan Produk	Juminten:	Afrul Mufdi T,	Mahasiswa yang tinggal di	Merancang Multifunction	Pengukuran Antropometri
	Multifunction Box	Jurnal	Dira Ernawati,	kamar kos sering menghadapi	Box yang ergonomis bagi	dari 30 mahasiswa
	Yang Ergonomis	Manajemen	Tranggono	keterbatasan ruang dalam	mahasiswa kos dengan fitur	dikumpulkan untuk
	Dengan	Industri dan		menyimpan barang keperluan	meja, kursi lipat, tempat	menentukan dimensi optimal
	Menggunakan	Teknologi		kuliah dan mengerjakan tugas	printer, dan penyimpanan	kursi, meja, dan tempat
	Metode Pahl & Beitz	Vol. 01, No.		secara nyaman. Furniture yang	dalam satu produk.	penyimpanan. Evaluasi
		05, Tahun		ada di pasaran umumnya hanya	Menggunakan metode Pahl	Ergonomi dan Fungsionalitas:

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
		2020, Hal. 1-		menyediakan tempat	& Beitz dalam proses	Multifunction Box lebih
		12		penyimpanan tanpa fitur	perancangan, yang	nyaman dibandingkan
				tambahan yang fungsional. Oleh	mencakup perancangan	furniture konvensional karena
				karena itu, diperlukan rancangan	konsep, bentuk, dan detail	disesuaikan dengan ukuran
				furniture yang lebih fleksibel dan	produk. Menentukan dimensi	tubuh mahasiswa.
				multifungsi.	produk berdasarkan data	Produk ini lebih fleksibel dan
					antropometri mahasiswa,	membantu mengoptimalkan
				\$ (D)	sehingga furniture lebih	ruang yang terbatas.
			\\\		nyaman digunakan.	Konsumen menilai produk ini
			///			lebih ergonomis, mudah
			///			digunakan, dan praktis untuk
			///			lingkungan kos.
8.	Rancang Bangun	INTEGRATE	Prayoga	Petani kelapa sawit di Desa	Merancang dan membangun	Penelitian menghasilkan
	Alat Panen Kelapa	: Industrial	Waldemar	Kenaman, Kecamatan Sekayam,	alat panen kelapa sawit	desain alat panen mekanis
	Sawit Mekanis	Engineering	Simangunsong,	Kalimantan Barat masih	mekanis dengan konsep	dengan mata pisau terbuka
	Menggunakan	and	Tri Wahyudi,	menggunakan alat panen	adjustable yang lebih efektif,	yang mudah diakses dan
	Metode Triz	Management	Ratih Rahmahwati	konvensional berupa egrek dan	efisien, ergonomis, dan	digerakkan secara fleksibel.
		System		dodos manual. Penggunaan alat	aman. Menggunakan metode	Gagang alat dapat dibongkar
		Volume 7,		ini memiliki banyak kekurangan,	TRIZ untuk mengidentifikasi	pasang dan disesuaikan secara
		No. 2, 2023:		seperti membutuhkan tenaga	dan menyelesaikan	teleskopik dengan berat
		32-38		besar dan keahlian khusus,	kontradiksi teknis dalam	sekitar 5 kg. Dimensi alat,

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
				terutama bagi petani baru,	desain alat. Menyesuaikan	seperti panjang gagang
				kurang efektif dan efisien,	desain alat dengan data	maksimal 5,7 meter untuk
				kurang ergonomis, kurang aman.	antropometri petani,	egrek dan 5,6 meter untuk
				- 1 A	sehingga lebih nyaman	dodos, serta ukuran
				, ISLA	digunakan.	genggaman, disesuaikan
						berdasarkan data
						antropometri petani. Alat ini
				\$ \(\begin{array}{c} \phi \\ \		lebih ergonomis, fleksibel,
			\\\			aman, dan hemat energi
			///			dib <mark>an</mark> dingkan alat
						konvensional.
9.	Perancangan Produk	Jurnal Sistem	Chalis Fajri	Meningkatnya mobilitas	Merancang tas travel	Penelitian ini menghasilkan
	Tas Travel	Teknik	Hasibuan,	masyarakat di era globalisasi	multifungsi yang ergonomis	desain tas travel multifungsi
	Multifungsi Dengan	Industri, Vol	Sutrisno	meningkatkan kebutuhan akan	dan lebih praktis digunakan	yang lebih unggul dari produk
	Menggunakan	19. No. 1,		tas travel multifungsi.	dalam berbagai kondisi	pesaing. Tas ini berukuran
	Metode Quality	Januari 2017		Masyarakat Indonesia sering	perjalanan. Menggunakan	51x26x43 cm dengan tinggi
	Function	ISSN 1411 -		melakukan perjalanan domestik	metode QFD untuk	gagang 45 cm, berbahan
	Deployment (QFD)	5247		maupun internasional, baik	memahami kebutuhan	polimer, dan dilengkapi fitur
		ISSN Online		untuk liburan maupun urusan	konsumen dan	tambahan seperti tempat
		2527-9408		bisnis dan pendidikan. Namun,	mengembangkan desain	minum dan jas hujan.
				tas travel yang ada di pasaran	yang sesuai. Menganalisis	Keunggulannya terletak pada

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
				masih memiliki keterbatasan	dan membandingkan tas	desain, bahan, dan
				seperti desain yang kurang	travel hasil rancangan	fungsionalitasnya yang lebih
				fleksibel, kurangnya fungsi	dengan produk pesaing	baik, serta proses pembuatan
				tambahan, serta material dan	berdasarkan atribut	yang relatif mudah. Evaluasi
				struktur yang belum optimal	fungsional dan teknis.	dengan QFD menunjukkan
				dalam aspek ergonomi dan daya		bahwa produk ini lebih
				tahan.		unggul dari pesaing dalam
						desain, bahan, dan
			\\\			fung <mark>sio</mark> nalitas.
10.	Perancangan	Jurnal Inovasi	Ratna Sari Dewi,	Sayuran mudah rusak setelah	Merancang kontainer	Penelitian ini berhasil
	Kontainer	Vokasional	Ahmad	dipanen, namun banyak	berpendingin yang dapat	merancang kontainer
	Berpendingin pada	dan Teknologi	Rusdiansyah,	produsen belum memiliki sistem	diangkut dengan sepeda	berpendingin yang dapat
	Sepeda Motor	Volume 20	Farhan	distribusi yang baik, sehingga	motor guna menjaga	diangkut dengan sepeda
	dengan Metoda QFD	Number 1,	Herdiansyah	kualitas sayuran menurun saat	kesegaran sayuran selama	motor, menggunakan
	dan TRIZ	2020		sampai ke konsumen. Tantangan	distribusi. Menggunakan	kombinasi metode QFD dan
		ISSN: 1411 -		utama dalam distribusi sayuran	metode QFD untuk	TRIZ. Produk ini
		3411 (p)		adalah suhu penyimpanan yang	mengidentifikasi kebutuhan	menawarkan solusi inovatif
		ISSN: 2549 –		tidak stabil, minimnya solusi	konsumen dan	bagi distribusi sayuran
		9815 (e)		pendinginan praktis, dan	menerjemahkannya ke dalam	dengan mempertahankan
				kurangnya efisiensi dalam	desain teknis. Menerapkan	kesegaran, kapasitas angkut
				distribusi, terutama di perkotaan.	metode TRIZ untuk	optimal, dan efisiensi energi.

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
					menyelesaikan kontradiksi	Hasil penelitian ini dapat
					teknis dalam desain produk.	dikembangkan lebih lanjut
						untuk distribusi produk
				- 1 A		perishable lainnya, seperti
				, ISLA	W S	daging dan buah-buahan.
11.	Perancangan Produk	Jurnal Sistem	Ikhsan Siregar,	Di era teknologi dan gaya hidup	Menerapkan metode QFD	Penelitian ini berhasil
	Tempat Tisu	Teknik	Kevin Adhinata	yang dinamis ini, konsumen	dalam merancang produk	merancang tempat tisu
	Multifungsi Dengan	Industri, Vol.		mencari produk yang tidak	tempat tisu multifungsi	multifungsi yang lebih sesuai
	Menggunakan	19 No. 2, Juli	\\\	hanya fungsional, tetapi juga	sesuai dengan kebutuhan dan	dengan kebutuhan konsumen
	Quality Function	2017	///	inovatif. Tempat tisu, meskipun	keinginan konsumen.	menggunakan metode QFD
	Deployment (QFD)	ISSN 1411 -	///	umum digunakan di berbagai	Mengevaluasi alternatif	dan rekayasa nilai. Produk ini
		5247		tempat, seringkali luput dari	desain tempat tisu serta	memiliki fitur tambahan yang
			\	inovasi. Kebanyakan tempat tisu	atribut produk yang belum	meningkatkan fungsionalitas
			3	hanya berfungsi sebagai wadah.	sesuai dengan preferensi	dan nilai jualnya. Selain itu,
			'	Ini adalah peluang untuk	konsumen. Menerapkan	melalui rekayasa nilai, biaya
				merancang tempat tisu yang	rekayasa nilai (<i>Value</i>	produksi dapat ditekan tanpa
				tid <mark>ak hanya memenuhi</mark>	Engineering) untuk	mengurangi kualitas produk.
				kebutuhan dasar, tetapi juga	meningkatkan kualitas	
				mena <mark>warkan fitur tambahan</mark>	produk dan mengurangi	
				yang meningkatkan pengalaman	biaya produksi.	
				pengguna. Oleh karena itu,		

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
				perancangan tempat tisu yang		
				multifungsi, ergonomis, dan		
				sesuai dengan keinginan		
				konsumen adalah langkah yang		
				perlu diambil.	W S	
12.	Pendekatan Quality	Jurnal Desain	Emmy Nurhayati	Penghapus papan tulis sering	Mengembangkan desain	Penelitian ini menghasilkan
	Function	Produk		digunakan dalam kegiatan	whiteboard eraser V2 dengan	whiteboard eraser V2 dengan
	Deployment (QFD)	(Pengetahuan		belajar mengajar, tetapi banyak	pendekatan QFD guna	desain yang lebih ergonomis,
	dalam proses	dan	\\\	produk yang mudah rusak dan	memperbaiki kekurangan	tahan lama, dan sesuai dengan
	pengembangan	Perancangan	///	kurang berkualitas. Masalah	produk sebelumnya.	kebutuhan pengguna. Dengan
	desain produk	Produk)	///	utama meliputi kain penghapus	Mengidentifikasi kebutuhan	menggunakan metode QFD,
	Whiteboard Eraser	Vol 5 No 2		yang cepat sobek atau terlepas,	pengguna melalui survei dan	produk ini berhasil
	V2	Juli-		bekas tinta spidol yang	kuesioner, serta	dikembangkan dengan fitur
		Desember	3	menempel dan membuat	menerjemahkannya ke dalam	bahan yang lebih kuat, desain
		2022 75-82		tampilan kotor, serta material	spesifikasi teknis produk.	yang lebih menarik, serta kain
		ISSN 2477-		body yang tidak tahan lama,	Merancang whiteboard	penghapus yang dapat
		7900 (printed)		mudah pecah, atau terlalu berat.	eraser yang ergonomis	diganti. Hasil pengujian
		ISSN 2579-		إجويج الريساطينيم	dengan mempertimbangkan	menunjukkan bahwa produk
		7328 (online)		\	data antropometri pengguna	ini lebih nyaman, efisien, dan
		terakreditasi			di Indonesia.	memiliki daya tahan lebih
		Sinta-4				baik dibandingkan dengan

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
						penghapus yang ada di pasaran.
13.	Pengembangan	Jurnal	Rony Prabowo,	Penggunaan handphone semakin	Mengembangkan desain	Penelitian ini berhasil
	Produk Power	Rekayasa	Maulana Idris	meningkat seiring dengan	charger portable inovatif	mengembangkan charger
	Charger Portable	Sistem	Zoelangga	mobilitas tinggi masyarakat.	yang dapat mengisi daya	portable inovatif yang dapat
	dengan	Industri		Namun, permasalahan utama	tanpa listrik dari PLN,	mengisi daya menggunakan
	Menggunakan	Volume 8 No		yang dih <mark>adapi</mark> adalah kebutuhan	melainkan dengan energi	energi kinetik dari gerakan
	Metode Quality	1 - April 2019		daya baterai yang cepat habis,	kinetik dari gerakan	tubuh, sehingga tidak
	Function	ISSN 2339-	\\\	terutama saat tidak ada akses ke	pengguna. Menggunakan	bergantung pada listrik PLN.
	Deployment (QFD)	1499 (online)	///	sumber listrik PLN. Charger	metode Quality Function	Dengan metode QFD, produk
				portable yang ada saat ini masih	Deployment (QFD) untuk	ini dirancang sesuai dengan
				bergantung pada daya listrik dan	menentukan karakteristik	kebutuhan pengguna,
			\	hanya berfungsi sebagai	produk sesuai dengan	terutama yang memiliki
			3	penyimpan daya (power bank).	keinginan konsumen.	mobilitas tinggi. Hasil
				Oleh karena itu, diperlukan	Merancang charger portable	evaluasi menunjukkan bahwa
				inovasi <i>charger portable</i> yang	yang lebih ringan, mudah	charger ini lebih efisien,
				tidak membutuhkan daya dari	digunakan, dan efisien,	praktis, dan ramah
				PLN dan dapat digunakan kapan	terutama untuk pengguna	lingkungan dibandingkan
				saja.	dengan mobilitas tinggi,	charger portable
					seperti pendaki gunung dan	konvensional.
					pelancong.	

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
14.	Pengembangan Alat	Jurnal Tekno	Hapsoro Agung	Di Indonesia, khususnya di	Mengembangkan metode	Penelitian ini menghasilkan
	Ukur Evaluasi Dan	Sains,	Jatmiko dan Rini	Yogyakarta, banyak penyandang	evaluasi kesesuaian kursi	metode evaluasi kursi roda
	Perancangan Produk	VOLUME 7	Dharmastiti	disabilitas belum mendapatkan	roda dengan pengguna	berbasis PEQ yang valid dan
	Kursi Roda	No. 2, 22		kursi roda yang sesuai dengan	menggunakan kuesioner	reliabel, serta
		JUNI 2018		kebutuhan mereka. Masalahnya	berbasis Prosthetic	mengembangkan desain kursi
		Halaman 83-		adalah kursi roda yang tersedia	Evaluation Questionnaire	roda dengan tiga roda dan
		154, ISSN		di pasaran masih menggunakan	(PEQ). Menganalisis	fitur tambahan yang lebih
		2089-6131		konsep "satu ukuran untuk	ekspektasi pengguna	sesuai dengan kebutuhan
		(print)	///	semua", tidak ada alat ukur	terhadap desain kursi roda	pengguna. Dengan
		ISSN 2443-	///	terstandarisasi untuk menilai	yang ideal melalui	menggunakan pendekatan
		1311 (Online)	///	kesesuaian kursi roda, dan	pendekatan Factor Analysis	<i>QFD</i> , desain yang dihasilkan
		DOI	///	desain kursi roda yang terbatas,	dan Quality Function	lebih nyaman, aman,
		10.22146/tekn	\	sehingga pengguna seringkali	Deployment (QFD).	fleksibel, dan ergonomis,
		osains.28222	3	harus mengganti kursi roda yang	Merancang kursi roda yang	sehingga dapat meningkatkan
				tidak sesuai.	lebih sesuai dengan	mobilitas dan kualitas hidup
				IINIC	kebutuhan pengguna,	pengguna.
					berdasarkan hasil evaluasi	
				إجوبي الريسلامية \	dan faktor teknis yang	
				\\	diperoleh.	
15.	Perancangan Produk	Jurnal	Elly Lestari,	Industri aquascape berkembang	Merancang produk	Penelitian ini berhasil
	Aquascape Dengan	Terapan	Miftahul Imtihan	pesat, namun persaingan ketat	aquascape yang inovatif dan	merancang produk aquascape

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
	Metode Quality	Teknik		menuntut inovasi desain produk.	multifungsi berdasarkan	multifungsi (3-in-1)
	Function	Industri, Vol.		Tantangan utama meliputi	kebutuhan dan preferensi	menggunakan metode QFD,
	Deployment (QFD)	1, No. 1, Mei		kurangnya inovasi desain	konsumen. Menggunakan	yang mengutamakan
		2020, Hal. 21-		(banyak produk serupa),	metode QFD untuk	pencahayaan tanaman,
		29, ISSN		kebutuhan konsumen yang	mengidentifikasi atribut	stabilitas suhu air, dan
		[print] 2722-		belum terpenuhi (multifungsi,	penting dalam desain produk.	estetika ruangan. Produk ini
		3469		efisiensi listrik, estetika), dan	Menganalisis atribut utama	dirancang berdasarkan
				kurangnya pendekatan sistematis	yang menjadi prioritas	kebutuhan konsumen,
			///	dalam perancangan produk.	konsumen untuk	sehingga lebih inovatif, hemat
			///		meningkatkan daya saing	energi, dan memiliki daya
					produk.	tahan lebih baik dibandingkan
			///			produk serupa di pasaran.
16.	Perancangan Alat	Jurnal Ilmu	Patrisius Edi	Penyandang tunadaksa bagian	Merancang alat bantu mandi	Penelitian ini menghasilkan
	Bantu Mandi dan	Pengetahuan	Prasetyo,	bawah sering kesulitan	dan toilet yang portabel	desain alat bantu mandi dan
	Aktifitas Toilet	dan	Agustinus Eko	melakukan aktivitas mandi dan	untuk tunadaksa bagian	toilet portabel untuk
	Portabel Tunadaksa	Teknologi,	Susetyo, Dyah Ari	toilet secara mandiri, terutama	bawah agar dapat digunakan	penyandang tunadaksa bagian
	Bagian Bawah	Volume 7,	Susanti	saat di luar rumah. Masalah	di dalam maupun luar rumah.	bawah yang lebih praktis,
		No. 2, Bulan		utamanya adalah kurangnya alat	Mengembangkan desain	ringan, dan kompatibel untuk
		Agustus, hal.		bantu yang portabel dan dapat	yang kompatibel untuk kloset	berbagai jenis toilet. Dengan
		22-38, ISSN		digunakan pada kloset jongkok,	duduk dan jongkok.	penerapan metode TRIZ,
		2579-3624		yang merupakan jenis kloset	Menggunakan metode Front-	produk ini berhasil

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
				yang umum di Indonesia. Selain	End Process dan TRIZ untuk	menyelesaikan berbagai
				itu, kurangnya aksesibilitas di	mengatasi kontradiksi desain	kontradiksi desain,
				fasilitas umum juga menjadi	dan menentukan spesifikasi	menjadikannya lebih optimal
				hambatan bagi kemandirian	teknis yang optimal.	dalam aspek fungsionalitas,
				penyandang tunadaksa.	M S.	kenyamanan, dan keamanan.
						Hasil penelitian ini dapat
				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		menjadi solusi untuk
				\$ \(\begin{array}{c} \phi \\ \		meningkatkan kemandirian
			\\\			dan mobilitas penyandang
			///			tun <mark>ad</mark> aksa.
17.	Perbaikan	Volume 6	Beny Alponso	Kerupuk merupakan makanan	Mengembangkan desain	Mesin ini menggunakan plat
	Rancangan Produk	Issue 1 – 2023	Saragih, Tara	khas Indonesia yang proses	mesin oven pengering	besi sebagai material utama,
	Mesin Oven	TALENTA	Zimah Azahra	produksinya sangat bergantung	kerupuk berbasis energi	memiliki daya blower 150-
	Pengering Kerupuk	Conference	Armaya, Yosefh	pada tahap pengeringan. Saat ini,	biomassa yang lebih optimal.	250 watt, dan berdimensi 200
	Energi Biomassa	Series: Energy	Tamado Ginting,	banyak produsen kerupuk yang	Mengidentifikasi	cm × 78 cm × 80 cm. Dua part
	Menggunakan	and	Johanes Prip	masih menggunakan metode	karakteristik teknis utama	kritis utama adalah kualitas
	Metode Quality	Engineering	Djabasa	pengeringan tradisional, seperti	yang perlu diperbaiki	bahan utama dan kesesuaian
	Function	(EE), ISSN:	Siringoringo,	menjemur di bawah sinar	menggunakan metode QFD	ukuran. Dengan
	Deployment (QFD)	2654-7031	Yohana Rosinar	matahari, yang memiliki	Fase I dan Fase II.	menggunakan metode TRIZ,
	Dan Theory of)		Nainggolan	beberapa kendala, yaitu,	Menerapkan metode TRIZ	masalah kualitas bahan vs
				Ketergantungan pada cuaca,	untuk menyelesaikan	fleksibilitas ukuran diatasi

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
	Inventive Problem			menyebabkan proses produksi	kontradiksi dalam desain dan	dengan segmentasi (membagi
	Solving (TRIZ			menjadi tidak stabil. Waktu	meningkatkan kualitas	posisi tungku menjadi dua
				pengeringan yang lama,	produk. Menggunakan	bagian) dan pemilihan bahan
				sehingga menghambat kapasitas	pendekatan Concurrent	aluminium untuk komponen
				produksi. Kurangnya kontrol	Engineering untuk	utama. Hasilnya, mesin oven
				suhu dan kelembaban, yang	mengintegrasikan berbagai	pengering yang dirancang
				berpengaruh pada kualitas akhir	aspek perancangan.	lebih hemat energi
				produk. Untuk mengatasi		(menggunakan bahan bakar
			\\\	permasalahan ini, diperlukan		biomassa), pengeringan lebih
			\\\	inovasi dalam perancangan		cepat dan merata, fleksibel
			\\\	mesin oven pengering kerupuk		dan mudah digunakan, serta
			///	berbasis energi biomassa yang		lebih tahan lama.
			\	lebih efisien, hemat energi, dan		//
			3	dapat mengontrol suhu serta		
				kelembaban dengan lebih baik.		
18.	Perbaikan	Volume 6	Eriek Pradika	Proses pengisian cairan secara	Mengidentifikasi	Penelitian ini berhasil
	Rancangan	$Issue\ 1-2023$	Pakpahan, Nur	manual di UMKM parfum masih	karakteristik teknis utama	meningkatkan desain alat
	Automatic Liquid	TALENTA	Tirta Jannah	memiliki beberapa kendala yang	dalam perancangan alat	automatic liquid filler dengan
	Filler dengan	Conference	Rambe, Mhd	menyebabkan ketidakefisienan,	pengisi cairan otomatis.	metode QFD dan TRIZ, fokus
	Pendekatan	Series: Energy	Irsan, Ribka	antara lain: Ketidaktepatan	Menggunakan metode QFD	pada ketepatan sensor dan
	Concurrent	and	Patricia Siahaan,	volume cairan yang diisi, karena	Fase I dan II untuk	fleksibilitas ukuran.

