LAPORAN TUGAS AKHIR

USULAN PERBAIKAN TATA LETAK RAW MATERIAL SLOW MOVING MENGGUNAKAN METODE SHARED STORAGE PADA DEPARTEMEN PRODUCTION PLANNING AND INVENTORY CONTROL

(STUDI KASUS PT. NIHON SEIKI INDONESIA - CIKARANG)

Disusun Oleh :
RIYAN EKO BUDIYANTO
NIM. 31601700076

PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM SULTAN AGUNG SEMARANG

2022

LAPORAN TUGAS AKHIR

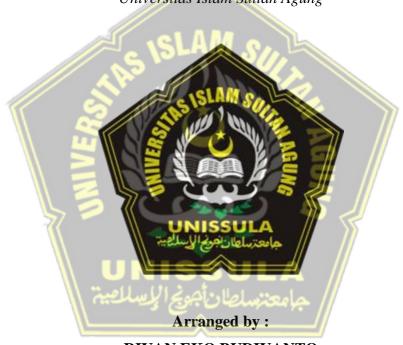
USULAN PERBAIKAN TATA LETAK RAW MATERIAL SLOW MOVING MENGGUNAKAN METODE SHARED STORAGE PADA DEPARTEMEN PRODUCTION PLANNING AND INVENTORY CONTROL

(STUDI KASUS PT. NIHON SEIKI INDONESIA - CIKARANG)

LAPORAN INI DISUSUN UNTUK MEMENUHI SALAH SATU SYARAT MEMPEROLEH GELAR S1 PADA PRODI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI ISLAM SULTAN AGUNG

NIM. 31601700076

PROGRAM STUDI TEKNIK INDUSTRI FAKULTAS TEKNOLOGI INDUSTRI UNIVERSITAS ISLAM SULTAN AGUNG **SEMARANG**


2022

A FINAL PROJECT SLOW MOVING RAW MATERIAL LAYOUT IMPROVEMENT PROPOSED USING SHARED STORAGE METHOD IN PRODUCTION PLANNING AND INVENTORY CONTROL DEPARTMENT (CASE STUDY PT. NIHON SEIKI INDONESIA - CIKARANG)

Proposed to complete the requirement to obtain a bachelor's degree (S1)

At Departement of Industrial Engineering Faculty of Industrial Technology

Universitas Islam Sultan Agung

RIYAN EKO BUDIYANTO NIM. 31601700076

DEPARTEMENT OF INDUSTRIAL ENGINEERING
FACULTY OF INDUSTRIAL TECHNOLOGY
UNIVERSITAS ISLAM SULTAN AGUNG
SEMARANG

2022

LEMBAR PENGESAHAN PEMBIMBING

Laporan Tugas Akhir dengan judul "USULAN PERBAIKAN TATA LETAK RAW MATERIAL SLOW MOVING MENGGUNAKAN METODE SHARED STORAGE PADA DEPARTEMEN PRODUCTION PLANNING AND INVENTORY CONTROL (STUDI KASUS PT. NIHON SEIKI INDONESIA - CIKARANGY Izi disusun oleh :

Nama

Riyan Eko Budiyanto

NIM

:31601700076

Program Saudi

: Teknik Industri

Telah disahkan oleh dosen perabimbing pada

Hari

Tangga¹

Pembanbing I

Pembimbing II

Bray Deva Bernadhi, ST., MT

Dr. Novi Marlyana, ST.,MT

NIDN, 063-012-8601

NIDN: 001-511-7601

Mengetahui,

Ketua Program Studi Teknik-Industri

Nuzulia Khoiriyah, ST., MT

NIK. 210-603-029

įν

LEMBAR PENGESAHAN PENGUJI

Laporan Tugas Akhir dengan judul "USULAN PERBAIKAN TATA LETAK RAW MATERIAL SLOW MOVING MENGGUNAKAN METODE SHARED STORAGE PADA DEPARTEMEN PRODUCTION PLANNING AND INVENTORY CONTROL (STUDI KASUS PT. NIHON SEIKI INDONESIA - CIKARANG)" intrausun oleh:

Nama

: Rivan Eko Budiyanto

NIM

: 31601700076

Program Studi

: Teknik Industri/

Teleh disahkan oleh desen pembimbing pada :

Hari

Tanggal

TIM PENGUJI

Angeota I

Anggota II

Irwan Sukendar, ST, MT, IPM, ASEAN, Eng.