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
	Engineering	Engineering	Josafat Christ	sulit untuk mengontrol jumlah	memahami kebutuhan	Perbaikan utama dilakukan
	Menggunakan	(EE), ISSN	Marshala	yang masuk ke dalam wadah.	pengguna dan	dengan mengubah bagian
	Metode Quality	: 2654-7031	Simanjuntak	Proses pengisian yang memakan	mengembangkan solusi	statis menjadi dapat bergerak,
	Function			waktu lama, menghambat	teknis yang optimal.	serta meningkatkan akurasi
	Deployment dan			produktivitas dan efisiensi	Menerapkan metode TRIZ	sensor dan efisiensi pengisian
	TRIZ			produksi. Kurangnya	untuk menyelesaikan	cairan. Hasil akhir
				otomatisasi dalam sistem	kontradiksi teknis dalam	menunjukkan bahwa alat ini
				pengis <mark>ian</mark> cairan, yang	desain produk.	lebih akurat, efisien, dan
			///	meningkatkan beban kerja		sesuai untuk berbagai jenis
			///	pek <mark>erja.</mark>		wadah, sehingga dapat
			///			meningkatkan produktivitas
			///			di UMKM parfum.
19.	Perancangan Produk	Volume 6	Lidwina Inara	Proses penyangraian dan	Merancang alat penyangrai	Penelitian ini berhasil
	Alat Penyangrai dan	$Issue\ 1-2023$	Siagian, Ruth	penggilingan kopi dalam skala	dan penggiling kopi otomatis	merancang alat penyangrai
	Penggiling Kopi	TALENTA	Rose Angeline	industri kecil dan rumah tangga	dengan metode Nigel Cross	dan penggiling kopi otomatis
	Otomatis	Conference	Tarigan, Hana	masih dilakukan secara manual,	agar lebih efisien dan sesuai	menggunakan metode Nigel
	Menggunakan	Series: Energy	Charelin	ya <mark>ng</mark> menyebabkan beberapa	dengan kebutuhan pengguna.	Cross dan QFD,
	Metode Nigel Cross	and	Hutagalung,	kendala, seperti: Membutuhkan	Menggunakan metode QFD	menghasilkan desain yang
		Engineering	Adrian	banyak tenaga kerja, sehingga	untuk mengidentifikasi	lebih efisien, ekonomis, dan
		(EE), ISSN		kurang efisien. Proses produksi	spesifikasi teknis	sesuai kebutuhan konsumen.
		: 2654-7031		lebih lama, karena dilakukan	berdasarkan keinginan	Produk ini memiliki fitur

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
			Nathanael Bakara,	secara terpisah antara	konsumen. Menentukan	otomatis, sensor bunyi, dan
			Tanjiro Bastian	penyangraian dan penggilingan.	alternatif desain terbaik	desain yang lebih stabil, serta
			Chandra	Diperlukan inovasi dalam	berdasarkan evaluasi teknis	biaya produksi yang lebih
				bentuk alat penyangrai dan	dan ekonomis.	rendah, menjadikannya solusi
				penggiling kopi otomatis yang	M S	ideal untuk industri kecil dan
				lebih efisien, terjangkau, dan		rumah tangga.
				mudah digunakan.		
20.	Redesain Mesin	2024,	Muhammad	Peternak di Kabupaten Sleman	Menentukan atribut desain	Analisis Kebutuhan
	Pencacah Rumput	Doctoral	Rayhan Al Furqan	membutuhkan mesin pencacah	mesin pencacah rumput	Pengguna: Mesin harus aman
	Dengan Metode	Dissertation,	Ainul	rumput untuk menyiapkan pakan	berdasarkan ke <mark>butuh</mark> an	digunakan dan memiliki
	Teoriya Resheniya	Universitas	///	ternak, namun mesin yang	peternak. Mengembangkan	sistem perlindungan operator.
	Izobretatelskih	Islam	///	tersedia saat ini memiliki	desain mesin menggunakan	Material pisau lebih tahan
	Zadatch (TRIZ)	Indonesia	\	berbagai keterbatasan, seperti:	metode TRIZ guna	lama, mengurangi frekuensi
			3	Sulit dipindahkan, sehingga	menyelesaikan kontradiksi	penggantian suku cadang.
			,	kurang fleksibel untuk	desain dan meningkatkan	Redesain Mesin dengan
				digunakan di berbagai lokasi.	performa mesin.	Metode TRIZ: Root Conflict
				Material pisau mudah berkarat,	SULA //	Analysis (RCA) digunakan
				sehingga menurunkan daya	// جامعتنسلطان	untuk mengidentifikasi
				tahan dan efisiensi mesin.	//	kontradiksi utama. Solusi
				Diperlukan redesain mesin		berdasarkan TRIZ:
				pencacah rumput agar lebih		Menyesuaikan ukuran mesin

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
				efisien, aman, dan sesuai dengan		agar lebih portabel tanpa
				kebutuhan peternak.		mengurangi kapasitas
						pencacahan. Menggunakan
				- 1 8		material pisau stainless steel
				ISLA	M C	agar lebih tahan lama dan
						tidak mudah berkarat. Sistem
						pencacahan: 4 pisau stainless
						steel dengan ketebalan 3 mm.
21.	Redesign Kemasan	2017, Skripsi	Agam Surya	Kemasan Egg Roll pada UMKM	Penelitian ini bertujuan untuk	Hasil penelitian menunjukkan
	Produk Egg Roll	Fakultas	Rizaldi	Diva Cookies kurang menarik	mengidentifikasi atribut-	bahwa terdapat enam atribut
	Menggunakan	Teknologi		dan tidak melindungi produk	atribut desain kemasan	utama kemasan berdasarkan
	Metode Kansei	Industri,	\\\	secara optimal. Selain itu, tidak	menggunakan metode	metode Kansei Engineering,
	Engineering dan	UNIISSULA	\	terdapat atribut penting seperti	Kansei Engineering,	yaitu warna cerah, berlogo,
	Value Engineering		3	logo halal dan informasi produk,	menentukan alternatif desain	kemasan vertikal, informatif,
				serta desain kemasan masih	ulang kemasan egg roll	inovatif, dan kuat. Dari lima
				konvensional (berupa kotak	dengan pendekatan Kansei	alternatif desain yang diuji,
				karton tipis) yang mudah rusak	Engineering dan Value	desain kemasan berbentuk
				dan kurang menjual secara visual	Engineering, serta	segienam terpilih sebagai
				\\	memahami kebutuhan	yang terbaik berdasarkan
					kemasan produk Egg Roll	penilaian konsumen dengan
					Diva Cookies berdasarkan	skor tertinggi sebesar 3,95.

No.	Judul	Sumber	Penulis	Permasalahan Penelitian	Tujuan Penelitian	Hasil Penelitian
					persepsi dan keinginan	Selain itu, penggunaan bahan
					konsumen.	kemasan baru mampu
						memberikan efisiensi biaya
				- 1 A		sebesar 18,9% atau setara
				, ISLA	W S	dengan Rp 330.000 per 1000
						pcs dibandingkan dengan
				' (ال ``\\		kemasan sebelumnya.

Berdasarkan tabel Literarur Rivew diatas terdapat beberapa metode yang digunakan pada penelitian terdahulu, seperti *Kansei Engineering, Quality Function Deployment* (QFD), *Theory of Inventive Problem Solving* (TRIZ), *Nigel Cross, Pahl & Beitz*. Berikut merupakan keunggulan serta kelemahan dari masing-masing metode:

1. Kansei Engineering

Keunggulan:

- a. Menggali persepsi emosional konsumen.
- b. Menghasilkan produk yang ergonomis, estetis, dan sesuai preferensi pengguna.
- c. Cocok untuk desain yang butuh sentuhan *user experience*.

Kelemahan: Membutuhkan data dari responden (kuesioner, semantic differential), analisis statistik, dan interpretasi yang mendalam

2. Quality Function Deployment (QFD)

Keunggulan:

a. Sistematis dalam mengubah kebutuhan konsumen ke spesifikasi teknis

b. Mengurangi miskomunikasi antara konsumen dan teknisi.

Kelemahan:

- a. Tidak terlalu menekankan aspek emosional/estetika.
- b. Lebih kuat pada aspek teknis-fungsional, bukan user feeling.
- 3. Theory of Inventive Problem Solving (TRIZ)

Keunggulan:

- a. Membantu menemukan solusi kreatif dengan mengatasi kontradiksi teknik.
- b. Cocok untuk inovasi produk baru yang sangat teknis.

Kelemahan:

- a. Kompleks dan cenderung teknis, kurang melibatkan preferensi emosional pengguna.
- b. Lebih cocok untuk R&D atau rekayasa desain daripada untuk aspek ergonomic design.
- 4. Nigel Cross

Keunggulan:

- a. Memberikan alur desain yang jelas.
- b. Cocok untuk pembelajaran dasar proses desain.

Kelemahan : Terlalu umum, tidak ada alat spesifik untuk menghubungkan kebutuhan emosional atau teknis.

5. Pahl & Beitz

Keunggulan:

- a. Sangat sistematis, cocok untuk produk kompleks.
- b. Digunakan luas dalam desain teknik.

Kelemahan:

- a. Lebih teknis dan struktural.
- Tidak secara langsung mempertimbangkan persepsi pengguna (ergonomi/emosi).

Berdasarkan keunggulan dan kelemahan dari masing-masing metode, maka di pilih metode *Kansei Engineering* karena dapat menerjemahkan persepsi emosional dan kenyamanan pengguna ke dalam spesifikasi desain teknis, sehingga hasil rancangan lebih sesuai kebutuhan nyata mahasiswa sebagai pengguna. Serta

metode *Kansei Engineering* lebih inovatif karena belum sebanyak QFD atau Pahl & Beitz digunakan di penelitian, sehingga bisa memberikan kontribusi akademik yang lebih unik.

2.2 Landasan Teori

Dibawah ini merupakan landasan-landasan teori dari penelitian yang dilakukan, yakni sebagai berikut :

2.2.1 Meja Kerja

Berikut ini merupakan bagian-bagian dari meja kerja:

2.2.1.1 Definisi Meja Kerja

Meja kerja merupakan perabot yang dirancang untuk mendukung aktivitas pekerjaan tertentu, seperti perakitan, pemotongan, pengelasan, atau penulisan. Meja kerja umumnya memiliki struktur yang kokoh dan permukaan yang disesuaikan dengan kebutuhan penggunanya. Menurut Standar Ergonomi Industri, meja kerja harus mempertimbangkan faktor kenyamanan, keamanan, dan efisiensi dalam penggunaannya (Openshaw Allsteel, 2006).

Meja kerja adalah permukaan yang kokoh, datar, halus, dan dibentuk yang tersedia dalam berbagai ukuran yang dirancang untuk tugas-tugas tertentu. Meja kerja dapat berupa pengaturan yang rumit untuk desain teknik, pemesinan, dan perkakas presisi, hingga meja kayu dengan *finishing* tinggi untuk pengerjaan kayu, pengerjaan logam, dan desain proyek (Openshaw Allsteel, 2006).

Meja kerja yang dibangun dengan baik memiliki penyangga yang kuat yang mampu menangani peralatan dan mesin yang berat. Meja kerja produksi dan manufaktur, yang sering disebut stasiun kerja, serupa tetapi berbeda dalam cakupannya. Meja kerja biasanya memiliki area yang lebih luas dan mengakomodasi berbagai macam tugas, sedangkan stasiun kerja merupakan bagian dari jalur produksi atau perakitan (Openshaw Allsteel, 2006).

2.2.1.2 Komponen Utama Meja Kerja

Meja kerja umumnya terdiri dari beberapa komponen utama, yaitu:

a. Permukaan kerja.

Bagian utama meja yang digunakan untuk menempatkan benda kerja.

b. Rangka atau struktur penyangga.

Menopang permukaan kerja agar stabil dan mampu menahan beban.

c. Sistem penyimpanan.

Seperti laci atau rak yang digunakan untuk menyimpan alat dan bahan kerja.

d. Sistem pencahayaan.

Beberapa meja kerja dilengkapi dengan sistem pencahayaan tambahan untuk meningkatkan visibilitas.

2.2.1.3 Ergonomi dalam Desain Meja Kerja

Ergonomi adalah faktor penting dalam perancangan meja kerja, terutama untuk meningkatkan kenyamanan dan efisiensi kerja. Beberapa aspek ergonomi yang harus diperhatikan dalam desain meja kerja meliputi:

a. Ketinggian meja.

Disesuaikan dengan tinggi pengguna untuk mencegah ketegangan otot.

b. Dimensi meja.

Lebar dan panjang meja harus cukup untuk menampung peralatan dan benda kerja.

c. Material meja

Harus tahan terhadap beban dan kondisi lingkungan tempat kerja.

d. Stabilitas dan keamanan.

Meja harus memiliki struktur yang kuat dan tidak mudah bergeser selama penggunaan.

2.2.2 Meja Kerja Praktikum Pengelasan

Berikut ini merupakan bagian-bagian dari meja kerja praktikum pengelasan:

2.2.2.1 Definisi Meja Kerja Praktikum Pengelasan

Meja kerja praktikum pengelasan adalah komponen yang sangat diperlukan dalam proses belajar dan meningkatkan keterampilan pengelasan. Stabilitas, keserbagunaan, dan fungsionalitasnya memberikan dukungan yang solid bagi para pemula dan tukang las tingkat lanjut. Meja las ini memungkinkan peserta didik untuk mempraktikkan berbagai teknik dengan aman dan efisien, menyelesaikan

proyek-proyek praktis, dan mendapatkan pengalaman yang diperlukan untuk menjadi pengelasan yang berkualitas. (GPPH Group, 2024)

Meja kerja praktikum pengelasan adalah meja kerja yang dirancang khusus untuk mendukung aktivitas pengelasan dalam lingkungan pendidikan atau industri. Meja ini harus mampu menahan suhu tinggi, percikan api, serta beban dari benda kerja yang dikerjakan.

2.2.2.2 Karakteristik Meja Kerja Praktikum Pengelasan

Beberapa karakteristik penting dari meja kerja praktikum pengelasan antara lain:

- a. Permukaan tahan panas.
 - Terbuat dari material tahan api, seperti baja tahan karat atau besi tuang.
- Ventilasi dan sistem pembuangan asap.
 Dilengkapi dengan sistem pembuangan asap untuk menjaga kualitas udara.
- c. Grounding untuk keamanan listrik.
 - Meja pengelasan harus memiliki sistem *grounding* untuk mencegah sengatan listrik.
- d. Struktur kokoh.
 - Harus mampu menahan beban kerja dan getaran akibat proses pengelasan.
- e. Penjepit atau *fixture* kerja.
 - Digunakan untuk menahan benda kerja agar tetap stabil selama proses pengelasan.

2.2.2.3 Standar Ergonomi dalam Meja Kerja Praktikum Pengelasan

Dalam praktik pengelasan, faktor ergonomi sangat berperan dalam mengurangi risiko cedera dan meningkatkan efisiensi kerja. Beberapa aspek ergonomi yang diperhatikan dalam perancangan meja kerja pengelasan antara lain:

- Ketinggian meja yang dapat disesuaikan untuk berbagai posisi kerja (duduk atau berdiri).
- b. Desain meja yang memungkinkan postur kerja yang baik untuk mengurangi kelelahan.
- Penyediaan sandaran tangan atau alat bantu posisi untuk mengurangi ketegangan otot saat bekerja dalam waktu lama.

2.2.2.4 Material dan Konstruksi Meja Kerja Praktikum Pengelasan

Material yang digunakan untuk meja kerja pengelasan harus memiliki sifat tahan panas, tahan korosi, dan cukup kuat untuk menopang beban kerja. Beberapa material yang umum digunakan antara lain:

- a. Baja karbon rendah.
 - Kuat dan tahan terhadap suhu tinggi, namun rentan terhadap karat jika tidak dilapisi dengan bahan pelindung.
- Baja tahan karat (*stainless steel*).
 Memiliki ketahanan tinggi terhadap korosi dan mudah dibersihkan.
- c. Besi cor.

Tahan terhadap suhu tinggi dan memiliki massa yang cukup untuk memberikan kestabilan

2.2.3 Kansei Engineering

Kansei Engineering (KE) adalah sebuah metode yang bertujuan untuk memastikan bahwa suatu produk atau jasa mampu memenuhi tanggapan emosional yang diinginkan oleh pengguna. Nagamachi & Lokman (2010) Metode ini menerjemahkan perasaan dan kesan subjektif konsumen ke dalam parameter desain yang dapat diukur dan diimplementasikan dalam pengembangan produk.

Dalam bahasa Jepang, *kansei* berarti emosi, yang tidak hanya mencakup aspek kognitif, tetapi juga melibatkan berbagai indera seperti penglihatan, pendengaran, perasaan, penciuman, dan rasa. Dengan demikian, *Kansei Engineering* memungkinkan penciptaan produk yang dapat memberikan pengalaman emosional yang lebih mendalam bagi penggunanya (Nagamachi & Lokman, 2010).

Keunggulan utama *Kansei Engineering* dibandingkan metode lain yang serupa adalah kemampuannya dalam menerjemahkan kebutuhan emosional konsumen menjadi parameter desain yang konkret dan terukur. Proses ini dilakukan melalui berbagai teknik, termasuk analisis faktor, regresi multivariat, dan teknik statistik lainnya untuk menghubungkan preferensi emosional dengan elemen desain produk.