Nuzulia Khoiriyah,ST.,MT

NIDN, 00-1001-7601

NIDN.06-2405-7901

Ketua Penguji

Ir. Sukarno Budi Utomo, M.T

NIDN.06-1907-6401

SURAT PERNYATAAN KEASLIAN

Yang bertanda tangan dibawah ini:

Nama : Riyan Eko Budiyanto

Nim : 31601700076

: USULAN PERBAIKAN TATA LETAK RAW Judul Tugas Akhir

> MATERIAL SLOW MOVING MENGGUNAKAN METODE SHARED **STORAGE** PADA DEPARTEMEN PRODUCTION PLANNING AND INVENTORY CONTROL (STUDI KASUS PT.

NIHON SEIKI INDONESIA - CIKARANG).

Dengan ini menyatakan bahwa judul dan isi Tugas Akhir yang saya buat dalam rangka menyelesaikan Pendidikan Strata Satu (S1) Teknik Industri tersebut adalah asli dan belum pernah diangkat ditulis atau dipublikasikan oleh siapapun baik keseluruhan aupun sebagian kecuali yang secara tertulis diacu dalam naskah ini dan disebutkan dalam daftar pustaka dan apabila di kemudian hari terbukti bahwa judul Tugas Akhir tersebut pernah diangkat ditulis atau dipublikasikan maka saya bersedia dikenakan sanksi akademis. Demikian surat pernyataan saya buat dengan sadar penuh tanggung jawab.

> Semarang Juni 2022 Yang menyatakan

Riyan Eko Budiyanto

PERNYATAAN PERSETUJUAN UNGGAH KARYA ILMIAH

Saya yang bertanda tangan dibawah ini:

Nama : Riyan Eko Budiyanto

Nim : 31601700076

Program Studi: Teknik Industri

Fakultas : Teknologi Industri

Dengan ini menyerahkan karya ilmiah berupa Tugas Akhir/Skripsi/Tesis/Diseertasi dengan judul :

"USULAN PERBAIKAN TATA LETAK RAW MATERIAL SLOW MOVING MENGGUNAKAN METODE SHARED STORAGE PADA DEPARTEMEN PRODUCTION PLANNING AND INVENTORY CONTROL (STUDI KASUS PT. NIHON SEIKI INDONESIA - CIKARANG)"

Menyetujuinya menjadi hak milik Universitas Islam Sultan Agung serta memberikan Hak Bebas Royalti Non-eksklusif untuk disimpan dialihmediakan dikelola dalam pangkalan data dan dipublikasikannya di internet atau media lain untuk kepentingan akademis selama tetap mencantumkan nama penulis sebagai pemilik Hak Cipta.Pernyataan ini saya buat dengan sungguh-sungguh.Apabila dikemudia hari terbukti ada pelanggran Hak Cipta/Plagiarism dalam karya ilmiah ini maka segala bentuk tuntutan hukum yang timbul akan saya tanggung jawab secara pribadi tanpa melibatakan pihak Universitas Islam Sultan Agung.

Semarang Juni 2022 Yang Menyatakan

Riyan Eko Budiyanto

PERSEMBAHAN

Alhamdulillahirabill'alamiin

Rasa syukur kepada Allah SWT yang telah memberikan rahmat, hidayah, cinta, dan kasih sayang serta telah memberikan kekuatan dan kesabaran yang berlimpah sehingga dapat menyelesaikan tugas akhir ini dengan sebaik-baiknya. Sholawat serta saam selalu terlimpah kepada Baginda Nabi besar kita Nabi Muhammad SAW, semoga kita mendapatkan syafa'at beliau di yaumul qiamah nanti. Laporan tugas akhir ini yang berjudul "Usulan Perbaikan Tata Letak Raw Material Slow Moving Menggunakan Metode Shared Storage Pada Departemen *Production Planning And Inventory Control* (Studi Kasus PT. Nihon Seiki Indonesia - Cikarang)" yang saya persembahkan kepada orang-orang yang sangat saya sayangi dan cintai terkhusus kepada:

- 1. Bapak Sudaryo
- 2. Ibu Siti Maryati
- 3. Nia Aulia
- 4. Ulfatus Sholehah

Yang telah memberikan dukungan, motivasi, semangat dan mendoakan selalu dalam menyelesaikan tugas akhir ini.

Dengan selesainya tugas akhir ini merupakan capaian awal yang bisa saya persembahkan untuk memulai kehidupan baru selanjutnya. Saya mengerti bahwa tugas akhir ini belum sebanding dengan perjuangan orang tua saya, dan saya akan selalau berusaha untuk membuat kedua orangtua saya bangga. Terimakasih juga untuk seluruh teman-teman saya atas semangat dan motivasi yang telah diberikan untuk saya dalam mengerjakan Tugas Akhir ini.

MOTTO

- Hai orang-orang yang beriman, mintalah pertolongan kepada Allah dengan sabar dan salat. Sesungguhnya Allah beserta orang-orang yang sabar." (Q.S Al-Baqarah: 153)
- Rasulullah bersabda: Barang siapa menempuh jalan untuk mendapatkan ilmu, Allah akan memudahkan baginya jalan menuju surga. (HR. Musilm)
 - ❖ Tidak ada kesuksesan tanpa kerja keras. Tidak ada keberhasilan tanpa kebersamaan. Tidak ada kemudahan tanpa doa."

KATA PENGANTAR

Assalamualaikum Wr. Wb.

Puji syukur atas kehadirat Allah SWT, yang telah melimpahkan rahmat dan hidayah-Nya kepada penulis sehingga dapat menyelesaikan penelitian sekaligus laporan tugas akhir yang berjudul "Usulan Perbaikan Tata Letak Raw Material Slow Moving Menggunakan Metode Shared Storage Pada Departemen Production Planning And Inventory Control (Studi Kasus PT. Nihon Seiki Indonesia - Cikarang)" dengan sebaik- baiknya, sholawat serta salam senantiasa tercurah kepada Nabi besar junjungan kita Nabi Muhammad SAW.

Laporan tugas akhir merupakan salah satu syarat bagi mahasiswa untuk merah gelar sarjana (S1) di Fakultas Teknologi Industri, Jurusan Teknik Industri, Universitas Islam Sultan Agung Semarang. Dalam penyusunan laporan tugas akhir ini tidak lepas mendapat bantuan dari berbagai pihak. Dengan rasa setulus hati, penulis ingin menyamaikan banyak terimakasih kepada:

- 1. Allah SWT yang telah memberikan rahmat dan ridhonya serta memberikan kelapangan hati dan pikiran dalam menimba ilmu.
- 2. Kedua orang tua saya, Bapak Sudaryo dan Ibu Siti Maryati tercinta yang telah memberikan banyak dukungan, kasih sayang, motivasi serta dukungan materill maupun non materill dan selalu mendoakan saya disetiap sujudnya.
- 3. Terimakasih kepada Dosen Pembimbing saya Bapak Brav Deva Bernadhi, ST, MT dan Ibu Dr. H. Novi Marlyana, ST, MT yang telah membantu dan membimbing dengan sabar sampai tugas akhir ini terselesaikan.
- 4. Ibu Dr. H. Novi Marlyana ST, MT selaku Dekan di Fakultas Teknologi Industri berserta jajarannya.
- 5. Ibu Nuzulia Khoiriyah, ST, MT selaku Ketua Jurusan Teknik Industri.
- 6. Bapak dan Ibu Dosen jurusan Teknik Industri yang telah memberikan ilmu selama dibangku kuliah.

- 7. Staff dan Karyawan Fakultas Teknologi Industri yang sudah membantu menyelesaikan segala urusan tugas akhir dari surat permohonan penelitian sampai sidang.
- 8. Terimakasih kepada saudara saya yang telah memberikan dukungan dan support serta memotivasi sehingga saya dapat menyelesaikan lapran tugas akhir ini.
- 9. Terimakasih kepada pihak PT. Nihon Seiki Indonesia atas izin yang diberikan untuk saya lakukan penelitian di perusahaan.
- 10. Terimakasih kepada bapak Widodo Bodro Husodo S.E dan karyawan lainnya yang telah membantu memberikan data, memberikan dukungan dan semangat kepada saya.
- Terimakasih kepada teman-teman seperjuangan Teknik Industri 2017 kelas
 B yang telah berjuang bersama dan selalu memberikan support.
- 12. Dan terimakasih kepada pihak-pihak yang membantu serta memberikan semangat kepada saya dalam menyelesaikan laporan tugas akhir ini.

DAFTAR ISI

HAL	AMAN JUDULi
HAL	AMAN COVERii
LEM	IBAR PENGESAHAN PEMBIMBINGiv
LEM	IBAR PENGESAHAN PENGUJIv
SUR	AT PERNYATAAN KEASLIAN TUGAS ASKHIR vi
PER	NYATAAN PERSETUJUAN PUBLIKASI KARYA ILMIAH vii
HAL	AMAN PERSEMBAHANviii
	AMAN MOTTOix
KAT	'A PENGANTARx
DAF	TAR ISIxii
DAF	TAR TABELxv TAR GAMBARxvii
	TAR ISTILAH xviii
ABS	TRAK xix
ABS	TRACTxx I PENDAHULUAN
BAB	I PENDAHULUAN1
1.1	Latar Belakang1
1.2	Perumusan Masalah
1.3	Pembatasan Masalah
1.4	Tujuan Penelitian
1.5	Manfaat Penelitian5
1.6	Sistematika Penelitian
BAB	II TINJAUAN PUSTAKA DAN LANDASAN TEORI7
2.1	Tinjauan Pustaka
2.2	Landasan Teori
	2.2.1 Tata Letak Fasilitas
	2.2.2 Gudang (<i>Warehouse</i>)
	2.2.3 Aktifitas Pergudangan
	2.2.4 Media penyimpanan material25