Metode ini sering digunakan dalam berbagai industri, seperti otomotif, elektronik, desain interior, dan produk konsumen lainnya, untuk meningkatkan kepuasan pengguna dan menciptakan pengalaman yang lebih bermakna melalui desain berbasis emosi.

Menurut Nagamachi (1995), terdapat empat poin utama dalam *Kansei Engineering*:

- Memahami perasaan konsumen tentang produk dalam hal ergonomi dan psikologis.
- Mengidentifikasi karakteristik desain produk berdasarkan perasaan konsumen.
- 3. Membangun Kansei Engineering sebagai teknologi ergonomis.
- 4. Menyesuaikan desain produk dengan perubahan sosial atau tren preferensi masyarakat.

Kansei Engineering telah berkembang menjadi beberapa tipe, antara lain:

1. Tipe I: Category Classification

Category classification merupakan sebuah tipe yang menentukan konsep target dari sebuah produk baru yang mengidentifikasi konsep tujuan dari produk baru yang berhubungan dengan subjektivitas dari parameter desain objektif.

2. Tipe II: Kansei Engineering System (KES)

KES merupakan *computer aided system*, yang di mana terdiri dari *kansei databas*es, mekanisme inferensi dan subsistem lainnya untuk memfasilitasi sistem dari komputerisasi dalam menangani proses penafsiran perasaan dari pengguna dan elemen desain perseptual.

3. Tipe III: Kansei Engineering Modeling

Membangun model prediksi matematis dalam sistem komputerisasi untuk menghubungkan input (perasaan konsumen) dengan *output* (karakteristik fisik produk).

4. Tipe IV: Hybrid Kansei Engineering

Hybrid Kansei Engineering merupakan tipe yang memiliki dua tipe metode yaitu, forward dan backward kansei engineering. Forward kansei

engineering adalah metode di mana produk akan dipilih oleh konsumen sesuai dengan perasaan mereka, seperti yang ditunjukkan oleh kansei yang ada di benak konsumen. Langkah selanjutnya, komputer digunakan untuk menampilkan desain yang sesuai. Backward kansei engineering adalah metode pendukung di mana seorang desainer cukup memasukkan sketsa, dan sistem akan membaca dan mendiagnosis kansei yang sesuai spesifikasinya.

5. Tipe V: Virtual Kansei Engineering

Virtual Kansei Engineering merupakan tipe yang mengintegrasi teknologi Virtual Reality (VR) dan KE. Tujuan khusus dari tipe ini adalah untuk mengembangkan produk yang ditujukan untuk kepuasan pelanggan melalui partisipasi pelanggan dengan teknologi VR, seperti pengalaman pengguna dengan VR dalam mengevaluasi suatu produk

6. Tipe VI: Collaborative Kansei Engineering

Memungkinkan desainer dan atau konsumen dari lokasi berbeda untuk berkolaborasi melalui jaringan dalam mengembangkan desain produk baru menggunakan basis data *Kansei* bersama.

Proses Kansei Engineering Tipe IV melibatkan beberapa tahapan, antara

lain:

1. Pengumpulan Kansei Words

Mengumpulkan kata-kata yang menggambarkan perasaan atau persepsi konsumen terkait domain produk.

- a. Identifikasi Pengguna dan Konteks Penggunaan
 - Menentukan siapa target pengguna produk berdasarkan karakteristik demografi, psikografi, dan ergonomi.
 - Menganalisis kondisi lingkungan di mana produk akan digunakan (misalnya: kondisi kerja, postur pengguna, durasi penggunaan, dan faktor keselamatan dalam aktivitas pengelasan).

b. Ekstraksi Kata-Kata Kansei

Menggunakan metode seperti wawancara, survei, *focus group discussion* (FGD), atau studi literatur untuk mengumpulkan kata-kata yang mencerminkan perasaan dan preferensi pengguna terhadap produk.

2. Pemilihan Metode Pendukung

Dalam Kansei Engineering Tipe IV, metode tambahan digunakan untuk meningkatkan akurasi desain produk. Beberapa metode yang sering digunakan:

a. Quality Function Deployment (QFD)
 Menghubungkan kebutuhan pengguna dengan karakteristik teknis produk.

b. Analisis Morfologi

Mengidentifikasi alternatif desain berdasarkan kombinasi parameter desain.

c. Ergonomi

Menganalisis aspek kenyamanan, kelelahan, dan keamanan pengguna dalam interaksi dengan produk.

d. Metode Statistik (Analisis Faktor, Regresi, atau Neural Network)
 Mengidentifikasi hubungan antara kata Kansei dengan elemen desain produk.

3. Pemetaan Hubungan Kansei dengan Elemen Desain

a. Membuat Matriks Hubungan *Kansei*

Menggunakan metode tambahan untuk menghubungkan kata Kansei dengan karakteristik desain produk.

b. Analisis Statistik

- Menggunakan metode Analisis Faktor atau Analisis Regresi untuk mengetahui elemen desain mana yang memiliki pengaruh paling besar terhadap Kansei pengguna.
- Jika data lebih kompleks, Neural Network atau Machine Learning bisa digunakan untuk membuat model prediksi hubungan antara desain dan emosi pengguna.

4. Pengembangan Konsep Desain

a. Generasi Alternatif Desain (Analisis Morfologi)

Menggunakan metode Analisis Morfologi untuk menggabungkan berbagai elemen desain berdasarkan pemetaan metode tambahan.

b. Evaluasi Alternatif

- Alternatif desain dibandingkan menggunakan metode AHP (Analytical Hierarchy Process) atau Pairwise Comparison untuk memilih solusi terbaik
- Pengujian awal dilakukan dengan model sketsa atau CAD (Computer-Aided Design).

5. Pengujian Ergonomi dan Validasi Desain

- a. Simulasi Virtual dan Fisik
 - Menggunakan software simulasi ergonomi seperti Jack Human Simulation atau CATIA Ergonomics untuk mengevaluasi interaksi pengguna dengan desain produk.
 - Menganalisis aspek postur kerja, kelelahan otot, dan keselamatan pengguna saat menggunakan meja kerja.

b. Uji Prototipe

- Membuat prototipe fisik dan mengujinya dengan pengguna nyata.
- Mengumpulkan feedback melalui kuisioner, wawancara, atau metode
 Eye-Tracking untuk mengetahui respons emosional pengguna terhadap
 desain yang telah dibuat.

6. Revisi dan Penyempurnaan Produk

- a. Berdasarkan hasil pengujian, desain diperbaiki untuk meningkatkan kenyamanan, keamanan, dan performa produk.
- b. Revisi dilakukan dengan mempertimbangkan data ergonomi, *feedback* pengguna, serta aspek manufaktur dan biaya produksi.

7. Implementasi dan Produksi Massal

- Setelah desain final ditetapkan, produk siap untuk diproduksi dengan mempertimbangkan aspek manufaktur dan efisiensi biaya.
- Menggunakan metode DFMA (Design for Manufacturing and Assembly)
 untuk memastikan bahwa desain dapat diproduksi dengan mudah dan
 efisien.

 Produk diuji kembali dalam skala produksi untuk memastikan kualitas tetap terjaga.

Dengan mengikuti tahapan-tahapan tersebut, *Kansei Engineering* membantu dalam menciptakan produk yang tidak hanya fungsional tetapi juga memenuhi kebutuhan emosional dan estetika konsumen.

2.2.4 Ergonomi

2.2.4.1 Defnisi Ergonomi

Ergonomi berasal dari bahasa yunani yaitu "Ergos" dan "Nomos". Ergos yang berarti kerja, sedangkan nomos adalah aturan. Sehingga dapat disimpulkan bawa istilah yang satu ini melakukan pembahasan tentang aturan kerja. Adapun ergonomi adalah ilmu pengetahuan, seni dan penerapan teknologi untuk menyelaraskan sarana yang digunakan baik dalam kegiatan maupun saat istirahat atas dasar kemampuan dan keterbatasan manusia baik lahir maupun batin sehingga kualitas hidup secara keseluruhan menjadi baik (Tarwaka and Bakri, 2016).

Menurut Kementerian Kesehatan Republik Indonesia (2007) adalah ilmu yang mempelajari tentang perilaku manusia dalam kaitannya dengan pekerjaannya. Sasaran penelitian ilmu ergonomi adalah manusia saat bekerja di lingkungan. Secara singkat dapat dikatakan bahwa ergonomi adalah penyesuaian tugas kerja dengan kondisi tubuh manusia yang bertujuan untuk mengurangi stres yang akan dihadapi. Upaya yang dilakukan antara lain menyesuaikan ukuran tempat kerja dengan dimensi tubuh agar tidak melelahkan, pengaturan suhu, cahaya dan kelembaban sesuai kebutuhan tubuh manusia.

Ergonomi adalah ilmu pengetahuan, seni dan penerapan teknologi untuk menyerasikan atau menyeimbangkan antara segala fasilitas yang digunakan baik dalam beraktivitas maupun istirahat dengan kemampuan dan keterbatasan manusia baik fisik maupun mental sehingga kualitas hidup secara keseluruhan menjadi lebih baik. Secara singkat ergonomi bermakna sebagai ilmu yang meniliti tentang hubungan manusia dengan lingkungan kerjanya. Yang dimaksud dengan lingkungan kerja disini adalah lingkungan sekitar dimana manusia bekerja, metode

kerja, pengaturan kerja, alat-alat atau mesin yang digunakan, bahan, manusia dan lingkungan yang dinamakan sistem kerja (Nurmianto, 1996).

2.2.4.2 Tujuan Ergonomi

Adapun beberapa tujuan dari ergonomi itu sendiri yaitu sebagai berikut :

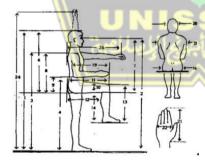
- Meningkatkan kesejahteraan fisik dan mental melalui upaya pencegahan cedera dan penyakit akibat kerja
- b. Meningkatkan kesejahteraan sosial melalui peningkatan kontak sosial, mengelola dan mengkoordinir kerja secara tepat guna meningkatkan jaminan sosial baik selama kurun waktu usia produktif maupun setelah tidak produktif
- c. Menciptakan keseimbangan rasioanal antara berbagai aspek yaitu aspek teknik, ekonomis, antropologis, dan budaya dari setiap sistem kerja yang dilalkukan sehingga tercipta kualitas kerja dan kualitas hidup yang tinggi (Tarwaka et al., 2004)

2.2.5 Antropometri

Antropometri berasal dari "Anthro" yang memiliki aarti manusia dan "metri" yang memiliki arti ukuran. Antropometri adalah sebuah strudi tentang pengukuran tubuh dimensi manusia dari tulang, otot dan jarirngan adiposa atau lemak (Survey, 2009). Menurut Wignjo Soebroto (2018), antropometri adalah studi yang berkaitan dengan pengukuran dimensi tubuh manusia. Bidang antropometri meliputi berbagai ukuran tubuh manusia seperti berat badan, posisi ketika berdiri ketika merentangkan tangan, lingkar tubuh, panjang tungkai, dan sebagainya.

Data Antropometri digunakan untuk berbagai keperluan, seperti perancangan stasiun kerja, fasilitas kerja, dan desain produk agar diperoleh ukuran-ukurqan yang sesuai dan layak dengan dimensi anggta tubuh manusia yang akan menggunakannya.

Untuk data antropometri yang didapatkan bisa diterapkan secara meluas, termasuk yang terkait dengan :


- 1. Desain area kerja seperti tempat kerja dan kendaraan.
- 2. Perencanaan pada peralatan kerja seperti mesin, peralatan dan perkakas.

- 3. Desain barang konsumsi seperti pakaian, kursi dan meja komputer.
- 4. Desain lingkungan kerja secara fisik.

Antropometri pada dasarnya berkaitan dengan dimensi atau ukuran tubuh manusia, seperti ukuran berat, tinggi, volume, dan karakteristik sepsifik tubuh seperti rentang gerak. Data antropometri berguna saat merancang desain peralatan kerja dan fasilitas kerja. Untuk memperoleh pengukuran yang sesuai dan tepat, maka harus kompatibel sama orang yang menggunakannya, terutama yang berkaitan dengan ukuran tubuh. Data antropometri diperlukan untuk merancang desain prduk engan orang yang menjalankannya. Pada dimensi tubuh yang dibutuhkan umumnya sulit ditentukan dari pengukuran individu.

Dengan demikian dapat disimpulkan bahwa data antropometri akan menentukan bentuk, ukuran, dan dimensi yang tepat yang berkaitan dengan produk yang dirancang dan manusia yang akan mengoprasikan atau mengunakan produk tersebut (Wignjosoebroto, 2000). Pengukuran data antropometri dapat dibedakan menjadi 2 jenis yaitu:

- 1. Dimensi struktur (antropometri statis) Tubuh diukur dalam berbagai posisi standar dan tidak bergerak (tetap tegak seluruhnya). Dengan kata lain untuk jenis antropometri ini adalah "antropometri statis". Dalam hal ini, ukurannya ditentukan menggunakan pengukuran persentil.
- Antropometri dinamis Disini posisi tubuh diukur saat melakukan gerakan tertentu yang berhubungan dengan aktivias yang akan dilakukan.

Gambar 2.1 Antropometri dimensi tubuh

Sumber: Solo Abadi(2023), diakses dari https://soloabadi.com/

Tabel 2. 2 Antropometri Statis

No	Data Yang Diukur	Simbol
1	Tinggi duduk tegak	Tdt
2	Tinggi duduk normal	Tdn
3	Tinggi mata duduk	Tmd
4	Tinggi bahu duduk	Tbd
5	Tinggi siku duduk	Tsd
6	Tinggi sandaran punggung	Tsp
7	Tinggi pinggang	Tpg
8	Tebal perut	Tpd
9	Tebal paha	Тр
10	Tinggi popliteal	Тро
11	Pantat popliteal	Pp
12	Pantat ke lutut	Pkl
13	Lebar bahu	Lb
14	Lebar pinggul	Lp
15	Lebar sandaran duduk	Lsd
16	Lebar pinggang	Lpg
17	Siku ke siku	Sks
18	Tinggi badan tegak	Tbt
19	Tinggi mata berdiri	Tmb
20	Tinggi bahu berdiri	Tbhd
21	Tinggi siku be <mark>rdir</mark> i	Tsb
22	Tinggi pinggang berdiri	Tpgb
23	Tinggi lutut berdiri	Tlp
24	Panjang lengan bawah	Plb
25	Panjang telapak tangan	Ptt
26	Tebal dada berdiri	Tdb
27	Tebal perut berdiri	Tpb

No	Data Yang Diukur	Simbol
28	Berat badan	Bb
29	Jangkauan tangan ke depan	Jtd
30	Jangkauan tangan ke atas	Jta
31	Rentangan tangan	Rt
32	Panjang jari 1	Pj1
33	Panjang jari 2	Pj2
34	Panjang jari 3	Pj3
35	Panjang jari 4	Pj4
36	Panjang jari 5	Pj5
37	Pangkal ke tangan	Pkt
38	Lebar jari 2	Lj2
39	Lebar jari 3	Lj3
40	Lebar jari 4	Lj4
41	Lebar jari 5	Lj5
42	Lebar telapak tangan (metacarpal)	Lt
43	Lebar telapak tangan (maksimal)	Ltm
44	Panjang telapak tangan	Ptt
45	Diameter genggang (maksimal)	Dg
46	Lebar ma <mark>ksi</mark> mal	Lm
47	Lebar fungs <mark>ion</mark> al maksimum	Lfm
48	Tebal telapak tangan	Ttt
49	Panjang telapak kaki	Ptk
50	Panjang telapak lengan kaki	Ptl
51	Panjang kaki sampai jari kelingking	Pkk
52	Lebar kaki	Lk
53	Lebar tangkai kaki	Ltk
54	Tinggi mata kaki	Tmk

No	Data Yang Diukur	Simbol
55	Tinggi bagian tengah telapak kaki	Ttk
56	Jarak horizontal tangkai mata kaki.	Hmk
57	Panjang kepala	Pk
58	Lebar kepala	Lkp
59	Diameter maksimal dari dagu	Dmd
60	Dagu ke puncak kepala	Dpk
61	Telinga ke puncak kepala	Tpk
62	Telinga ke belakang kepala	Tbk
63	Antara dua telinga	Adt
64	Mata ke puncak kepala	Mpk
65	Mata ke belakang kepala	Mbk
66	Antara dua pupil mata	Dpm
67	Hidung ke puncak kepala	Hpk
68	Hidung ke belakang kepala	Hbk
69	Mulut ke puncak kepala	Mpl
70	Lebar mulut	Lm
71	Keliling leher	K1

Tabel 2. 2 Antropometri Dinamis

No	Dat <mark>a</mark> Yang <mark>Diukur</mark>	Simbol
1	Putaran leng <mark>an k</mark> anan	Pln
2	Putaran Telapak Tangan Atas	Ptta
3	Sudut Telapak kaki	Stk
4	Putaran telapak tangan mendatar	Pttm
5	Tangan kanan putaran ke kiri	Pli

Rumus mencari Standar Deviasi dan perhitungan Persentil Berikut adalah rumus untuk mencari standar deviasi : Keterangan:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n=i} (X_i - \bar{X})^2}{n-1}}$$
 (1)

Keterangan:

n = Jumlah data

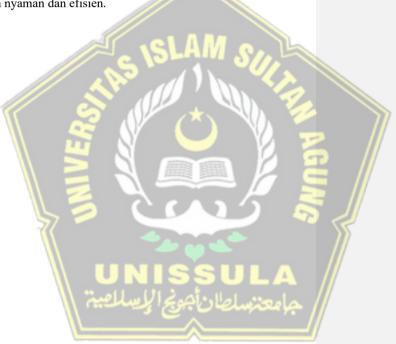
 \bar{X} = Rata-rata data

 X_i = Titik tengah

 σ = Standar deviasi

Tabel 2. 3 Tabel Perhitungan Persentil

D 43	p. 124
Persentil	Perhitungan
1 - th	$x - 2{,}325 \sigma x$
2,5 - th	$x-1,96 \sigma x$
5 - th	$x - 1,645 \sigma x$
10 - th	$x-1,28 \sigma x$
50 - th	x
90 - th	$x + 1,28 \sigma x$
95 - th	$x + 1,645 \sigma x$
97 - th	$x + 1,96 \sigma x$
99 - th	$x + 2,325 \sigma x$


Persentil menunjukkan suatu nilai persentase tertentu dari orang yang memiliki ukuran pada atau di bawah nilai tersebut, Apabila dalam mendesain produk terdapat variasi untuk ukuran sebenarnya, maka seharusnya dapat merancang produk yang memiliki fleksibilitas dan sifat mampu menyesuaikan (adjustable) dengan suatu rentang tertentu (Wignjosoebroto, 2000).

2.3 Hipotesis dan Kerangka Teoritis

2.3.1 Hipotesis

Praktikum proses manufaktur, khususnya pada sub-bagian pengelasan, belum terdapat meja kerja pengelasan serta sering kali melibatkan postur tubuh yang tidak ergonomis dalam jangka waktu lama. Hal ini dapat berakibat pada berbagai gangguan muskuloskeletal (GMS) pada para praktikan, seperti nyeri punggung, leher, bahu, dan pergelangan tangan. Gangguan muskuloskeletal ini

tidak hanya dapat menyebabkan ketidaknyamanan dan menurunkan produktivitas, tetapi juga berpotensi menimbulkan cedera serius dan permanen. Oleh karena itu, penting untuk merancang desain meja kerja pengelasan yang ergonomis untuk meminimalisir risiko gangguan muskuloskeletal pada para praktikan. Pada penelitian kali ini penulis menggunakan metode *Kansei Engineering* dan pendekatan ergonomi pada Laboratorium Proses Manufaktur Teknik Industri UNISSULA. *Kansei Engineering* mampu untuk menerjemahkan kebutuhan emosional atau psikologis konsumen menjadi elemen desain yang konkret dibandingkan metode lainnya, sehingga akan efektif dalam menciptakan meja kerja pengelasan yang lebih nyaman dan efisien.