	2.2.5 Material Handling	25
	2.2.6 Metode-Metode Penyimpanan Dalam Gudang	27
	2.2.7 Metode Shared Storage	30
	2.2.8 Jenis Layout Gudang	32
2.3	Hipotesa Dan Kerangka Teoritis	34
	2.3.1 Hipotesa	34
	2.3.2 Kerangka Teoritis	35
BA	B III METODE PENELITIAN	37
3.1	Pengumpulan Data	37
3.2	Teknik Pengumpulan Data	38
3.3	Pengujian Hipotesa	39
3.4	Pengujian Hipotesa. Metode Analisis	
3.5	Pembahasan	39
3.6	Kesimpulan Dan Saran	40
3.7	Diagram Alir Penelitian	40
BAl	B IV HASIL PENELITIAN DAN PEMBAHASAN	42
4.1	Pengumpulan Data	42
	4.1.1 Gambaran Umum Perusahaan	42
	4.1.2 Produk & Klien Industri	
	4.1.3 Data Jenis Material	46
	4.1.4 Material Handling	50
	4.1.5 Peralatan Gudang	53
	4.1.6 Data Supplier	
	4.1.7 Inbound-Outbound Warehouse	56
	4.1.8 Data Permintaan Material	58
4.2	Pengolahan Data	65
	4.2.1 Penentuan Kebutuhan Ruang	
	4.2.2 Penentuan Luas Area Penyimpanan Yang Dibutuhkan	
	4.2.3 Penentuan <i>Allowance</i> Ruang	
	4.2.4 Peletakan Area Penyimpanan Awal	
	4 2 5 Jarak Dari Pintu Masuk Ke Δrea Penyimpanan	69

4.2.6 Jarak Tempuh Antara Area Penyimpanan Ke Pintu Pengiriman						
Menggunakan Tata Letak Gudang Usulan94						
4.2.7 Jarak Tempuh Material Handling Menggunakan Tata Letak Gudang						
Awal						
4.3 Analisa Interpretasi						
4.3.1 Analisa Metode Shared Storage						
4.3.2 Analisis Kebutuhan Ruang						
4.3.3 Analisa Euclidean Distance						
4.3.4 Penyusunan Tata Letak Gudang Dengan Metode Shared Storage10						
4.3.5 Jarak Tempuh <i>Material Handling</i>						
4.3.6 Perbandingan Tata Letak Gudang Usulan Dengan Tata Letak Awal 10						
4.4 Pembuktian Hipotesa						
BAB V PENUTUP109						
5.1 Ke <mark>simpulan</mark>						
5.2 Saran						
DAFTAR PUSTAKA11						

DAFTAR TABEL

Tabel 2.1 Studi Literatur	12
Tabel 2.2 Perbandingan metode penyimpanan	29
Tabel 4.1 Pembagian Jam Kerja PT.Nihon Seiki Indonesia	43
Tabel 4.2 Jenis material <i>Layout</i> Area A	47
Tabel 4.3 Jenis material <i>Layout</i> Area B	48
Tabel 4.4 Jenis material <i>Layout</i> Area C	49
Tabel 4.5 Jenis material Layout Area D.	49
Tabel 4.6 Jenis material Layout Area E	50
Tabel 4.7 Prinsip-prinsip material handling	50
Tabel 4.8 Waktu yang diperlukan dalam proses handling	51
Tabel 4.9 Pemakaian BBM Solar untuk Forklift Tahun 2021 Gudang material.	
Tabel 4.10 Data Supplier PT. Nihon Seiki Indonesia	55
Tabel 4.11 Aktifitas inbound-outbound PT.Nihon Seiki Indonesia	56
Tabel 4.12 Area A Tabel 4.13 Area B	58
Tabel 4.13 Area B	59
Tabel 4.14 Area C	
Tabel 4.15 Area D	
Tabel 4.15 Area D	
Tabel 4.16 Area E	63
Tabel 4.17 Kode Dan Jarak Tempuh Antara Pintu Ke Area Penyimpanan A	90
Tabel 4.18 Kode Dan Jarak Tempuh Antara Pintu Ke Area Penyimpanan B	91
Tabel 4.19 Kode Dan Jarak Tempuh Antara Pintu Ke Area Penyimpanan C	91
Tabel 4.20 Kode Dan Jarak Tempuh Antara Pintu Ke Area Penyimpanan D	92
Tabel 4.21 Data Permintaan	95
Tabel 4.22 Jarak Tempuh Material Handling Tata Letak Usulan A	96
Tabel 4.23 Jarak Tempuh Material Handling Tata Letak Usulan B	97
Tabel 4.24 Jarak Tempuh <i>Material Handling</i> Tata Letak Usulan C	98
Tabel 4.25 Jarak Tempuh Material Handling Tata Letak Usulan D	98

Tabel 4.26 Jarak Tempuh Material Handling Tata Letak Awal A	100
Tabel 4.27 Jarak Tempuh Material Handling Tata Letak Awal B	101
Tabel 4.28 Jarak Tempuh Material Handling Tata Letak Awal D	102
Tabel 4.29 Jarak Tempuh Material Handling Tata Letak Awal C	103
Tabel 4.30 Jarak Tempuh <i>Material Handling</i> Tata Letak Awal E	103

DAFTAR GAMBAR

Gambar 1.1 Produk PT.Nihon Seiki Indonesia	2
Gambar 1.2 Material	3
Gambar 1.3 Sutet Material	3
Gambar 2.1 Layout Arus Garis Lurus	33
Gambar 2.2 Layout Arus "U"	33
Gambar 2.3 Layout Arus "L"	34
Gambar 2.4 Kerangka Teoritis	36
Gambar 3.1 Diagram Alir Penelitian	41
Gambar 4.1 PT.Nihon Seiki Indonesia	
Gambar 4.2 Lokasi PT.Nihon Seiki Indonesia	
Gambar 4.3 Produk Otomotif	44
Gambar 4.4 Produk Audio	
Gambar 4.5 Produk Lainnya	
Gambar 4.6 Layout Awal	46
Gambar 4.7 <i>Case</i> material	53
Gambar 4.8 Forklift Toyota	53
Gambar 4.9 Hand pallet	
Gambar 4.10 Trolley Transfer material	
Gambar 4.11 Layout Gudang Usulan	68
Gambar 4.12 Ilustrasi perhitungan metode Euclidean distance	70

DAFTAR ISTILAH

Material Slow Moving = Material yang pergerakan untuk produksi nya

berjalan lambat

Delivery = Proses pada pada pengiriman barang

Material Handling = Suatu alat angkut yang digunakam

memindahkan barang dari titik satu ke titik yang lainnya dalam suatu area penyimpanan atau

gudang.

Case = Sebuah peti kayu sebagai Tempat penyimpanan

material

Loading = Kegiatan memuat barang

Unloading = Kegiatan membongkar barang

Storage = Aktivitas penyimpanan produk sebelum

diproses.

Work in Process = Produk yang belum selesai diproses

Receiving = Aktivitas peneirmaan barang atau produk

yang telah dibeli dangan memperoleh jaminan

berdasarkan kualitas dan kuantitas produk.

Finished Goods = Tempat untuk menyimpan produk jadi

Shared Storage | Material atau bahan yang ditempatkan dalam

satu gudang berdasarkan tempat

penyimpanannya.

Sutet = Sebuah tempat sebagai peletakan raw material

yang berbentuk kerucut seperti sutet.

ABSTRAK

PT. Nihon Seiki Indonesia atau sering disingkat NSI merupakan perusahaan modal asing asal Jepang yang berlokasi di Jalan Angsana Raya Blok A5 No.2 Delta Silicon 1 Industrial Park Lippo Cikarang, Bekasi yang memproduksi suku cadang digunakan dalam berbagai aplikasi mulai dari Otomatisasi kantor, Otomotif, Audio, dan Lainnya. NSI memiliki lebih dari 200 mesin CNC dan CAM yang dapat melakukan berbagai proses pembubutan dan proses pendukung dari bahan baku diameter 1.00 mm ~ diameter 25.00 mm. PT. Nihon Seiki Indonesia memiliki gudang penyimpanan bahan baku yang luas dengan ukuran dimensi secara keseluruhan yaitu 20 x 30 Meter dengan dimensi bahan baku yang disimpan tiap Case (Peti kayu) berukuran 30 cm x 2.500 cm. Tata letak (layout) merupakan satu keputusan yang menentukan efisiensi sebuah operasi dalam jangka panjang.Banyak dampak strategis yang terjadi dari hasil keputusan tentang layout, diantaranya kapasitas, proses, fleksibilitas, biaya, kualitas lingkungan kerja, kontak konsumen dan citra perusahaan. Layout yang efektif membantu perusahaan mencapai sebuah strategi yang menunjang strategi bisnis yang telah ditetapkan diantara diferensiasi, biaya rendah maupun respon cepat. Pada saat ini ada permasalahan yang timbul di gudang material adalah pada saat karyawan Warehouse akan mengambil material untuk keperluan proses produksi penempatan material digudang masih belum teratur atau masih kurang rapih dalam melakukan penyusunan materialnya, sehingga hal seperti ini menyebabkan ketidakefektifan waktu dalam proses pengambilan material di suatu area gudang dan menyulitkan pekerja dikarenakan belum adanya petunjuk area penyimpanan. Standar nya adalah setiap material untuk kebutuhan proses produksi seharusnya material yang memiliki frekuensi pengiriman terbanyak dan yang sering keluar-masuk didekatkan dengan pintu keluar. Hal seperti ini yang sering menyebabkan material *Handling* lebih jauh dan kurang efektif. Hasil dari pendekatan Shared Storage dapat meminimalisasi jarak tempuh material handling total jarak tempuh tata letak awal adalah sebesar 2362,9 meter. Total jarak tempuh tata letak usulan adalah sebesar 1850,30 Meter .Memiliki selisih nilai total jarak tempuh sebesar 512,6 meter atau 21, 69% dari total jarak tempuh awal. Hal ini berarti tata letak usulan dapat memperpendek jarak tempuh yang dilalui oleh karyawan gudang dalam mengambil material yang dibutuhkan dalam delivery proses produksi.