2.3.2 Kerangka Teoritis

Berikut ini merupakan skema kerangka teoritis penelitian:

Objek Permasalahan:

- Adanya Keluhan dari praktikan pada praktikum Proses Manufaktur terutama di bagian modul pengelasan, praktikan merasakan rasa sakit serta kurangnya tempat pergerakan tubuh sehingga tidak bisa melakukan praktikum secara maksmal.
 - Untuk itu perlu dilakukan perancangan meja kerja pengelasan yang ergonomis supaya bisa mengurangi atau menghilangkan keluhan yang diderita oleh para praktikan.
- 2. Terjadinya tindakan yang tidak aman (*Unsafe Action*) dan kondisi yang tidak aman (*Unsafe Condition*) pada lingkungan praktikum.

Teori Permasalahan:

Tidak terdapatnya meja kerja yang layak sehingga mengganggu aktivitas praktikum. Karena aktivitas pengelasan merupakan salah satu proses manufaktur yang memerlukan meja kerja ergonomis untuk mendukung efisiensi dan keselamatan kerja. Maka perlu dilakukan perancangan meja kerja pengelasan yang ergonomis berdasarkan metode *Kansei Engineering* denga prinsip-prinsip ergonomi, sehingga dapat meningkatkan kenyamanan, efisiensi, serta keamanan dalam aktivitas praktikum proses manufaktur.

Langkah-langkah:

- 1. Studi Literatur
 - Melakukan pengamatan langsung pada aktivitas praktikum proses manufaktur.
- 2. Identifikasi masalah
 - Tidak terdapatnya meja kerja pengelasan.
- 3. Perumusan masalah
 - Menentukan kebutuhan praktikan pada praktikum proses manufaktur modul pengelasan
- Studi Literatur
 - Mengumpulkan literatur yang berhubungan dengan Kansei Engineering.
- 5. Pengumpulan data :
 - Melakukan wawancara, kuesioner kepada praktikan.

Analisa data pembahasan

- Analisa Kansei Engineering
 - Dilakukan analisa sesuai *kansei engineering* dengan pendekatan ergonomi untuk merancang meja kerja pengelasan.

Usulan meja kerja pengelasan

Gambar 2.2 Kerangka Teoritis

BAB III METODE PENELITIAN

3.1 Pengumpulan Data

Pengumpulan data dilakukan untuk mengumpulkan data-data yang dibutuhkan dalam memecahkan permasalahan yang telah dirumuskan sebelumnya. Adapun sumber data yang akan diolah adalah sebagai berikut:

- Observasi pada Laboratorium Proses Manufaktur Teknik Industri UNISSULA.
- Wawancara terpimpin dengan beberapa praktikan pada Laboratorium Proses Manufaktur Teknik Industri UNISSULA.
- Kusioner yang diberikan kepada praktikan pada Laboratorium Proses Manufaktur Teknik Industri UNISSULA.
- 4. Dokumen dan Data resmi yang dijadikan sumber informasi yang terdapat di Laboratorium Proses Manufaktur Teknik Industri UNISSULA.

3.2 Teknik Pengumpulan Data

Adapun Teknik Pengumpulan Data dalam penelitian ini yaitu:

- Observasi untuk mengamat secara langsung kejadian yang terjadi di lapangan.
- Wawancara dengan menanyakan keluhan selama melakukan pekerjaan tersebut.
- Dokumentasi selama mengambil informasi yang ada dilapangan yang berbentuk arsip maupun gambar.

3.3 Pengujian Hipotesa

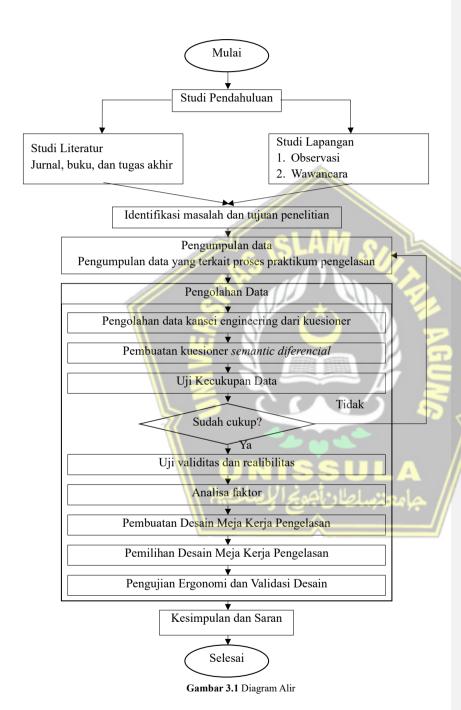
Pengujian Hipotesa pada penelitian ini yaitu dengan menganalisis hasil kuisioner *Kansei Engineering* dimana hasil tersebut untuk memastikan apakah perancangan meja kerja pengelasan dengan metode *Kansei Engineering* dan pendekatan ergonomi memiliki pengaruh signifikan terhadap kenyamanan, efisiensi, dan keselamatan praktikan.

3.4 Metode Analisis

Metode Analisis yang dilakukan dalam mengolah data sehingga mendapatkan sebuah hasil yaitu dengan cara :

- 1. Menentukan kansei words dari hasil kuesioner kansei engineering.
- 2. Pemetaan hubungan *kansei words* dengan karakteristik desain produk.
- 3. Menggunakan dimensi ukuran dari perhitungan persentil Antropometri untuk usulan rancangan meja kerja pengelasan.
- 4. Penggunaaan data yang dimiliki oleh Laboratorium Proses Manufaktur Teknik Industri UNISSULA untuk membantu pengerjaan perbaikan.

3.5 Pembahasan


Pembahasan dari hasil pengolahan data yang dilakukan mengenai kekurangan, keluhan serta saran yang didapat dari pengumpulan data kemudian hasil dari pengolahan data tersebut dituangkan dalam perbaikan serta penjelasan dan alasan perbaikan dapat dijadikan saran untuk Laboratorium Proses Manufaktur Teknik Industri UNISSULA sebagai alternatif desain yang sudah ada.

3.6 Penarikan Kesimpulan

Penarikan kesimpulan diambil dari hasil pembahasan yang berupa jawaban dari perumusan masalah serta menentukan hipotesis dari penelitian. Penarikan kesimpulan berasal dari analisis yang telah dilakukan.

3.7 Flowchart Penelitian

Dalam penelitian yang dilakukan, supaya penelitian dikerjakan secara runtut dan sistematis maka dibuatlah diagram alir proses penelitian. Berikut diagram alir penelitian yang dilaksanakan:

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

4.1. Pengumpulan Data

Berikut hasil pengumpulan data yang digunakan dalam penelitian tugas akhir ini yang dituangkan dalam beberapa sub-bab penelitian.

4.2. Penelitian Awal

Penelitian pendahuluan diadakan untuk mengetahui pendapat mahasiswa mengenai meja kerja pengelasan pada praktikum proses manufaktur Teknik Industri UNISSULA. Penelitian pendahuluan dilakukan dalam bentuk atau metode kuesioner. Berikut untuk mengetahui hasil kuesioner dari penelitian pendahuluan dari jumlah responden sebanyak 30 mahasiswa:

Tabel 4. 1 Hasil Kuesioner Responden

1.	Apakah anda sering menggunakan meja kerja pengelassan?							
Jawaban	Ya	Tidak						
Total	20	10						
Presntae	66,7%	33,3%						
2.	Dengan menggunakan meja kerja	yang ada saat ini, apakah meja yang						
۷.	digunakan diteri	ma sesuai harapan ?						
Jawaban	Ya	Tidak						
Total	5	25						
Presntae	16,7%	83,3%						
3.	Apakah perlu tid <mark>aknya dilakukan redesign m</mark> eja kerja atau mendesain ulang							
3.	meja kerja pengelasan yang ada saat ini ?							
Jawaban	Ya	Tidak						
Total	29	1						
Presntae	96,7%	3,3%						

Dari hasil kuesioner diatas dapat dilihat bahwa terdapat 66,7% yang sering menggunakan meja kerja pengelasan dan 33,3% tidak. Diketahui pula bahwa 96,7% dari 30 responden menginginkan redesign meja kerja dan juga 83,3% dari responden mengatakan bahwa meja kerja yang digunakan saat ini tidak sesuai

dengan harapan. Berdasarkan hasil kuesioner maka perlu dilakukannya *redesign* pada meja kerja pengelasan tersebut.

4.3. Penyusunan Kuesioner

Penelitian Kuesioner akan dirancang berdasarkan kondisi yang ada saat ini di Teknk Industri UNISSULA. Kuesioner digunakan untuk mengidentifikasi kebutuhan atribut-atribut pada desain meja kerja pengelasan berdasarkan citra dari mahasiswa di teknik Industri UNISSULA. Dalam penyusunan kuesioner ada beberapa tahap yaitu.

4.3.1 Penentuan Kansei Words

Langkah pertama yang diterapkan dalam penentuan *Kansei Word* adalah dengan memberi deskripsi gambaran dari meja kerja peengelasan dan memberikan kuesioner kepada para responden yang akan diuji. Penentuan *Kansei Word* didasarkan kepada citra dari kebutuhan atribut-atribut meja kerja pengelasan yang telah diperlihatkan. Selain itu penentuan *Kansei Word* pada responden didasarkan pada pengalaman dari mahasiswa yang pernah melakukan ataupun mengetaaui produk terkait. Dari jumlah 30 responden diperoleh pengumpulan kata *kansei* sebagai berikut:

Tabel 4. 2 Pengumpulan Kansei Word

No	Kata Kansei	Jumlah
1	Kuat	16
2	Fleksibel	13
3	Ergonomis	اما 19 کہ کے
4	Kokoh	7
5	Mudah digunakan	5
6	Simpel	1
7	Multifungsi	4
8	Mudah perawatan	4
9	Solid	6
10	Aman	5
11	Tahan lama	3
12	Praktis	2
13	Rigid	1
14	Desain menarik	3
15	Dapat diatur	2

No	Kata Kansei	Jumlah
16	Permukaan Rata	5
17	Anti selip	2
18	Tahan panas	11
19	Tahan beban	3
20	Adjustable	1
21	Permukaan Luas	1
22	Banyak Fungsi	1
23	serbaguna	5
24	Tidak tajam	4
25	Minimalis	4
26	Sesuai postur	2
27	Variatif	1 A 18 a
28	Banyak Fitur	2
29	Estetis	1
30	Posisi optimal	1
31	Modular	1
32	Dapat disesuaikan	2
33	All-in-One	1
34	Bersih	1
35	Nyaman	2
36	Rapi	Ī
37	Mudah Dijangkau	1
38	Efisien	I

Dari hasil kuesioner tersebut mendapatkan masukan kata *kansei* dari responden dan beberapa masukan tersebut ada yang bermakna sama, oleh karena itu perlu dilakukannya pengelompokkan dan penyusunan kata *kansei* berdasarkan hasil kuessioner sebagai berikut.

Tabel 4. 3 Pengelompokkan Kansei Word bernilai sama

Kata Kansei	Hasil Pengelompokan
Kuat	
Kokoh	
Solid	Kuat
Tahan lama	
Rigid	
Ergonomis	
Mudah digunakan	Ergonomis
Sesuai postur	

	Kata Kansei	Hasil Pengelompokan
	Posisi optimal	
	Dapat disesuaikan	
	Mudah dijangkau	
	Fleksibel	
	Mudah Perawatan	
	Praktis	
	Dapat diatur	Fleksibel
	Adjustable	FICKSIDEI
	Serbaguna	
	Variatif	
	Nyaman	
	Multifungsi	C.CIAN
	Banyak fungsi	2 Pruu
	Banyak Fitur	Multifungsi
	Modular	
í	All-in-One	
	Aman	(*)
	Anti Selip	SY
١	Tahan Panas	Aman
	Tahan Beban	
	Tidak Tajam	
	Desain Menarik	
	Simpel	
	Per <mark>mu</mark> kaan Rata	4
	Permukaan Luas	- A 00 0
	M <mark>ini</mark> malis	Menarik
	E <mark>stet</mark> is	JN155
	Bersih	وأين شرالا سالاه
	Rapi	ن جهوج الرسام
	Efisien	

Sehingga didapatkan 6 Kansei Word yang akan dimasukkan pada tahap pengisian kuesioner Semantic Differential.

Tabel 4. 4 Penetapan Elemen Desain Berdasarkan Kansei Word

No	Kansei Word
1	Kuat
2	Ergonomis
3	Fleksisbel

No	Kansei Word					
4	Multifungsi					
5	Aman					
6	Menarik					

4.3.2 Penyusunan Evaluasi Semantic Differential

Berdasarkan 6 Kansei Word yang didapatkan dari hasil kuesioner dengan responden, maka langkah selanjutnya adalah membuat kuesioner Semantic Differential yang kemudian dibagikan kepada responden dan di isi berdasarkan skala gambar meja kerja pengelasan terkait. Pengisian kuesioner Semanthic Differential disajikan dalam dua kata yang berlawanan. Hal tersebut dimaksudkan agar responden dapat menilai atribut yang perlu ditambahkan pada meja kerja pengelasan dengan melihat gambaran meja kerja pengelasan yang ada saat ini, perlu ditambahkan atau tidak pada desain meja kerja pengelasan yang baru nantinya. Berikut penjelasan 5 skala yang diterapkan pada kuesioner Semantic Differential.

- a. Skala 1: Jika tidak menginginkan perubahan akan meja kerja pengela<mark>san</mark> yang ada saat ini.
- b. Skala 2 : Jika cukup menginginkan perubahan akan meja kerja pengelasan yang ada saat ini.
- c. Skala 3 : Jika netral dalam mengingikan perubahan akan meja kerja pengelasan yang ada saat ini.
- d. Skala 4 : Jika menginginkan perubahan akan meja kerja pengelasan yang ada saat ini.
- e. Skala 5 : Jika sangat me<mark>nginginkan perubahan akan meja kerja pengelasan</mark> yang ada saat ini.

Tabel 4. 5 Kuesioner Evaluasi *Kansei Word* dengan Menggunakan *Possitive Word* dan *Negative Word*

No	Kata Positif	Skala				Kata Negatif	
	Tuttu T OSITIT	1	2	3	4	5	Tuia Pogain
1	Kuat						Rapuh
2	Ergonomis						Tidak Ergonomis
3	Fleksibel						Terbatas

No	Kata Positif	Skala				Kata Negatif	
		1	2	3	4	5	ixata i vegatii
4	Multifungsi						Monoton
5	Aman						Rawan
6	Menarik						Membosankan

Tabel 4.6 Penjelasan Kansei Possitive Word dan Negative Word

	Kansei Word							
No	Kata Positif	Pengertian	Kata Negatif	Pengertian				
1	Kuat	Memiliki struktur yang kuat untuk menahan beban material logam serta getaran saat proses pengelasan	Rapuh	Memiliki struktur yang tidak kuat untuk menahan beban material logam serta getaran saat proses pengelasan				
2	Ergonomis	Memastikan posisi kerja nyaman dan mengurangi kelelahan pada operator	Tidak Ergonomi <mark>s</mark>	Posisi kerja tidak nyaman dan menimbulkan kelelahan pada operator				
3	Fleksibel	Memiliki bagian yang dapat diatur atau dilepas pasang	Terbatas	Tidak memiliki bagian yang dapat diatur atau dilepas pasang				
4	Multifungsi	Memiliki bagian meja yang dapat difungsikan yang lain	Monoton	Tidak memiliki bagian meja yang dapat difungsikan yang lain				
5	Aman	Dapat mencegah kecelakaan kerja dan melindungi operator	Rawan	Tidak dapat mencegah kecelakaan kerja dan melindungi operator				
6	Menarik	Memiliki visual yang bagus dan tata letak yang rapi	Membosankan	Tidak memiliki visual yang bagus dan tata letak yang tidak rapi				

4.4 Data Hasil Rekapapitulasi Kuesioner Semantic Differential

Berikut ini adalah data hasil rekap kuesioner *Semantic Differential* yang telah diperoleh dari hasil wawancara 30 responden.

Tabel 4.7 Rekapapitulasi Kuesioner Semantic Differential.

Responden	x1	x2	х3	x4	х5	х6
1	5	5	4	4	5	4

Responden	x1	x2	х3	x4	x5	х6
2	5	4	4	4	5	3
3	4	4	4	4	4	4
4	5	5	4	4	5	3
5	5	4	4	3	5	3
6	5	5	5	5	5	5
7	5	5	4	4	5	3
8	5	5	5	5	5	5
9	5	5	4	4	5	4
10	5	5	5	5	5	5
11	5	5	5	5	5	5
12	5	5	5	5	5	5
13	5	5	4	4	5	4
14	5	5	4	4	5	4
15	5	5	3	3	4	3
16	5	5	4	4	4	4
17	5	5	5	5	5	5
18	5	4	4	5	5	4
19	5	5	4	4	4	3
20	4	4	4	4	4	4
21	5	5	4	4	5	4
22	5	5	5	5	5	5
23	5	5	5	5	5	5
24	4	5	4	5	5	4
25	5	4	4	5	5	4
26	4	5	سا4عیہ	ر مرد <i>ور</i> ا	5	4
27	5	5	5	4	5	4
28	5	5	5	5	5	5
29	5	5	5	5	5	5
30	5	5	4	4	5	4
Total	146	144	130	132	145	124

Keterangan:

 $\begin{tabular}{lll} Kuat & : x1 \\ Ergonomis & : x2 \end{tabular}$

 $Fleksibel : x3 \\ Multi fungsi : x4 \\ Aman : x5 \\ Menarik : x6$

4.5 Uji Kecukupan Data

Berdasarkan data yang didapatkan diperoleh dari 30 kuesioner yang disebarkan kepada responden guna mendukung hasil penelitian dalam pengumpulan dan pengolahan data.

Tabel 4.8 Rekapitulasi Data Kuesioner Semantic Differential.

Responden	x1	x2	х3	x4	x5	x6	x7	xi	\overline{x}
1	5	5	4	4	5	4	27	729	4.500
2	5	4	4	4	5	3	25	625	4.167
3	4 1	4	4	4	4	4	24	576	4.000
4	5	5	4	4	5	3	26	676	4.333
5	5	4	4	3	5	3	24	576	4.000
6	5	5	5	5	5	5	30	900	5.000
7	5	5	4	4	5	3	26	676	4.333
8	5	5	5	5	5	5	30	900	5.000
9	5	5 🦙	4	4	5	4	27	729	4.500
10	5	5	5	5	5	5	30	900	5.000
11	5	5	5	5	5	5	30	900	5.000
12	5	5	5	5	5	5	30	900	5.000
13	5	5	4	4	5	4	27	729	4.500
14	5	5	4	4	5	4	27	729	4.500
15	5	5	3	3	4	3	23	529	3.833
16	5	5	4	4	4	4	26	676	4.333
17	5	5	5	5	5	5	30	900	5.000
18	5	4	4	5	5	4	27	729	4.500
19	5	5	4	4	4	3	25	625	4.167
20	4	4	4	4	4	4	24	576	4.000
21	5	5	4	4	5	4	27	729	4.500
22	5	5	5	5	5	5	30	900	5.000
23	5	5	5	5	5	5	30	900	5.000

Responden	x1	x2	х3	x4	x5	х6	x7	xi	\overline{x}
24	4	5	4	5	5	4	27	729	4.500
25	5	4	4	5	5	4	27	729	4.500
26	4	5	4	5	5	4	27	729	4.500
27	5	5	5	4	5	4	28	784	4.667
28	5	5	5	5	5	5	30	900	5.000
29	5	5	5	5	5	5	30	900	5.000
30	5	5	4	4	5	4	27	729	4.500
Total	146	144	130	132	145	124	821	22609	136.83333

Berikut adalah hasil perhitungan uji kecukupan data:

$$N' = \left[\frac{k/s \sqrt{N \sum x^2 - (\sum x)^2}}{\sum x} \right]^2 = \left[\frac{2/0.05 \sqrt{30.22609 - (821)^2}}{821} \right]^2 = 10,038$$

Berdasarkan perhitungan didapatkan hasl sebesar 10,038. Maka dengan nilai tersebut menunjukkan nilai N' < N, jadi uji kecukupan data tersebut dapat disimpulkan sampel yang digunakan sudah cukup.