Kata Kunci: Metode Shared Storage, Raw Material, Material Handling.

ABSTRACT

PT. Nihon Seiki Indonesia or often abbreviated as NSI is a foreign capital company from Japan located at Jalan Angsana Raya Blok A5 No. 2 Delta Silicon 1 Industrial Park Lippo Cikarang, Bekasi which produces spare parts used in various applications ranging from office automation, automotive, audio, and others. NSI has more than 200 CNC and CAM machines that can perform various turning processes and supporting processes from raw materials diameter 1.00 mm ~ diameter 25.00 mm. PT. Nihon Seiki Indonesia has a large raw material storage warehouse with overall dimensions of 20 meters x 30 meters with the dimensions of the raw materials stored in each case (wooden crate) measuring 30 cm x 2,500 cm. Layout is a decision that determines the efficiency of an operation in the long term. Many strategic impacts occur from the results of decisions about layout, including capacity, process, flexibility, cost, quality of the work environment, customer contacts and corporate image. Effective layout helps companies achieve a strategy that supports the business strategy that has been set between differentiation, low cost and high cost quick response. At this time there are problems that arise in the material warehouse, when warehouse employees will take materials for the purposes of the production process, the placement of materials in the warehouse is still not regular or still not neat in making the preparation of the material, so things like this cause time ineffectiveness in the material retrieval proces<mark>s in</mark> a war<mark>ehous</mark>e. warehouse area an<mark>d make</mark> it difficult for workers because there are no storage area instructions. The standard is that every material for the needs of the produ<mark>ction process should have the material that has the highest frequency of delivery</mark> and which often goes in and out of the door closer to the exit. Things like this often cause material handling to be further and less effective. The results of the shared storage approach can minimize the material handling distance, the total distance traveled in the initial layout is 2362,9 meters. The total mileage of the proposed layout is 1850,30 meters. There is a difference in the total mileage of 512,6 meters 21,69% from the total initial mileage. This means that the proposed layout can sh<mark>orten the distance traveled by</mark> warehouse employees in taking the materials needed in the production process.

Keywords: Shared Storage Method, Raw Material, Material Handling

BAB 1

PENDAHULUAN

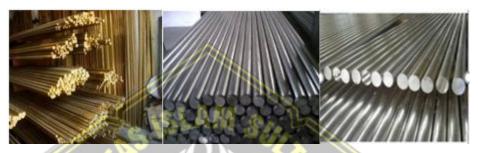
1.1 Latar Belakang

Sistem Manajemen Gudang menurut (Rahardjo 2017) mendefinisikan gudang sebagai fasilitas khusus yang bersifat tetap, yang dirancang untuk mencapai target tingkat pelayanan yang maksimal. Manajemen pergudangan dirancang bertujuan untuk mengontrol kegiatan pergudangan yang diharapkan dari pengontrolan ini adalah pengambilan dan pemasukan barang ke gudang yang efektif dan efisien, serta kemudahan dan keakuratan informasi stok barang di gudang.

Adapun menurut Purnomo (2004), gudang atau *storage* merupakan tempat menyimpan barang baik bahan baku yang akan dilakukan proses *manufacturing* maupun barang jadi yang siap dipasarkan. Sedangkan pergudangan tidak hanya kegiatan penyimpanan barang saja melainkan proses penanganan barang mulai dari penerimaan barang, pencatatan, penyimpanan, pemilihan, penyortiran, pelabelan, sampai dengan proses pengiriman.