4.6 Uji Validitas

Uji yang diterapkan selanjutnya adalah uji validitas, dimana dalam uji ini bertujuan untuk memperlihatkan, apakah *Kansei Word* yang diuji dalam kuesioner dapat menjelaskan gambaran dari meja kerja pengelasan, bernilai valid atau tidak untuk kedepannya bisa menjadi acuan dalam pembuata desain kemasan baru. *Software* yang digunakan dalam pengujian ini adalah IBM SPSS Statistics 25 dengan A=0.05, df=n-2=30-2=28, r tabel=0,3610. Data dapat dikatakan valid apabila niai $r_{kalkulasi} \geq r_{table}$. Berikut ini adalah hasil dari pengolahan data mengunakan software IBM SPSS Statistics 25.

Tabel 4.9 Uji Validitas Iterasi Pertama

Kansei Word	Corrected item/Total Correlation	Keterangan
Kuat	0,338	Tidak Valid
Ergonomis	0,507	Valid
Fleksibel	0,896	Valid
Multi Fungsi	0,820	Valid

Kansei Word	Corrected item/Total Correlation	Keterangan
Aman	0,612	Valid
Menarik	0,889	Valid

Hasil dari uji valditas iterasi pertama menunjukkan bahwa terdapat 1 variabel yang tidak valid, yaitu pada variabel "Kuat". Dengan masing – masing nilai menunjukkan 0,338 pada variabel "Kuat". Karena besar nila r $_{\rm kalkulasi}$ < r $_{\rm tabel}$ yaitu 0, 3610, maka variabel tersebut harus dihapuskan dari daftar variabel input data karena < r $_{\rm tabel}$. Sedangkan 5 variabel lainnya telah dinyatakan valid dan akan berlanjut ke uji validitas iterasi kedua untuk mengetahui bahwa variabel yang terdaftar benar-benar valid.

Tabel 4.10 Uji Validitas Iterasi Kedua

Kansei Word	Corrected item/Total Correlation	Keterangan
Ergonomis	0,507	Valid
Fleksibel	0,896	Valid
Multi F <mark>ung</mark> si	0,820	Valid
Aman	0,612	Valid
Menarik	0,889	Valid

Berdasaran hasil uji validitas iterasi yang ke-2 dinyatakan bahwa ke-5 variabel yang terdaftar dinyatakan valid karena nilai r kalkulasi > r table, 0, 3610.

4.7 Uji Realibilitas

Setelah hasil yang didapatkan dari variabel yang terdaftar dinyatakan valid, maka dialanjutkan ke langkah berikutnya. Dengan melakukan uji relibilitas bertujuan untuk melihat sejauh mana hasil dari variabel yang terpilih dapat dipercaya atau bisa dikatakan *reliable*. Dengan menggunakan *software* IBM SPSS Statistics 25 dengan A=0.05, df=n-2=40-2=38, r _{tabel}=0.3120. Untuk nilai r alpha dapat dilihat dari kolom *Cronbach-Alpha*. Dengan berdasarkan hasil dari uji realibilitas dengan *software* IBM SPSS Statistics 25 didapatkan hasil r_{alpha} > r_{table} dengan nilai 0.822 > 0.3610, dan "N of *Item*" bernilai 5, maka data atau variabel yang terpilih dinyatakan reliabel. Berikut ini adalah table hasil uji realibilitas:

Tabel 4.11 Uji Hasil Uji Realibilitas

Reliability Statistics					
Cronbach's Alpha	N of Items				
.822	5				

4.8 Analisa Faktor

Analisa faktor merupakan analisis yang mempunyai tujuan untuk menyederhanakan hubungan yang kompleks dalam hubungan yang beraneka ragam dalam beberapa variabel yang diteliti. Menyederhanakan data dilakukan dengan cara membuka faktor-faktor dari variabel-variabel yang tidak berhubungan dan sebagai hasilnya analisa faktor ini menghasilkan deskripsi hubungan antar variabel yang mendasari namun tidak teramati. Sebelumnya 5 variabel dinyatakan valid dan realiabel pada uji validitas dan realibilitas. Selanjutnya akan dilakukan langkah berikutnya dengan analisa faktor dengan menggunakan software IBM SPSS Statistics 25 menggunakan uji KMO (Kaiser-Mayer-Olkin) dan bartlett's dengan hasil sebagai berikut:

Tabel 4.12 Uji KMO dan Bartlett's

KMO and Bartlett's Test					
Kaiser-Meyer-Olkin Measur	re of Sampling Adequacy.	.719			
3((Approx. Chi-Square	70.429			
Bartlett's Test of Sphericity	df	10			
\\\	Sig.	.000			

Hasil perhitungan menghasilkan dan menunjukkan bahwa nilai KaiserMeyer-Olkin Measure of Sampling Adequacy > 0,5 dengan nilai sebesar 0,719. Maka hasil dari analisis faktor dapat dilanjutkan. Sedangkan pada tes MSA dari korelasi anti-image dalam matrix anti-image dapat dilihat pada table 4.13 sebagai berikut:

Tabel 4.13 Hasil Uji MSA

Kansei Word	Nilai MSA	Keterangan
Ergonomis	0,755	Layak
Fleksibel	0,756	Layak
Multi Fungsi	0,763	Layak

Kansei Word	Nilai MSA	Keterangan
Aman	0,693	Layak
Menarik	0,658	Layak

Hasil perhitungan Tes MSA menunjukkan bahwa nilai yang ada dari masing-masing variabel >0,5. Berdasarkan teori yang ada jika variabel yang layak untuk dianalisis adalah variabel yang memeilii nilai MSA > 0,5. Maka dark ke-5 variabel dinyatakan layak dan dapat ditambahakan kedalam kebutuhan atribut meja kerja pengelasan untuk keperluan *redesign* meja kerja pengelasan yang baru.

4.9 Konsep Desain Alternatif dan Spesifikasi

Perancangan desain meja kerja pengelasan baru didasarkan pada kebutuhan atribut produk yang telah dinyatakan layak pada perhitungan sebelumnya, dengan menggunakan Autodesk Inventor Profesional 2023 untuk perancangan desain meja kerja pengelasan.

Konsep desain dirancang berdasarkan *kansei word* yang telah ditentukan sebelumnya dengan spesifikasi desain adalah sebagai berikut.

Ergonomis : Perubahan desain dari model statis menjadi dinamis sehingga

membuat posisi kerja nyaman dan aman, mengurangi kelelahan operator. Tinggi meja dapat disesuaikan dan elemen kerja mudah

dijangkau, sehingga mendukung produktivitas jangka panjang.

Fleksibel : Penambahan bagian yang adjustable, sistem penjepit yang bisa

dipindah, atau modul tambahan yang dapat dilepas pasang sesuai

kebutuhan.

Multi Fungsi : Perubahan model meja dari yang hanya untuk pengelasan tetapi

juga bisa digunakan untuk pemotongan, pengukuran, atau

perakitan.

Aman : Penambahan kaki antiselip, permukaan tahan panas, serta sudut

yang tidak tajam guna mencegah kecelakaan kerja dan melindungi

operator selama proses pengelasan.

Menarik : Tata letak bagian yang efisien membuat terkesan rapi serta

penambahan rak penyimpanan

a. Konsep Desain Produk Pertama

Konsep desain dirancang berdasarkan *kansei word* yang telah ditentukan sebelumnya dengan menambahkan bagian yang *adjustable*, sistem penjepit yang bisa dipindah, serta modul tambahan yang dapat dilepas pasang sesuai kebutuhan. Memiliki permukaan alas yang rata serta luas yang mudah terjangkau.

Gambar 4.1 Konsep Desain Pertama

b. Konsep Desain Produk Kedua

Konsep desain dirancang berdasarkan *kansei word* yang telah ditentukan sebelumnya dengan menambahkan bagian yang *adjustable*, sistem penjepit yang bisa dipindah, serta modul tambahan yang dapat dilepas pasang sesuai kebutuhan. Memiliki permukaan alas yang rata serta luas yang mudah terjangkau. Memiliki bagian yang dapat dibongkar pasang supaya mempermudah perawatan serta ketinggian yang dapat diatur menyesuaikan postur operator sehingga mendukung

produktivitas jangka panjang. Pada bagian bawah terdapat rak penyimpanan barang serta pada kaki kaki terdapat roda agar mempermudah proses perpindahan.

Gambar 4.2 Konsep Desain Kedua

4.10 Pemilihan Konsep Desain

Pada tahap ini akan dilakukannya pemilihan konsep dengan memberikan bobot terhadap atribut meja kerja pengelasan yang terdapat pada masing – masing desain. Dengan membuat kuesioner yang ditujukan kepada para responden untuk diperolehnya bobot pada atribut agar nantinya dapat diketahui desain meja kerja pengelasan mana yang terpilih berdasarkan implementasi citra mahasiswa yang telah diterapkan terhadap meja kerja pengelasan. Berikut penjelasan 5 skala yang diterapkan pada kuesioner penentuan bobot atribut meja kerja pengelasan oleh responden untuk menentukan konsep desain terpilih. Keterangan pengisian kuesioner penentuan bobot atribut :

1 = Tidak sesuai 10%-20% = Tidak Sesuai

2 = Kurang sesuai 20%-40% = Kurang Sesuai 3 = Cukup sesuai 40%-60% = Cukup Sesuai

4 = Sesuai 60%-80% = Sesuai

5 = Sangat Sesuai 80%-100% = Sangat Sesuai

Tabel 4.14 Kuesioner penentuan bobot atribut desain dengan mengalokasikan nilai 100% kedalam kolom bobot

No	Atribut	Bobot (%)		
1	Ergonomis			
2	Fleksibel			
3	MultiFungsi			
4	Aman	CI AB		
5	Menarik	Print		
	Total	100%		

Tabel 4.15 Kuesioner penentuan rating atribut yang terdapat pada konsep desain dengan pengisian rating 1-5

No	Atribut	Rating (1-5)			
110	Atribut	Konsep 1	Konsep 2		
1	Ergonomis		2 SHIIL S		
2	Fleksibel				
3	M <mark>ulti</mark> Fungsi	((A 1 1		
4	Aman				
5	M <mark>en</mark> arik	4			

4.11 Data Hasil Rekap Kuesioner Atribut Bobot

Berikut ini adalah data hasil rekap kuesioner untuk mengetahui bobot atribut pada masing – masing desain meja kerja pengelasan dari hasil wawancara kepada 30 responden.

Tabel 4.16 Rekap Kuesioner untuk Mengetahui Bobot Atribut dalam mengalokasikan nilai 100%

	Atribut (%)						
Responden	Ergonomis	Fleksibel	Multi Fungsi	Aman	Menarik	Persentase (%)	
1	20	15	15	20	30	100	
2	20	20	15	25	20	100	
3	15	20	20	20	25	100	

			Atribut (%)			Total
Responden	Ergonomis	Fleksibel	Multi Fungsi	Aman	Menarik	Persentase (%)
4	25	20	15	20	20	100
5	20	20	20	20	20	100
6	25	20	20	15	20	100
7	20	15	15	25	25	100
8	20	15	20	15	30	100
9	15	15	15	30	25	100
10	30	20	15	15	20	100
11	15	20	30	20	15	100
12	20	25	15	20	20	100
13	20	20	15	15	30	100
14	20	25	20	20	15	100
15	20	20	20	20	20	100
16	15	20	20	25	20	100
17	20	15	25	20	20	100
18	25	15	20	20	20	100
19	20	15	15	25	25	100
20	20	20	20	20	20	100
21	20	25	15	20	20	100
22	20	15	20	20	25	100
23	25	15	20	20	20	100
24	20	20	25	15	20	100
25	15	25	15	30	15	100
26	20	15	20	20	25	100
27	20	25	15	20	20	100
28	20	20	15	15	30	100
29	25	15	20	20	20	100
30	20	25	25	15	15	100
Rata-rata	20.33	19.17	18.67	20.17	21.67	100

Tabel 4.17 Rekap Kuesioner untuk Mengetahui Rating Atribut Konsep Desain 1

		At	tribut (%)		
Responden	F	Fleksibel	Multi	A	Menarik
	Ergonomis	Fleksibei	Fungsi	Aman	Menarik
1	3	4	3	3	4
2	2	3	3	4	4
3	3	2	3	4	4
4	3	2	3	4	3
5	3	4	4	4	4
6	3	2	4	3	4
7	2	3	4	4	3
8	3	2	3	4	3
9	4	2	3	3	4
10	2	3	3	4	4
11	3	2	4	3	2
12	2	3	4	2	4
13	3	4	3	3	4
14	3	3	4	3	3
15	3	2	3	3	4
16	2	2	3	4	3
17	3	2	4	4	3
18	4	2	3	3	3
19	3	2	3	4	4
20	4	2	4	3	3
21	3	3	4	4	3
22	4	2	3	4	4
23	4	3	ہوے 4 ہا س	3 6	4
24	3	3	2	4	3
25	3	3	4	4	2
26	3	2	4	3	4
27	4	3	4	3	4
28	4	3	3	2	4
29	3	4	4	3	3
30	4	4	3	3	2
Rata-rata	3.10	2.70	3.43	3.40	3.43

Tabel 4. 3 Rekap Kuesioner untuk Mengetahui Rating Atribut Konsep Desain 2

			Atribut (%)		
Responden		F	Multi		
Kesponden	Ergonomis	Fleksibel		Aman	Menarik
			Fungsi		
1	4	4	5	5	4
2	4	4	5	5	5
3	4	4	5	5	5
4	4	5	5	4	5
5	4	4	5	5	4
6	4	4	5	4	5
7	5	5	4	5	4
8	5	4	4//	5	4
9	5	4	5	4	5
10	5	4	4	4	5
11	5	4	5	3	3
12	5	5	4	5	4
13	5	4	5	4	5
14	5	4	5	4	-4
15	5	4	5	5	5
16	4	4	5	5	5
17	5	4	4	5	4
18	5	4	5	5	4
19	5	4	4	5	5
20	4	5	موج 4 پرسد	40	5
21	5	4	5	5	4
22	4	5	4	5	5
23	5	4	4	4	5
24	4	4	4	5	4
25	4	4	4	5	4
26	4	4	5	5	5
27	4	4	5	5	5
28	5	4	4	4	5
29	5	4	4	5	4
30	5	4	4	5	4

		A	Atribut (%)		
Responden	Ergonomis	Fleksibel	Multi	Aman	Menarik
	Ergonomis	rieksibei	Fungsi	Alliali	Menarik
Rata-rata	4.57	4.17	4.53	4.63	4.50

Tabel 4.19 Pengolahan Data Seleksi Konsep

				Konsep Pil	lihan Desain	
Nia	Atribut	Wainha (0/)	Konsep	Desain 1	Konsep l	Desaain 2
No	Atribut	Weight (%)	Rating	Weight Score	Rating	Weight Score
1	Ergonomis	20.33%	3.10	0.63	4.57	0.93
2	Fleksibel	19.17%	2.70	0.52	4.17	0.80
3	MultiFungsi	18.67%	3.43	0.64	4.53	0.85
4	Aman	20.17%	3.40	0.69	4.63	0.93
5	Menarik	21.67%	3.43	0.74	4.50	0.98
	Total Sco	ore	3.:	22	4.	48
	Raankin	g	1/2		~ \	V)
	Continu	e	Tidak T	Terpilih	Terj	pilih

Dalam seleksi konsep tersebut diperoleh luaran berupa konsep desain terpilih dengan melihat nilai *total score* terbesar. Nilai *total score* diperoleh dari hasil kali antara *persentase weight* dengan *rating* pada masing-masing konsep desain. Konsep Desain 1 dengan *total score* 3,22 kemudian Konsep Desain 2 mempunyai *total score* 4,48. Maka dari hasil *total score* terbesar terpilih Konsep Desain 2 dengan *total score* sebesar 4,48.

4.12 Gambar Detail Konsep Desain Terpilih

Pada tahap seleksi konsep oleh 30 responden dengan pengisian kuesioner dan setelahnya dilakukan pengolahan data kueisioner didapatkan konsep desain terpilih yakni pada konsep desain 2. Berikut gambaran dari konsep desain terpilih. Dengan spesifikasi memiliki bagian yang *adjustable*, sistem penjepit yang bisa dipindah, serta modul tambahan yang dapat dilepas pasang sesuai kebutuhan. Memiliki permukaan alas yang rata serta luas yang mudah terjangkau. Memiliki bagian yang dapat dibongkar pasang supaya mempermudah perawatan serta ketinggian yang dapat diatur menyesuaikan postur operator sehingga mendukung

produktivitas jangka panjang. Pada bagian bawah terdapat rak penyimpanan barang serta pada kaki kaki terdapat roda agar mempermudah proses perpindahan.

Gambar 4.5 Tiang cekam

Gambar 4.8 Roda Karet

4.13 Pengumpulan Data Antropometri

Berikut adalah pengumpulan data antropometri yang dibutuhkan untuk membuat meja kerja pengelasan.

Tabel 4. 20 Pengukuran Antropometri

No	Data yang diukur	Cara Pengukuran	Tujuan
1	Tinggi	Diukur dari ujung kaki	Mengetahui Tinggi badan pada
	badan tegak	sampai ujung kepala	manusia untuk mengukur tinggi
			maksimal dari produk itu sendiri.
2	Tinggi mata	Diukur dari lantai sampai	Mengetahui tinggi mata pada
	berdiri	ujung mata bagian dalam	manusia saat berdiri serta
		(dekat pangkal hidung).	mengukur ketinggian ptoduk saat
		Subyek berdiri tegak dan	sejajar dengan mata.
		memandang lurus ke depan.	
3	Tinggi bahu	Diukur dari lantai sampai	Mengetahui tinggi bahu pada
	berdiri	bahu yang menonjol pada	manusia saat berdiri serta
		saat subyek berdiri tegak.	mengukur ketinggian ptoduk saat
			tangan menjangkau ke depan.
4	Tinggi pinggang	Diukur dari lantai sampai	Mengetahui tinggi pinggang pada
	berdiri	pinggang pada saat subyek	manusia saat berdiri serta
		berdiri tegak	mengukur tinggi minimal dari
			produk itu sendiri.
5	Jangkauan tangan	Diukur dari punggung	Mengetahui jangkauan tangan saat
	ke depan	sampai ujung jari tengah	diarahkan ke depan yang berfungsi
		kearah depan	untuk untuk mengukur jangkauan
			tangan dan lebar meja kerja
			pengelasan.
6	Jangkauan tangan	Diuk <mark>ur dari punggung</mark>	Mengetahui jangkauan tangan saat
	ke atas	sampai ujung jari tengah	diarahkan ke atas yang berfungsi
		kearah atas	untuk untuk mengukur jangkauan
			tangan pada saat posisi overhead
			pada pengelasan.
7	Rentangan tangan	Diukur dari ujung jari	Mengetahui panjang rentangan
		terpanjang tangan kiri sampai	tangan pada manusia serta
		ujung jari terpanjang tangan	mengukur panjang maksimal dari
		kanan.	produk itu sendiri.

4.14 Pengukuran Antropometri Statis dan Dinamis 30 Sampel

Berikut ini adalah pengumpulan data yang didapat dari pengukuran antropometri statis dan dinamis sebagai berikut :

Tabel 4. 21 Data Antropometri

No	Data yang		Hasil Pengukuran																												
110	diukur	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
1	Tinggi	179	171	168	172	170	170	170	153	178	172	174	165	171	161	164	167	170	169	165	166	166	168	149	156	164	151	169	146	166	164
	badan tegak																														
2	Tinggi mata	165	160	154	160	155	158	155	142	167	163	163	150	157	154	151	145	169	160	152	158	153	156	135	146	150	135	157	134	155	154
	berdiri													켈		77	3	7;	11		0		上								
3	Tinggi bahu	150	144	140	142	142	143	139	128	151	144	139	137	142	138	136	131	145	142	139	141	136	141	123	128	135	124	138	120	135	141
	berdiri														2	1	7/		А	11		×	1								
4	Tinggi	106	111	102	98	105	96	99	94	113	94	97	84	108	100	94	98	98	97	100	95	91	98	86	95	105	94	100	90	93	95
	pinggang									\			~		$\Gamma \setminus$	1						Л									
	berdiri									\mathbb{N}		1			N							Z		F			7//				
5	Jangkauan	74	80	78	70	70	83	68	64	90	90	75	71	80	75	71	77	69	76	72	68	68	77	59	69	75	69	72	63	83	69
	tangan ke									V	\	F								3	7/			E			/				
	depan									1	II		=			97		7	V		45										
6	Jangkauan	225	216	204	210	205	213	215	193	224	223	220	205	220	201	205	210	218	205	220	216	205	210	189	200	206	198	213	198	210	196
	tangan ke atas										//									æ						7					
7	Rentangan	187	171	168	170	170	170	176	168	178	172	174	165	174	168	164	172	172	170	165	170	163	165	149	151	166	151	170	146	180	160
	tangan											M		Ů.	AL)	Ш	上	-2	=	U	J.	-/	77		///						

4.15 Uji Kecukupan, Uji Keseragaman, Perhitungan Persentil

Berikut adalah uji kecukupan data, uji keseragaman data, perhitungan persentil untuk mengkonsep produk rancangan yang kita buat :

4.15.1 Uji kecukupan data

Uji kecukupan data dilakukan untuk mengetahui apakah data yang diolah sudah cukup atau belum untuk diolah lebih lanjut. Hasil uji kecukupan data dapat diperoleh dengan menggunakan rumus :

$$N' = \left[\frac{k/s\sqrt{N\sum X^2 - (\sum x)^2}}{\sum X} \right]^2$$

Keterangan:

k = konstanta tingkat keyakinan

- 99% = 3
- 95% = 2
- 90% = 1
- s = derajat ketelitian 60
- $10\% \alpha = 0.1$
- $5\% \alpha = 0.05$

N = jumlah data pengamatan

N' = jumlah data teoritis

Jika $N` \le N$ data dianggap cukup, jika N` > N data tidak cukup (kurang) dan perlu dilakukan penambahan data sejumlah N` - N.

4.15.1.1 Uji Kecukupan Data Anthropometri yang Digunakan

Berikut hasil dari uji kecukupan data Antropometri yang digunakan:

1. Uji Kecukupan Data Tinggi Badan Tegak

Berikut merupakan perhitungan data Antropometri Tinggi Badan Tegak yang ditampilkan dalam bentuk tabel rekapitulasi.

Tabel 4. 22 Uji Kecukupan Data Antropometri Tinggi Badan Tegak

No	X	x ²
1	179	32041
2	171	29241
3	168	28224

No	x	x ²	
4	172	29584	
5	170	28900	
6	170	28900	
7	170	28900	
8	153	23409	
9	178	31684	
10	178	29584	
10	174		
		30276	
12	165	27225	
13	171	29241	
14	161	25921	,
15	164	26896	/
16	167	27889	
17	170	28900	
18	169	28561	ľ
19	165	27225	ď
20	166	27556	ľ
21	166	27556	IJ
22	168	28224	_
23	149	22201	7
24	156	24336	
25	164	26896	
26	151	22801	
27	169	28561	1
28	146	21316	Ų
29	166	27556	
30	164	26896	
		1	

Penyelesaian :

Diketahui

N = 30

 $\Sigma x = 4973$

:

 $(\Sigma x)^2 = 24740676$

 $\Sigma x^2 = 826500$

Tingkat keyakinan (k) = 99%=3

Tingkat ketelitian (s) = $10\% \rightarrow \alpha = 0.1$

Ditanyakan : N' =...?

Penyelesaian

$$N' = \left[\frac{k/s\sqrt{N\sum X^2 - (\sum x)^2}}{\sum X} \right]^2$$
$$= \left[\frac{3/0.1\sqrt{30.826500 - 24740676}}{4973} \right]^2$$

Kesimpulan:

Karena N'< N maka dapat disimpulkan bahwa data Tinggi Badan Tegak sudah cukup.

2. Uji Kecukupan Data Tinggi mata berdiri

Berikut merupakan perhitungan data Antropometri Tinggi mata berdiri yang ditampilkan dalam bentuk tabel rekapitulasi.

Tabel 4. 23 Uji Kecukupan Data Antropometri Tinggi mata berdiri

1 10 10 10 10 10 10 10 10 10 10 10 10 10		1
No	X	x ²
1	165	27225
2	160	25600
3	154	23716
4	160	25600
5	155	24025
6	158	24964
7	155	24025
8	142	20164
9	167	27889
10	163	26569
11	163	26569
12	150	22500
13	157	24649
14	154	23716
15	151	22801
16	145	21025

No	x	X ²
17	169	28561
18	160	25600
19	152	23104
20	158	24964
21	153	23409
22	156	24336
23	135	18225
24	146	21316
25	150	22500
26	135	18225
27	157	24649
28	134	17956
29	155	24025
30	154	23716
Jumlah	Σx=4613	$\Sigma x^2 = 711623$

Penyelesaian:

Diketahui

N = 30

30

 $\Sigma x = 4613$

 $(\Sigma x)^2 = 21279769$

 $\Sigma x^2 = 711623$

Tingkat keyakinan (k) = 99%=3

Tingkat ketelitian (s) = $10\% \rightarrow \alpha = 0.1$

Ditanyakan

: N' = ...?

Penyelesaian

$$N' = \left[\frac{k/s\sqrt{N\sum X^2 - (\sum x)^2}}{\sum X} \right]^2$$
$$= \left[\frac{3/0.1\sqrt{30.711623 - 21279769}}{4613} \right]^2$$
$$= 2.91$$

Kesimpulan:

 $\label{eq:Karena} \mbox{ Karena N'< N maka dapat disimpulkan bahwa data Tinggi \ mata berdiri sudah cukup.}$

3. Uji Kecukupan Data Tinggi bahu berdiri

Berikut merupakan perhitungan data Antropometri Tinggi bahu berdiri yang ditampilkan dalam bentuk tabel rekapitulasi.

Tabel 4. 24 Uji Kecukupan Data Antropometri Tinggi bahu berdiri

No	x	x ²
1	150	22500
2	144	20736
3	140	19600
4	142	20164
5	142	20164
6	143	20449
7	139	19321
8	128	16384
9	151	22801
10	144	20736
11	139	19321
12	137	18769
13	142	20164
14	138	19044
15	136	18496
16	131	17161
17	145	21025
18	142	20164
19	139	19321
20	141	19881
21	136	18496
22	141	19881
23	123	15129
24	128	16384
25	135	18225
26	124	15376
27	138	19044

No	X	x ²
28	20	400
29	135	18225
30	141	19881
Jumlah	Σx=4134	$\Sigma x^2 = 571242$

Penyelesaian:

Diketahui

$$N = 30$$

$$\Sigma x = 4134$$

$$(\Sigma x)^2 = 17089956$$

$$\Sigma x^2 = 571242$$

Tingkat keyakinan (k) = 99%=3

Tingkat ketelitian (s) = $0\% \rightarrow \alpha = 0.1$

Ditanyakan : N' =...?

Penyelesaian :

$$N' = \left[\frac{k/s\sqrt{N\sum X^2 - (\sum x)^2}}{\sum X} \right]^2$$
$$= \left[\frac{3/0,1\sqrt{30.571242 - 17089956}}{4134} \right]$$
$$= 2,491$$

Kesimpulan:

Karena N'< N maka dapat disimpulkan bahwa data Tinggi bahu berdiri sudah cukup.

4. Uji Kecukupan Data Tinggi pinggang berdiri

Berikut merupakan perhitungan data Antropometri Tinggi pinggang berdiri yang ditampilkan dalam bentuk tabel rekapitulasi.

Tabel 4. 25 Uji Kecukupan Data Antropometri Tinggi pinggang berdiri

No	x	x ²
1	106	11236
2	111	12321
3	102	10404
4	98	9604

No	x	x ²	
5	105	11025	
6	96	9216	
7	99	9801	
8	94	8836	
9	113	12769	
10	94	8836	
11	97	9409	
12	84	7056	
13	108	11664	
14	100	10000	
15	94	8836	Y
16	98	9604	7
17	98	9604),
18	97	9409	
19	100	10000	3
20	95	9025	
21	91	8281	P
22	98	9604	3
23	86	7396	
24	95	9025	١
25	105	11025	
26	94	8836	
27	100	10000	6
28	90	8100	3
29	93	8649	1
30	95	9025	
Jumlah	Σx=2936	$\Sigma x^2 = 288596$	6

Penyelesaian :

Diketahui

:

N = 30

 $\Sigma x = 2936$

 $(\Sigma x)^2 = 8620096$

 $\Sigma x^2 = 288596$

Tingkat keyakinan (k) = 99%=3

Tingkat ketelitian (s) =
$$10\% \rightarrow \alpha = 0,1$$

Penyelesaian

$$N' = \left[\frac{k/s\sqrt{N\sum X^2 - (\sum x)^2}}{\sum X} \right]^2$$
$$= \left[\frac{3/0.1\sqrt{30.288596 - 8620096}}{2936} \right]^2$$
$$= 3.94$$

Kesimpulan:

Karena N'< N maka dapat disimpulkan bahwa data Tinggi pinggang berdiri sudah cukup.

5. Uji Kecukupan Data Jangkauan tangan ke depan

Berikut merupakan perhitungan data antropometri jangkauan tangan ke depan berdiri yang ditampilkan dalam bentuk tabel rekapitulasi.

Tabel 4. 26 Uji Kecukupan Data Antropometri Jangkaauan Tangan Ke Depan

No	x	x ²
1	74	5476
2	80	6400
3	78	6084
4	70	4900
5	70	4900
6	83	6889
7	68	4624
8	64	4096
9	90	8100
10	90	8100
11	75	5625
12	71	5041
13	80	6400
14	75	5625
15	71	5041
16	77	5929
17	69	4761

No	x	x ²
18	76	5776
19	72	5184
20	68	4624
21	68	4624
22	77	5929
23	59	3481
24	69	4761
25	75	5625
26	69	4761
27	72	5184
28	63	3969
29	83	6889
30	69	4761
Jumlah	Σx=2205	$\Sigma x^2 = 163559$

Penyelesaian:

Diketahui

$$\Sigma x = 2205$$

$$(\Sigma x)^2 = 4862025$$

$$\Sigma x^2 = 163559$$

Tingkat keyakinan (k) = 99%=3

Tingkat ketelitian (s) = $10\% \rightarrow \alpha = 0.1$

Ditanyakan

Penyelesaian

$$N' = \left[\frac{k/s\sqrt{N\sum X^2 - (\sum X)^2}}{\sum X} \right]^2$$
$$= \left[\frac{3/0,1\sqrt{30.163559 - 4862025}}{2205} \right]^2$$
$$= 8,28$$

Kesimpulan:

 $\label{eq:Karena} \mbox{ Karena N'}{<} \mbox{ N maka dapat disimpulkan bahwa data jangkauan tangan ke depan berdiri sudah cukup.}$

6. Uji Kecukupan Data Jangkauan tangan ke atas

Berikut merupakan perhitungan data antropometri jangkauan tangan ke atas berdiri yang ditampilkan dalam bentuk tabel rekapitulasi.

Tabel 4. 27 Uji Kecukupan Data Antropometri Jangkaauan Tangan ke Atas

No	X	x ²
1	225	50625
2	216	46656
3	204	41616
4	210	44100
5	205	42025
6	213	45369
7	215	46225
8	193	37249
9	224	50176
10	223	49729
11	220	48400
12	205	42025
13	220	48400
14	201	40401
15	205	42025
16	210	44100
17	218	47524
18	205	42025
19	220	48400
20	216	46656
21	205	42025
22	210	44100
23	189	35721
24	200	40000
25	206	42436
26	198	39204
27	213	45369
28	198	39204
29	210	44100
30	196	38416

No	X	x ²
Jumlah	$\Sigma x = 6273$	$\Sigma x^2 = 1314301$

Penyelesaian:

Diketahui

$$\Sigma x = 6273$$

$$(\Sigma x)^2 = 39350529$$

$$\Sigma x^2 = 1314301$$

Tingkat keyakinan (k) = 99%=3

Tingkat ketelitian (s) = $10\% \rightarrow \alpha = 0.1$

Penyelesaian

$$N' = \left[\frac{k/s\sqrt{N\sum X^2 - (\sum X)^2}}{\sum X} \right]^2$$
$$= \left[\frac{3/0.1\sqrt{30.1314301 - 39350529}}{6273} \right]^2$$

Kesimpulan:

Karena N'< N maka dapat disimpulkan bahwa data jangkauan tangan ke atas berdiri sudah cukup.

7. Uji Kecukupan Data Rentangan tangan

Berikut merupakan perhitungan data antropometri rentangan tangan berdiri yang ditampilkan dalam bentuk tabel rekapitulasi

Tabel 4. 28 Uji Kecukupan Data Antropometri Rentangan Tangan

No	X	x ²
1	187	34969
2	171	29241
3	168	28224
4	170	28900
5	170	28900

No	X	x ²
6	170	28900
7	176	30976
8	168	28224
9	178	31684
10	172	29584
11	174	30276
12	165	27225
13	174	30276
14	168	28224
15	164	26896
16	172	29584
17	172	29584
18	170	28900
19	165	27225
20	170	28900
21	163	26569
22	165	27225
23	149	22201
24	151	22801
25	166	27556
26	151	22801
27	170	28900
28	146	21316
29	180	32400
30	160	25600
Jumlah	$\Sigma x = 5025$	$\Sigma x^2 = 844061$

Penyelesaian :

Diketahui

N = 30

 $\Sigma x = 5025$

 $(\Sigma x)^2 = 25250625$

 $\Sigma x^2 = 844061$

Tingkat keyakinan (k) = 99%=3

Tingkat ketelitian (s) = $10\% \rightarrow \alpha = 0.1$

Penyelesaian :

$$N' = \left[\frac{k/s\sqrt{N\sum X^2 - (\sum x)^2}}{\sum X} \right]^2$$
$$= \left[\frac{3/0.1\sqrt{30.844061 - 25250625}}{5025} \right]^2$$
$$= 2.53$$

Kesimpulan:

Karena N'< N maka dapat disimpulkan bahwa data rentangan tangan berdiri sudah cukup.

4.15.1.2 Rekapitulasi Hasil Uji Kecukupan Data Anthropometri

Berikut ini merupakan rekapitulasi dari perhitungan uji kecukupan data antropometri dari masing-masing pengukuran, untuk N = 30, yaitu sebagai berikut.

Tabel 4. 29 Rekapitulasi Hasil Uji Kecukupan Data Antropometri

No.	Pengu <mark>ku</mark> ran	Σχ	$(\Sigma x)^2$	Σx^2	N'	Judgement
110.	1 chgukuran	A	(2A)			Juagement
1	Tinggi badan tegak	4973	24740676	826500	1,97	Cukup
2	Tinggi mata berdiri	4163	21279769	711623	2,91	Cukup
3	Tinggi bahu berdiri	4134	17089956	571242	2,491	Cukup
4	Tinggi pinggang berdiri	2936	8620096	288596	3,94	Cukup
5	Jangkauan tangan ke depan	2205	4862025	163559	8,28	Cukup
6	Jangkauan tangan ke atas	6273	39350529	1314301	1,79	Cukup
7	Rentangan tangan	5025	25250625	844061	2,53	Cukup

4.15.2 Uji Keseragaman Data

Uji keseragaman data dilakukan untuk mengetahui apakah data-data yang diperoleh sudah berada dalam keadaan terkendali atau belum. Data dapat dikatakan terkendali apabila data tersebut berada dalam batas kendali yang ditetapkan yaitu BKA (Batas Kontrol Atas) dan BKB (Batas Kontrol Bawah).

Pengujian dapat dilakukan secara manual, yaitu menggunakan rumus :

$$BKA = \bar{x} + k.\sigma$$
 atau $BKB = \bar{x} - k.\sigma$

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{N - 1}}$$

Keterangan

 \bar{x} = rata-rata waktu yang diukur

k = Konstanta tingkat keyakinan

- 99% = 3
- 95% = 2
- 90% = 1
- σ = Standar deviasi

N = Jumlah data pengamatan

4.15.2.1Hasil Uji Keseragaman Data Secara Manual

Berikut merupakan hasil pengujian keseragaman data antropometri secara manual. Dengan menggunakan tingkat keyakinan.

- 1. Uji Keseraga<mark>m</mark>an Data Tinggi badan tegak
- Standar Deviasi

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{N - 1}}$$

$$= \sqrt{\frac{(179 - 181,6)^2 + (171 - 181,6)^2 + (168 - 181,6)^2 + (172 - 181,6)^2 + (170 - 181,6)^2 + 30 - 1}{30 - 1}}$$

$$= \sqrt{\frac{(170 - 181,6)^2 + (170 - 181,6)^2 + (153 - 181,6)^2 + (178 - 181,6)^2 + (172 - 181,6)^2 + 30 - 1}{30 - 1}}$$

$$= \sqrt{\frac{(174 - 181,6)^2 + (165 - 181,6)^2 + (171 - 181,6)^2 + (161 - 181,6)^2 + (164 - 181,6)^2 + 30 - 1}{30 - 1}}$$

$$= \sqrt{\frac{(167 - 181,6)^2 + (170 - 181,6)^2 + (169 - 181,6)^2 + (165 - 181,6)^2 + (164 - 181,6)^2 + (16$$

$$= 7,902$$

• Batas Kendali Atas

BKA =
$$\bar{x} + k. \sigma$$

$$= 165.8 + 3(7,902)$$

$$= 189,5$$

Batas Kendali Bawah

BKB =
$$\bar{x}$$
 - k. σ

$$= 165.8 - 3(7,902)$$

$$= 142,1$$

Gambar 4.9 Grafik Uji Keseragaman Data Tinggi Badan Tegak

2. Uji Keseragaman Data Tinggi mata berdiri

• Standar Deviasi

$$\sigma = \sqrt{\frac{\sum (x-\bar{x})^2}{N-1}}$$

$$= \sqrt{\frac{(165-153.77)^2 + (160-153.77)^2 + (154-153.77)^2 + (160-153.77)^2 + (155-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (154-153.77)^2 + (154-153.77)^2 + (154-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (160-153.77)^2 + (152-153.77)^2 + (158-153.77)^2 + (160-153.77)^2 + (1$$

$$=\sqrt{\frac{(153-153.77)^2+(156-153.77)^2+(135-153.77)^2+(146-153.77)^2+(150-153.77)^2+}{30-1}}$$

$$=\sqrt{\frac{(135-153.77)^2+(157-153.77)^2+(134-153.77)^2+(155-153.77)^2+(154-153.77)^2}{30-1}}$$

$$=\sqrt{\frac{2297.37}{29}}$$

$$=8.901$$

• Batas Kendali Atas

$$BKA = \bar{x} + k. \sigma$$

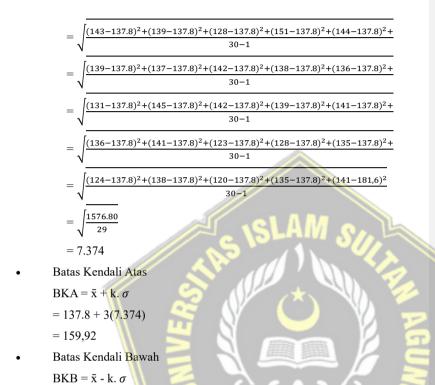
$$= 153.77 + 3(7,902)$$

= 180,47

Batas Kendali Bawah

$$BKB = \bar{x} - k. \sigma$$

$$= 153.77 - 3(7,902)$$


= 127,07

Gambar 4.10 Grafik Uji Keseragaman Data Tinggi Mata Berdiri

- 3. Uji Keseragaman Data Tinggi bahu berdiri
- Standar Deviasi

$$\begin{split} \sigma &= \sqrt{\frac{\sum (x - \bar{x})^2}{N - 1}} \\ &= \sqrt{\frac{(150 - 137.8)^2 + (144 - 137.8)^2 + (140 - 137.8)^2 + (142 - 137.8)^2 + (1$$