PT. Nihon Seiki Indonesia atau sering disingkat NSI merupakan perusahaan modal asing asal Jepang yang berlokasi di Jalan Angsana Raya Blok A5 No.2 Delta Silicon 1 Industrial Park Lippo Cikarang, Bekasi yang memproduksi suku cadang digunakan dalam berbagai aplikasi mulai dari otomatisasi kantor, otomotif, audio, dan lainnya. NSI memiliki lebih dari 200 mesin CNC dan CAM yang dapat melakukan berbagai proses pembubutan dan proses pendukung dari bahan baku diameter 1.00 mm ~ diameter 25.00 mm. PT. Nihon Seiki Indonesia memiliki gudang penyimpanan bahan baku yang luas dengan ukuran dimensi secara keseluruhan yaitu 20 m x 30 m dengan dimensi bahan baku yang disimpan tiap *case* (peti kayu) berukuran 30 cm x 2.500 cm.Adapun contoh part yang diproduksi di PT.Nihon Seiki Indonesia bisa dilihat pada gambar 1.1 Produk PT.Nihon Seiki Indonesia.

Gambar 1.1 Produk PT.Nihon Seiki Indonesia


Sumber: PT.Nihon Seiki Indonesia

Pada saat ini ada permasalahan yang timbul di gudang material adalah Material yang terdapat di warehouse ada tiga kategori yaitu fast moving, slow moving dan extra moving. Material fast moving dan extra moving dalam penempatan nya sudah standar dikarenakan telah mempunyai slot nya masing-masing sehingga memudahkan pekerja dalam melakukan pekerjaannya, sedangkan material slow moving pada saat karyawan warehouse akan mengambil material untuk keperluan proses produksi penempatan material digudang masih belum teratur dan masih belum mempunyai tempatnya masing-masing dalam melakukan penyusunan materialnya, sehingga hal seperti ini menyebabkan ketidakefektifan waktu dalam proses pengambilan material di suatu area gudang dan menyulitkan pekerja dikarenakan belum adanya petunjuk area penyimpanan sehingga terdapat potensi delay dalam proses pengiriman ke area produksi.

Standarnya adalah setiap material untuk kebutuhan proses produksi seharusnya material yang memiliki frekuensi pengiriman terbanyak dan yang sering keluar-masuk didekatkan dengan pintu keluar. Hal seperti ini yang sering menyebabkan material *handling* lebih jauh dan kurang efektif. Perusahaan belum melakukan upaya dalam mengatasi permasalahan tersebut sehingga dapat di usulkan agar tempat penyimpanan tiap material diberi garis pembatas dan perlu adanya informasi/petunjuk mengenai dimana saja letak tiap material yang memiliki frekuensi pengiriman terbanyak dan yang sering keluar-masuk di dekatkan dengan

pintu keluar. Hal seperti ini yang sering menyebabkan *material handling* lebih jauh dan kurang efektif.

Menurut (Ravianto (2014:11) pengertian efektivitas adalah seberapa baik pekerjaan yang dilakukan, sejauh mana orang menghasilkan keluaran sesuai dengan yang diharapkan. Artinya, apabila suatu pekerjaan dapat diselesaikan sesuai dengan perencanaan, baik dalam waktu, biaya, maupun mutunya, maka dapat dikatakan efektif. Beberapa material yang digunakan adapat dilihat pada gambar 1.2 Material.

Gambar 1.2 Material

Sumber: PT.Nihon Seiki Indonesia

Sutet adalah sebuah tempat penyimpanan *raw material* yang terbuat dari besi siku yang berbentuk kerucut layaknya sutet, berukuran 1 x 4 meter untuk lebih jelasnya mengenai sutet bisa dilihat pada gambar 1.3 sutet. Tidak semua sekat sutet tersebut terisi penuh *raw material* sehingga akan mengurangi efisiensi *free area warehouse*. Jumlah keseluruhan raw material yang dimiliki berjumlah sekitar 60-100 item code tergantung jumlah pemesanan part dikarenakan tiap *part* menggunakan *raw material* yang berbeda-beda.

Gambar 1.3 Sutet material

Sumber: PT.Nihon Seiki Indonesia

Tujuan dari penelitian ini adalah untuk membuat rekomendasi tata letak gudang lebih efisien untuk proses *material handling*. Urutkan area yang paling dekat dengan area terjauh dari pintu I/O, kemudian atur area penyimpanan tergantung keadaan area lantai gudang, sehingga material yang akan segera dikirim ke area produksi ditempatkan di area terdekat.