= 137.8 - 3(7.374)

Gambar 4.11 Grafik Uji Keseragaman Data Tinggi Bahu Berdiri

4. Uji Keseragaman Data Tinggi pinggang berdiri

• Standar Deviasi

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{N - 1}}$$

$$= \sqrt{\frac{(106 - 97.87)^2 + (111 - 97.87)^2 + (102 - 97.87)^2 + (98 - 97.87)^2 + (105 - 97.87)^2 + (30 - 1)^2}{30 - 1}}$$

$$= \sqrt{\frac{(96 - 97.87)^2 + (99 - 97.87)^2 + (94 - 97.87)^2 + (113 - 97.87)^2 + (94 - 97.87)^2 + (30 - 1)^2}{30 - 1}}$$

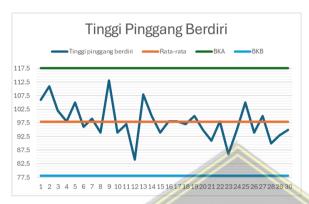
$$= \sqrt{\frac{(97 - 97.87)^2 + (84 - 97.87)^2 + (108 - 97.87)^2 + (100 - 97.87)^2 + (94 - 97.87)^2 + (30 - 1)^2}{30 - 1}}$$

$$= \sqrt{\frac{(98 - 97.87)^2 + (98 - 97.87)^2 + (97 - 97.87)^2 + (95 - 97.87)^2 + (95 - 97.87)^2 + (105 - 97.87)^2 + (30 - 1)^2}{30 - 1}}$$

$$= \sqrt{\frac{(94 - 97.87)^2 + (98 - 97.87)^2 + (90 - 97.87)^2 + (93 - 97.87)^2 + (95 - 97.87)^2}{30 - 1}}$$

$$= \sqrt{\frac{(94 - 97.87)^2 + (100 - 97.87)^2 + (90 - 97.87)^2 + (93 - 97.87)^2 + (95 - 97.87)^2}{30 - 1}}$$

$$= \sqrt{\frac{1259.47}{29}}$$


$$= 6.590$$

Batas Kendali Atas

BKA =
$$\bar{x}$$
 + k. σ
= 97.87+ 3(6.590)
= 117,64

Batas Kendali Bawah

BKB =
$$\bar{x}$$
 - k. σ
= 97.87- 3(6.590)
= 78,10

Gambar 4.12 Grafik Uji Keseragaman Data Tinggi Pinggang Berdiri

5. Uji Keseragaman Data Jangkauan tangan ke depan

Standar Deviasi

$$\sigma = \sqrt{\frac{\sum (x-\bar{x})^2}{N-1}}$$

$$= \sqrt{\frac{(74-73.5)^2 + (80-73.5)^2 + (78-73.5)^2 + (70-73$$

Batas Kendali Atas

BKA =
$$\bar{x}$$
 + k. σ
= 73.5+ 3(7.172)

Batas Kendali Bawah

BKB =
$$\bar{x}$$
 - k. σ
= 73.5-3(7.172)
= 51,99

Gambar 4.13 Grafik Uji Keseragaman Data Jangkauan Tangan ke Depan

6. Uji Keseragaman Data Jangkauan tangan ke atas

• Standar Deviasi

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{N - 1}}$$

$$= \sqrt{\frac{(225 - 209.1)^2 + (216 - 209.1)^2 + (204 - 209.1)^2 + (210 - 209.1)^2 + (205 - 209.1)^2 + 30 - 1}{30 - 1}}$$

$$= \sqrt{\frac{(213 - 209.1)^2 + (215 - 209.1)^2 + (193 - 209.1)^2 + (224 - 209.1)^2 + (223 - 209.1)^2 + 30 - 1}{30 - 1}}$$

$$= \sqrt{\frac{(220 - 209.1)^2 + (205 - 209.1)^2 + (220 - 209.1)^2 + (201 - 209.1)^2 + (205 - 209.1)^2 + 30 - 1}{30 - 1}}$$

$$= \sqrt{\frac{(210 - 209.1)^2 + (218 - 209.1)^2 + (205 - 209.1)^2 + (220 - 209.1)^2 + (216 - 209.1)^2 + 30 - 1}{30 - 1}}$$

$$= \sqrt{\frac{(205 - 209.1)^2 + (210 - 209.1)^2 + (189 - 209.1)^2 + (200 - 209.1)^2 + (206 - 209.1)^2 + 30 - 1}{30 - 1}}$$

$$= \sqrt{\frac{(198 - 209.1)^2 + (213 - 209.1)^2 + (198 - 209.1)^2 + (210 - 209.1)^2 + (196 - 209.1)^2}{30 - 1}}$$

$$= \sqrt{\frac{2616.70}{29}}$$
$$= 9.499$$

• Batas Kendali Atas

BKA =
$$\bar{x} + k. \sigma$$

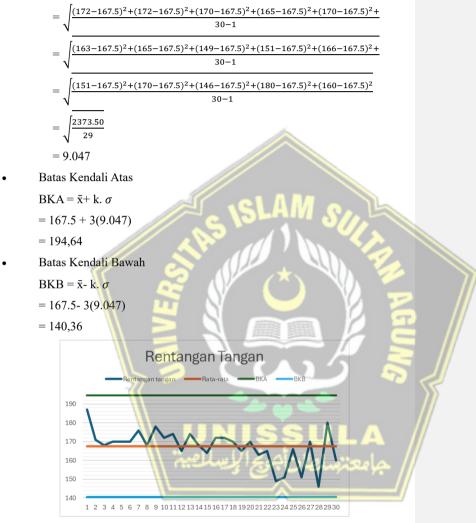
$$= 181,6 + 3(9.499)$$

$$= 237,6$$

Batas Kendali Bawah

BKB =
$$\bar{x}$$
 - k. σ

$$= 180,6$$


Gambar 4.14 Grafik Uji Keseragaman Data Jangkauan Tangan ke Atas

7. Uji Keseragaman Data Rentangan tangan

• Standar Deviasi

$$\sigma = \sqrt{\frac{\sum (x - \bar{x})^2}{N - 1}}$$

$$= \sqrt{\frac{(187 - 167.5)^2 + (171 - 167.5)^2 + (168 - 167.5)^2 + (170 - 167.5)^2 + (170 - 167.5)^2 + (170 - 167.5)^2 + (170 - 167.5)^2 + (170 - 167.5)^2 + (168 - 167.5)^2 + (178 - 167.5)^2 + (172 - 167.5)^2 + (174 - 167.5)^2 + (168 - 167.5)^2 + (168 - 167.5)^2 + (164 -$$

Gambar 4.15 Grafik Uji Keseragaman Data Rentangan Tangan

4.15.2.2 Rekapitulasi Hasil Uji Keseragaman Data Anthropometri

Berikut ini merupakan rekapitulasi dari perhitungan uji kecukupan data antropometri dari masing-masing pengukuran, untuk $N=30\,$ adalah sebagai berikut.

Tabel 4. 30 Rekapitulasi Hasil Uji Keseragaman Data Antropometri

No.	Pengukuran	x	Standev	Min	Maks	BKA	BKB	Judgement
1	Tinggi badan tegak	165,8	7,902	146	179	189,5	142,1	Terkendali
2	Tinggi mata berdiri	153,77	8,901	134	169	180,47	127,07	Terkendali
3	Tinggi bahu berdiri	137,8	7,374	120	151	159,92	115,68	Terkendali
4	Tinggi pinggang berdiri	97,87	6,590	84	113	117,64	78.10	Terkendali
5	Jangkauan tangan ke depan	73,5	7,172	59	90	95,01	51,99	Terkendali
6	Jangkauan tangan ke atas	209,1	9,499	189	225	237,6	180,6	Terkendali
7	Rentangan tangan	167,5	9.047	146	187	194,64	140,36	Terkendali

4.15.3 Perhitungan Data Persenti

Persentil (P) adalah titik atau nilai yang membagi suatu distribusi data menjadi seratus bagian yang sama besar. Pada bagiannya akan ditampilkan persentil data antropometri yang menggunakan persentil P_{50} , P_{75} , P_{90} , P_{95} . Adapun rumus untuk menghitung nilai persentil data antropometri adalah:

$$P_i = \bar{x} \pm K_i \, \sigma x$$

Keterangan:

 P_i = Nilai Persentil yang dihitung

 $\bar{x} = \text{Rata} - \text{rata}/Mean$

 K_i = Faktor pengali untuk persentil yang diinginkan

- K untuk $P_{50} = 0$
- K untuk $P_{75} = +0,674 \sigma x$
- K untuk $P_{90} = +1,280 \sigma x$
- K untuk $P_{95} = +1,645 \sigma x$
- σ = Standar Deviasi

Berikut ini merupakan perhitungan persentil 50-95 pada dimensi tubuh mahasiswa sebagai berikut:

a. Tinggi badan tegak

$$P_{50} = \bar{x}$$

= 165,8 cm

$$P_{75} = \bar{x} + 0.674 \sigma x$$

= 165.8 + (0.674(7.902))
= 165.8 + 5.325
= 171.125 cm

$$P_{90} = \bar{x} + 1,280 \sigma x$$

= 165,8 + (1,280(7,902))
= 165,8 + 10,114
= 175,914 cm

$$P_{95} = \bar{x} + 1,645 \ \sigma x$$

= 165,8 + (1,645 (7,902))
= 165,8 + 12,998
= 178,79 cm

b. Tinggi mata berdiri

$$P_{50} = \bar{x}$$

= 153,77 cm

$$P_{75} = \bar{x} + 0.674 \sigma x$$

= 153,77 + (0.674(8,901))
= 153,77 + 5.999
= 159,76 cm

$$P_{90} = \bar{x} + 1,280 \, \sigma x$$

$$= 153,77 + (1,280(8,901))$$

$$= 153,77 + 11,39$$

$$= 165,163 \, \text{cm}$$

$$P_{95} = \bar{x} + 1,645 \ \sigma x$$

= 153,77 + (1,645 (8,901))

$$= 168,41 \text{ cm}$$

c. Tinggi bahu berdiri

$$P_{50} = \bar{x}$$

= 137,80 cm

$$P_{75} = \bar{x} + 0.674 \, \sigma x$$

$$= 137,80 + (0,674(7,374))$$

$$= 137,80 + 4,97$$

= 142,77 cm

$P_{90} = \bar{x} + 1,280 \ \sigma x$

$$= 137,80 + (1,280(7,374))$$

$$= 137,80 + 9,438$$

= 147,23 cm

$P_{95} = \bar{x} + 1,645 \sigma x$

$$= 137,80 + (1,645 (7,374))$$

$$= 137,80 + 12,13$$

= 149,93 cm

d. Tinggi pinggang berdiri

$$P_{50} = \bar{x}$$

= 97,87 cm

$$P_{75} = \bar{x} + 0,674 \sigma x$$

$$= 97,87 + (0,674(6,590))$$

= 102,31 cm

$$P_{90} = \bar{x} + 1,280 \ \sigma x$$

$$= 97,87 + (1,280(6,590))$$

$$= 97,87 + 8,435$$

= 106,30 cm

$P_{95} = \bar{x} + 1,645 \ \sigma x$

$$= 97,87 + 10,84$$

= 108,71 cm

e. Jangkauan tangan ke depan

$$P_{50} = \bar{x}$$

= 73,50 cm

$$P_{75} = \bar{x} + 0.674 \sigma x$$

$$=73,50+(0,674(7,172))$$

$$=73,50+4,833$$

= 78,33 cm

$P_{90} = \bar{x} + 1,280 \ \sigma x$

$$=73,50+(1,280(7,172))$$

$$=73,50+9,18$$

= 82,68 cm

$$P_{95} = \bar{x} + 1,645 \sigma x$$

$$=73,50+(1,645(7,172))$$

$$=73,50+11,79$$

= 85,29 cm

f. Jangkauan tangan ke atas

$$P_{50} = \bar{x}$$

= 209,10 cm

$$P_{75} = \bar{x} + 0.674 \sigma x$$

=209,10+(0,674(9,499))

=209,10+6,40

= 215,50 cm

$P_{90} = \bar{x} + 1,280 \ \sigma x$

=209,10+(1,280(9,499))

= 209,10 + 12,158

= 221,25 cm

$P_{95} = \bar{x} + 1,645 \sigma x$

=209,10+(1,645(9,499))

= 209,10 + 15,625

= 224,725 cm

g. Rentangan tangan

$$P_{50} = \bar{x}$$

= 167,50 cm

$P_{75} = \bar{x} + 0.674 \, \sigma x$

$$= 167,50 + (0,674(9,047))$$

= 167,50 + 6,09

= 173,59 cm

$P_{90} = \bar{x} + 1,280 \ \sigma x$

$$= 167,50 + (1,280(9,047))$$

= 167,50 + 11,58

= 179,08 cm

```
P_{95} = \bar{x} + 1,645 \ \sigma x
= 167,50 + (1,645 (9,047))
= 167,50 + 14,88
= 182,38 cm
```

Tabel 4. 34 Rekapitulasi Persentil Data Antropometri

No	Data Antropometri	Persentil (cm)				
110	Data Antroponieur	P ₅₀	P ₇₅	P ₉₀	P ₉₅	
1	Tinggi badan tegak	165,8	171,125	175,91	178,79	
2	Tinggi mata berdiri	153,77	159,76	165,16	168,41	
3	Tinggi bahu berdiri	137,80	142,77	147,23	149,93	
4	Tinggi pinggang berdiri	97,87	102,31	106,30	108,71	
5	Jangkauan tangan ke depan	73,50	78,33	82,68	85,29	
6	Jangkauan tangan ke atas	209,10	215,50	221,25	224,72	
7	Rentangan tangan	167,50	173,59	179,08	182,38	

4.15.4 Perhitungan Data Persentil

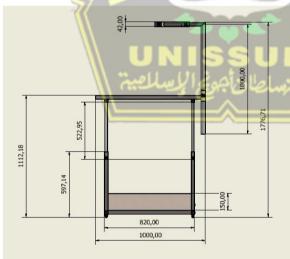
Pembuatan konsep produk dengan menggunakan data antropometri yang ada dengan memilih sesuai dengan apa yang dibutuhkan. Berikut adalah konsep produk berdasarkan data antropometri menggunakan persentil sebagai berikut:

Tabel 4. 32 Hasil Ukuran Rancangan

No	Data Antropometri	Hasil dari	Keterangan Produk	Dimensi Ukuran
140	Data Antropometri	Persentil	(Meja)	Produk
1	Tinggi badan tegak	175,91 cm	Tinggi	175 cm
2	Tinggi mata berdiri	165,16cm	Tinggi	165 cm
3	Tinggi bahu berdiri	137,80 cm	Tinggi	140 cm
4	Tinggi pinggang berdiri	108,71 cm	Tinggi	110 cm
5	Jangkauan tangan ke depan	73,50 cm	Lebar	50 cm
6	Jangkauan tangan ke atas	209,10 cm	Tinggi	210 cm
7	Rentangan tangan	167,50 cm	Panjang	50 cm

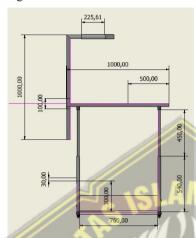
4.15.5 Gambar Desain

Berdasarkan perhitungan menggunakana persentil yang diperoleh diatas, maka berikut ini merupakan gambar desain produk yang akan dirancang.



Gambar 4.16 Gambar Desain Produk

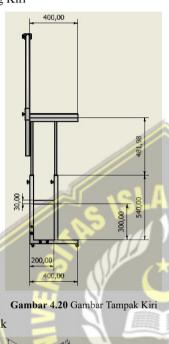
4.15.6 Detail Komponen Penyusun Produk


Berikut merupakan detail komponen penyusun produk meja kerja pengelasan pada praktikum proses manufaktur:

1. Tampak Depan

Gambar 4.17 Gambar Tampak Depan

2. Tampak Belakang


Gambar 4.18 Gambar Tampak Belakang

3. Tampak Samping Kanan



Gambar 4.19 Gambar Tampak Kanan

4. Tampak Samping Kiri

5. Tampak Isometrik

Gambar 4.21 Gambar Tampak Isometrik

4.15.6.1 Analisis Buat atau Beli

Untuk menghasilkan sebuah produk meja kerja pengelasan yang ergonomis dan sesuai keinginan responden tentunya membutuhkan komponen yang baik. Dan berikut ini adalah daftar tabel yang akan dibuat dan dibeli.

Tabel 4. 33 Komponen yang Dibuat dan Dibeli

No	Komponen	Ukuran (cm)	Jumlah	Harga	Buat/Beli
1	Rangka Samping	P = 40cm, L=3cm, T=55cm	2	Rp.50.000	Buat
2	Rangka Atas	P = 40cm, D=2cm, T=50cm	2	Rp.50.000	Buat
3	Alas Meja	P = 100cm, L=50cm, T=3cm	1	Rp.100.000	Buat
4	Rak Bawah	P = 50cm, L=25cm, T=1cm	1	Rp.30.000	Beli
5	Cover Depan	P = 50cm, L=1cm, T=10cm	ıŝL	Rp.15.000	Beli
6	Tiang	D=3cm, T=100cm	1	Rp.50.000	Buat
7	Klem Penjepit	P = 10cm, L=4cm, T=4cm	.01/1	Rp.10.000	Buat
8	Baut Klem M6	D=1cm, P=2cm	6	Rp.10.000	Beli
9	Baut L M4	D=5, P=5cm	12	Rp.12.000	Beli
10	Roda Troli	D=2cm, P=3cm, L=3cm	4	Rp.25.000	Beli
11	Square Plastic Pipe	D=2cm, P=2cm, L=2cm	4	Rp.20.000	Beli
12	Square Plastic Nut	D=1cm, P=2cm, L=2cm	4	Rp.20.000	Beli

Keterangan:

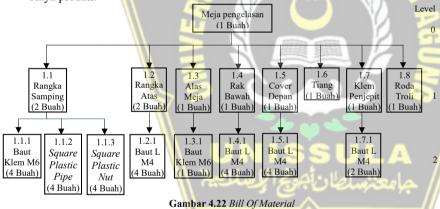
Buat = Estimasi biaya lebih murah daripada membeli dari luar.

Beli = Estimasi Biaya Lebih Murah dari luar daripada membuat sendiri.

4.15.6.2 Part List

Berikut ini adalah daftar tabel part list dari komponen yang digunakan pada alat penabur pupuk.:

Tabel 4. 34 Part List


No	Komponen	Bahan	Ukuran	Jumlah	Keterangan	Gambar
1	Rangka Samping	Besi	P = 40cm, L=3cm, T=55cm	2	Struktur utama penopang bagian samping meja, memberikan kekuatan dan kestabilan.	H
2	Rangka Atas	Besi	P = 40cm, D=2cm T=50cm	2	Penyangga bagian atas meja, menopang komponen seperti alas meja atau alat kerja.	
3	Alas Meja	Besi	P = 100cm, L=50cm, T=3cm		Permukaan kerja utama untuk meletakkan atau memproses benda kerja.	
4	Rak Bawah	Pollywood	P = 50cm, L=25cm, T=1cm	الإس	Tempat penyimpanan tambahan di bawah meja untuk alat atau material kerja.	اجامعالما
5	Cover Depan	Pollywood	P = 50cm, L=1cm, T=10cm	1	Penutup bagian depan meja, berfungsi estetis dan melindungi bagian dalam.	

No	Komponen	Bahan	Ukuran	Jumlal	h Keterangan	Gambar
					Tiang yang	
					berfungsi untuk	
					membantu	
6	Tiang	Besi	D=3cm,	1	memposisikan	
0	Tiung	Desi	T=100cm	1	posisi kerja	
					supaya	
					mempermudah	
				4	operator.	U
					Menjepit benda	
			P = 10cm,		kerja agar tidak	
7	Klem Penjepit	pit Besi	L=4cm, T=4cm	1	bergerak saat	
			E 4cm, 1 4cm	110	proses kerja	0///6
			9	۳.	berlangsung.	
			1	1	Pengencang	
			D=1cm, P=2cm	(1)	untuk mengikat	
8	Baut Klem M6	Besi		6	klem penjepit	
					serta mengatur	
				7	ketinggian	
				1/ 3	kerangkaa atas.	
		Besi		()	Baut berfingi	120
			7		untuk menggabu	10)
9	Baut L M4		D=5, P=5cm	12	ngkan part lain	
			\		ke kerangka	
				2	meja.	
			لاصة \\	01	Memudahkan	***
10	Roda Troli	Besi	D=2cm, P=3cm,	4	pergerakan meja	
			L=3cm		secara fleksibel	
					dan <i>mobile</i> .	
					Saluran untuk	
	Square Plastic		D=2cm, P=2cm,		menghubungkan	
11	Pipe	Platik	L=2cm	4	antara kerangka	
	1				bawah dengan	
					kerangka atas	
	Square Plastic		D=1cm, P=2cm,		Plastik yang	
12	Nut	Plastik	L=2cm	4	berfungsi untuk	
					menutup	

No	Komponen	Bahan	Ukuran	Jumlah	Keterangan	Gambar
					kerangka serta	A
					tempat untuk	
					mengunci roda	
					troli.	

4.15.7 Bill Of Material

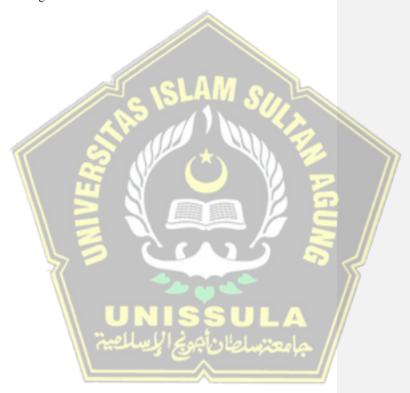
Merupakan daftar dari semua material, parts, dan sub assemblies, serta kualitas dari masing-masing yang dibutuhkan untuk memproduksi satu unit produk atau parent assembly. Definisi lain dari BOM adalah cara komponen itu tergabung ke dalam satu produk selama proses produksi. BOM juga dapat digunakan sebagai standar susunan komponen produk untuk digunakan lebih lanjut dalam perhitungan biaya produk.

Tabel 4. 35 Bill Of Material

No	Komponen	Ukuran (cm)	Jumlah	Bahan	Buat/Beli	
1.1	Rangka Samping	P = 40cm, L=3cm, T=55cm	2	Besi	Buat	
1.2	Rangka Atas	P = 40cm, D=2cm, T=50cm	2	Besi	Buat	
1.3	Alas Meja	P = 100cm, L=50cm, T=3cm	1	Besi	Buat	

No	Komponen	Ukuran (cm)	Jumlah	Bahan	Buat/Beli	
1.4	Rak Bawah	P = 50cm, L=25cm, T=1cm	1	Pollywood	Beli	
1.5	Cover Depan	P = 50cm, L=1cm, T=10cm	1	Pollywood	Beli	
1.6	Tiang	D=3cm, T=100cm	1	Besi	Buat	
1.7	Klem Penjepit	P = 10cm, L=4cm, T=4cm	1	Besi	Buat	
1.8	Roda Troli	D=2cm, P=3cm, L=3cm	4	Besi	Beli	
1.1.1	Baut Klem M6	D=1cm, P=2cm	4	Besi	Beli	
1.1.2	Square Plastic Pipe	D=2cm, P=2cm, L=2cm	4	Plastik	Beli	
1.1.3	Square Plastic Nut	D=1cm, P=2cm, L=2cm	4	Plastik	Beli	
1.2.1	Baut L M4	D=5, P=5cm	4	Besi	Beli	
1.3.1	Baut Klem M6	D=1cm, P=2cm	1	Besi	Beli	
1.4.1	Baut L M4	D=5, P=5cm	4	Besi	Beli	
1.5.1	Baut L M4	D=5, P=5cm	4	Besi	Beli	
1.7.1	Baut L M4	D=5, P=5cm	2	Besi	Beli	

4.15.8 Operation Process Chart (OPC)

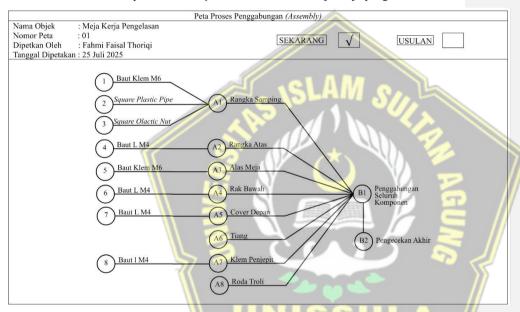

Operation Process Chart adalah diagram atau peta yang menggambarkan langkah-langkah proses pengerjaan material, mulai dari bahan baku (material) hingga menjadi komponen atau produk jadi. OPC memuat informasi-informasi yang diperlukan untuk analisis lebih lanjut. Waktu yang dihabiskan material yang digunakan dan tempat atau mesin yang dipakai untuk memproses material. Berikut merupakan peta proses operasi dari pembuatan meja kerja pengelasan:

Peta Proses Operasi Nama Objek : Meja Kerja Pengelasan Nomor Peta :01 SEKARANG USULAN Dipetkan Oleh : Fahmi Faisal Thoriqi Tanggal Dipetakan: 25 Juli 2025 Rangka Samping Roda Troli Klem Penjepit Tiang **Cover Depan** Rak Bawah Alas Meja Rangka Atas Pengukuran (Meteran) Pengukuran (Meteran) Pengukuran (Meteran) Pengukuran Pengukuran Pengukuran (Meteran) Pengukuran (Meteran) Pengukuran (Meteran) 1-7 1-2 (Meteran) (Meteran) Pemotongan Besi Hollow Pemotongan Pipa Besi Pemotongan Pipa Besi Pembelian Papan Pemotongan Besi Hollow Pembelian Pemotongan Besi Siku Pembelian Roda Troli 0-17 0-21 0-14 0-13 Papan Pemotongan Pipa Besi Pemotongan Plat Besi 0-2 Pengelasan Plat Besi 0-5 0-18 0-15 Pengelasan 0-10 Pengelasan 0-6 Pengelasan 0-3 Penghalusan Pengelasan 0-19 0-16 Penghalusan 0-7 Pengahlusan (0-20) Pengahlusan 0-11) Penghalusan Ringkasan Penggabungan Seluruh Komponen Waktu Simbol Kegiatan Jumlah 0-22 (Menit) 2' Operasi 22 110 Inspeksi Akhir 1-9 Inspeksi 9 10 Penyimpanan Produk Penyimpanan 1 Total 32 120

Tabel 4. 36 Operation Process Chart

4.15.9 Flow Process Chart (FPC)

Peta aliran proses atau *Flow Process Chart* diagram yang menunjukkan urutan-urutan operasi, pemeriksaan, transportasi, menunggu, dan penyimpanan yang terjadi selama satu proses bergabung beserta informasi tentang waktu dan jarak perpindahan. Berikut merupakan aliran proses dari pembuatan meja kerja pengelasan adalah sebagai berikut:



Tabel 4. 37 Flow Process Chart

			1	PETA ALIR	AN PROSES					
		Salamana				P.	da	T		
Kegiatan Sekarai			Usulan Beda		Pekerjaan : Pembuatan Meja Kerja Pngelasan					
		Jumlah	Waktu	Jumlah	Waktu	Jumlah	Waktu	No.Peta	: 01	
: Operasi 22		106'	-	-	-	-	Orang	Barang V		
	: Inspeksi	10	10'	-	-	-	-	Sekarang	√ Usulan	_
: Transportasi 5		10'	-	-	-	-	-	oleh : Fahmi Faisal	— Thoriai	
: Delay		-	-	-		-	Tanggal	: 25 Juli 205	Thoriqi	
$\overline{\nabla}$: Penyimpanan	2	-	-	-			1		
	Total	37	126'	-	-//	/.	-			
			Lambang				€			
No	Urutan Ke	giatan	0		\Rightarrow	D	∇	Jarak (m)	Jumlah Waktu (menit)	Ket.
1	Bahan baku disimpan diguda	ang		7			•	1		
2	Bahan Baku diambil	A		E.S	-	7/	1/1/	5	5'	
3	Pengukuran rangka sampng			-	711		11		I'	
4	Pemotongan besi hollow			5	71 1/2			MA	5'	
5	Pemindahan bahan ke penge	lasan			>	7 ()		N/ M	1'	- 7
6	Pengelasan rangka samping				V)/		7/	N///	5'	
7	Penghalusan	///		-	7.7.			10	5'	
8	Pengukuran rangka atas	///		>		Hills	SEER 1	17	T'	
9	Pemotongan besi hollow	///				(HIII)			-5'	
10	Pemotogan pipa besi				/ //			7/ /	5'	
11	Pemindahan bahan ke penge	lasan			>			5	1'	
12	Pengelasan rangka atas		4				~		5'	11
13	Penghalusan		7						5'	1
14	Pengukuran alas meja			>	4				1'	117
15	Pemotongan besi siku		1		-	- 0			5'	/
16	Pemotongan plat besi		-		7.77		77		5'	/
17	Pemindahan bahan ke penge	lasan	///		7/	1		5	A 1'	
18	Pengelasan alas meja		1						5'	
19	Penghalusan		-	صيح	لاسا	اک کا	اصاد		5'	
20	Pengukuran rak bawah			>		CALL	-0-1	17.0	11	
21	Pengeboran rak bawah					$ \wedge$			3*	
22	Pengukuran cover depan			>		^			ı	
23	pengeboran cover depan								3'	
24	Pengukuran tiang			>					1'	
25	Pemotongan pipa besi								5'	
26	Pemindahan bahan ke penge	lasan			>			5	1'	
27	Pengelasan tiang								5'	
28	Penghalusan								5'	
29	Pengukuran klem jepit			>					1'	
30	Pemotongan pipa besi								5'	
31	Pemotongan plat besi		•						5'	
32	Pemindahan bahan ke penge	lasan			>			5	1'	
33	Pengelasan klem jepit								5'	
34	Penghalusan		•						5'	
35	Pengukuran roda troli			>					1'	
36	Pengeboran roda troli								5'	
37	Penggabungan seluruh part		_						5'	
38	Pengecekan akhir			_					2'	
, 50					_	•				

4.15.10 Assembly Process Chart (APC)

Assembly Process Chart merupakan diagram yang menggambarkan hubungan antara komponen-komponen yang akan dirakit menjadi sebuah produk. Assembly Process Chart bermanfaat untuk menunjukkan komponen penyusun suatu produk dan menjelaskan urutan perakitan komponen-komponen tersebut. Berikut ini merupakan Assembly Process Chart dari meja kerja pengelasan:

Gambar 4.23 Assembly Process Chart

BAB V KESIMPULAN & SARAN

5.1 Kesimpulan

Dari hasil penelitian yang telah dilakukan didapatkan kesimpulan sebagai berikut:

- 1. Hasil penelitian menunjukkan bahwa meja kerja pengelasan yang digunakan dalam praktikum proses manufaktur di Laboratorium Teknik Industri UNISSULA belum memenuhi aspek ergonomi dan preferensi emosional mahasiswa. Sebanyak 83,3% responden menyatakan meja tidak sesuai harapan, dan 96,7% menginginkan redesign. Melalui pendekatan Kansei Engineering, telah diidentifikasi lima atribut utama yang mencerminkan preferensi emosional mahasiswa, yaitu: ergonomis, fleksibel, multifungsi, aman, dan menarik.
- 2. Berdasarkan hasil pengolahan data kuesioner Semantic Differential dan proses seleksi konsep, direkomendasikan sebuah desain meja kerja yang memiliki kemampuan penyesuaian tinggi, fitur keamanan tambahan, serta tata letak yang efisien dan menarik secara visual. Desain ini diyakini mampu meningkatkan kenyamanan, keselamatan, serta efisiensi kerja mahasiswa selama melakukan praktikum.
- 3. Konsep desain 2 mendapat nilai total tertinggi (4,48) dibanding konsep 1 (3,22) berdasarkan bobot atribut dan penilaian responden, sehingga Konsep 2 terpilih sebagai desain akhir. Konsep desain telah dirancang menggunakan perangkat lunak Autodesk Inventor dengan mempertimbangkan data antropometri mahasiswa. Meja tersebut dilengkapi dengan fitur tinggi yang dapat disesuaikan, modul bongkar pasang, sistem penjepit fleksibel, kaki roda, serta rak penyimpanan, sehingga sesuai dengan postur tubuh dan kebutuhan fungsional mahasiswa. Hal ini menjadikan desain tersebut ergonomis dan responsif terhadap preferensi pengguna.

5.2 Saran

Dari hasil penelitian yang telah dilakukan, adapun saran yang diberikan sebagai berikut :

- Evaluasi desain sebaiknya dilakukan secara berkala setelah implementasi untuk mengetahui efektivitas nyata terhadap produktivitas dan kenyamanan kerja mahasiswa.
- 2. Dalam jangka panjang, dapat dipertimbangkan penambahan fitur seperti sistem penghisap asap las, hidrolik pada meja, pencahayaan langsung, atau alat ukur terintegrasi untuk mendukung proses pembelajaran praktikum lebih optimal.
- 3. Pendekatan *Kansei Engineering* terbukti efektif dalam menangkap persepsi emosional pengguna terhadap produk. Metode ini bisa diterapkan pada *redesign* alat praktikum lainnya di lingkungan teknik industri.
- 4. Setelah desain direalisasikan, penting untuk melakukan uji coba langsung kepada mahasiswa sebagai pengguna utama guna memastikan kesesuaian antara desain dan kenyataan operasional.

DAFTAR PUSTAKA

- Ainul, M. R. A. F, Redesain mesin pencacah rumput dengan metode Teoriya Resheniya Izobretatelskikh Zadatch (TRIZ), Skripsi, Universitas Islam Indonesia, Yogyakarta, 2024.
- Asyari, H., Prakoso, I., Hakim, R. A. N. Al, Waluyo, S., & Palumian, A. S., Evaluasi Postur Kerja Dan Perancangan Ulang Set Meja Kerja Pada Teknik Batik Cap Dengan Pendekatan Ergonomi-Antropometri Dan Metode Kansei Engineering. Simposium Nasional Rapi Xxii, 2023
- Dewi, R. S., Rusdiansyah, A., & Herdiansyah, F, Perancangan Kontainer Berpendingin Pada Sepeda Motor Dengan Metoda QFD dan TRIZ. *Invotek: Jurnal Inovasi Vokasional Dan Teknologi*, vol. 20, no.1, 13–26.
- Djamal, H., & Kurniawan, M. F, Desain Alat Bantu Pengambilan Part Di Warehouse Pt. Xyz Dengan Aspek Ergonomi. *Jisi: Jurnal Integrasi Sistem Industri*, vol. 6, no. 2, 2019
- Fauzi, H., & Budiady Rancangan Meja Kerja Ergonomis Untuk Mengurangi Kelelahan Otot Menggunakan Metode OWAS Dan REBA (Studi Kasus Di Cv. Meteor Custom). Jurnal Rekayasa Dan Optimasi Sistem Industri, vol 2, 2019
- Hasibuan, C. F., & Sutrisno. (2017). Perancangan Produk Tas Travel Multifungsi Dengan Menggunakan Metode *Quality Function Deployment* (QFD). *Jurnal Sistem Teknik Industri*, vol. 19, no.1, 2019, 40–44.
- Hidayat, R, Perancangan Ulang (*Redesign*) Tempat Tidur Untuk Lansia Dengan Metode *Kansei Engineering* Dan Pendekatan *Gerontology*. *Jurnal Teknik Industri*, Vol.7, no.1 2017.
- Jatmiko, H. A., & Dharmastiti, R. (2018). Pengembangan Alat Ukur Evaluasi Dan Perancangan Produk Kursi Roda. *Jurnal Teknosains*, Vol.7, no.2, 2018, 83– 154.
- Lawi, A., Bora, M. A., Arifin, R., Andriani, M., Jumeno, D., Herman, Rasyid, A., Purbawai, Dewadi, F. M., Didin, F. S., Oktavera, R., Santoso, H., & Kusmindari, C. D. *Ergonomi Industri* (D. P. Sari, Ed.; 1st Ed.). Pt Global Eksekutif Teknologi, 2023

- Lestari, E., & Imtihan, M, Perancangan Produk *Aquascape* Dengan *Metode Quality Function Deployment* (QFD). *Jurnal Terapan Teknik Industri*, vol 1,no.1, 2020, 21–29.
- Nagamachi, M, Kansei Engineering: A New Ergonomic Consumer-Oriented Technology For Product Development, 1995
- Nurhayati, E, Pendekatan *Quality Function Deployment* (QFD) Dalam Proses Pengembangan Desain Produk Whiteboard Eraser V2. *Pengetahuan Dan Perancangan Produk*), vol.5, no.2, 2022, 75–82.
- Pakpahan, E. P., Rambe, N. T. J., Irsan, M., Siahaan, R. P., & Simanjuntak, J. C. M, Perbaikan Rancangan Automatic Liquid Filler Dengan Pendekatan Concurrent Engineering Menggunakan Metode Quality Function Deployment Dan TRIZ. Talenta Conference Series: Energy & Engineering, vol.6, no.1, 2023
- Prabowo, R., & Zoelangga, M. I, Pengembangan Produk Power Charger Portable Dengan Menggunakan Metode *Quality Function Deployment* (QFD). *Jurnal Rekayasa Sistem Industri*, vol.5, no.1, 2019, 55–62.
- Prasetyo, P. E., Susetyo, A. E., & Susanti, D. A, Perancangan Alat Bantu Mandi Dan Aktifitas Toilet Portabel Tunadaksa Bagian Bawah. *Science Tech: Jurnal Ilmu Pengetahuan Dan Teknologi*, vol.7, no.2, 2021, 22–38.
- Purwandari, A. T., Sumantri, D., Parwati, N., & Pratama, A. J, Perancangan *Filament Extruder* Pada Mesin Pengolah Sampah Plastik Terintegrasi "Creatics" Menggunakan Metode TRIZ Dan AHP. Jurnal Al-Azhar Indonesia Seri Sains Dan Teknologi, vol.7, no.2, 2022, 127–136.
- Saragih, B. A., Armaya, T. Z. A., Ginting, Y. T., Siringoringo, J. P. D., & Nainggolan, Y. R. Perbaikan Rancangan Produk Mesin Oven Pengering Kerupuk Energi Biomassa Menggunakan Metode Quality Function Deployment (QFD) Dan Theory Of Inventive Problem Solving (TRIZ). Talenta Conference Series: Energy & Engineering, vol.1, 2023.
- Siagian, L. I., Tarigan, R. R. A., Hutagalung, H. C., Bakara, A. N., & Chandra, T. B, Perancangan Produk Alat Penyangrai Dan Penggiling Kopi Otomatis Menggunakan Metode Nigel Cross. Talenta Conference Series: Energy & Engineering, vol.6, no.1, 2023

- Simangunsong, P. W., Wahyudi, T., & Rahmahwati, R, Rancang Bangun Alat Panen Kelapa Sawit Mekanis Menggunakan Metode TRIZ. *Integrate: Industrial Engineering And Management System*, vol.7, no.2,2023, 32–38.
- Siregar, I., & Adhinata, K, Perancangan Produk Tempat Tisu Multifungsi Dengan Menggunakan *Quality Function Deployment* (QFD). *Jurnal Sistem Teknik Industri*, vol.19, no.2, 2017, 21–29.
- Tarwaka, Ha Bakri, S., & Sudiajeng, L, Ergonomi Untuk Keselamatan, Kesehatan Kerja Dan Produktivitas vol.1, 2014
- Thobarsi, A. M., Ernawati, D., & Tranggono, Perancangan Produk Multifunction Box Yang Ergonomis Dengan Menggunakan Metode Pahl & Beitz. Juminten: Jurnal Manajemen Industri Dan Teknologi, vol.1, no.05, 2020, 1–12.
- Triwarno, M., Perancangan ulang alat produksi shuttlecock yang efisien dan ergonomis, Skripsi, Universitas Muhammadiyah Surakarta, 2016