1.2 Perumusan Masalah

Dari uraian latar belakang masalah diatas, bahwa PT. Nihon Seiki Indonesia mendapatkan sebuah masalah pada tata letak gudangnya diantaranya adalah :

- 1. Bagaimana usulan perbaikan tata letak gudang material agar memperpendek jarak tempuh pada saat proses *material handling*?
- 2. Berapa luas area dan *allowance* ruang yang dibutuhkan untuk penyimpanan material?
- 3. Bagaimana susunan tiap *Case* material dan prosedur pengisian material yang ada di gudang?

1.3 Pembatasan Masalah

Dalam penelitian ini terdapat beberapa batasan masalah supaya tujuan awal penelitian tidak menyimpang diantaranya yaitu :

- 1. Penelitian hanya dilakukan untuk raw material slow moving
- 2. Penentuan *raw material slow moving* yang dibutuhkan di *warehouse* hanya pada periode bulan Juni sampai Desember 2021
- 3. Perhitungan total jarak tempuh tiap material hanya dilakukan 1 kali pengukuran

1.4 Tujuan Penelitian

Berdasarkan perumusan masalah, maka dapat dideskripsikan tujuan dari penelitian adalah :

1. Untuk merancang tata letak penyimpanan dan *material handling* agar efektif serta efisien dan terciptanya *free area warehouse* yang lebih luas.

- 2. Untuk menentukan kebutuhan *allowance* dan luas area penyimpanan material.
- 3. Untuk memberikan usulan perbaikan tata letak material yang baik untuk menunjang pekerjaan yang ada di *warehouse*.

1.5 Manfaat Penelitian

Manfaat yang diharapkan dapat diperoleh dari penelitian ini adalah sebagai berikut :

1. Mahasiswa

- a. Memberikan peluang bagi penulis untuk mengaplikasikan teori teori yang sudah dipelajari.
- b. Sebagai salah satu syarat dan kewajiban dalam menempuh ujian akhir sarjana di Fakultas Teknologi Industri untuk meraih gelar sarjana.

2. Universitas

- a. Sebagai bahan masukkan bagi unversitas untuk memperbaiki praktik-praktik pembelajaran agar dosen lebih kreatif, efektif dan efisien sehingga kualitas pembelajaran dan hasil belajar mahasiswa meningkat.
- b. Mendorong terwujudnya budaya penelitian kajian keilmuan.

3. Perusahaan

- a. Memberikan informasi mengenai kondisi perusahaan berdasarkan pada pemesanan *raw material*
- b. Memberikan usulan perbaikan untuk perbaikan tata letak gudang *raw* material slow moving dapat diaplikasikan oleh perusahaan.

1.6 Sistematika Penulisan

Dalam Penyusunan tugas akhir ini menggunakan sistematika yaitu sebagai berikut:

BAB I PENDAHULUAN

Terdiri dari lima sub bab, yaitu latar belakang, pembatasan masalah, perumusan masalah, tujuan penelitian dan manfaat penelitian. Pada bab ini diharapkan pembaca bisa mendapatkan penggambaran mengenai yang akan

menjadi pembahasan skripsi, atau dengan kata lain bab ini merupakan pengantar untuk bab-bab selanjutnya.

BAB II TINJAUAN PUSTAKA

Bab ini berisi beberapa pustaka menjadi sebuah pengacuan serta hipotesis penelitian. Pustaka yang asalnya dari jurnal internasional maupun nasional, dan konferensi. Dan materi-materi metode yang berhubungan dengan fakta dan menjadi landasan untuk menganalisa data.

BAB III METODE PENELITIAN

Bab ini berisi gambaran mengenai metode penelitian yag dilakukan penulis untuk melakukan skripsi ini. Pada bab ini terdiri atas penelitian lapangan, menentukan kebijakan persediaan, penerapan metode *Shared storage*.

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

Pada bab ini penulis melakukan mpengolahan data yang dikumpulkan, menganalisa, menafsirkan dikaitkan dengan kerangka teoritis atau kerangka analisa pada landasan teori, dan membahas hasil output yang didapat dan terkait dengan landasan teori yang telah dimiliki. Materi-materi yang akan dibahas dan dianalisa didalam bab ini terdiri dari pengumpulan data, pengolahan data serta analisa dan pembahasannya.

BAB V PENUTUP

Pada bab ini adalah bagian penutup keseluruhan yang menjadi pencapaian, diambil dari hasil penelitian dan pembahasan yang dianalisa berdasarkan kenyataan dilapangan, landasan teori dan peraturan yang ada. Saran-saran dari penulis disertakan pada bab ini.

BAB II

TINJAUAN PUSTAKA DAN LANDASAN TEORI

2.1 Tinjauan Pustaka

Pengkajian ini tentang tata letak fasilitas dengan metode *Shared Storage* telah dilakukan oleh beberapa orang untuk memperkuat penelitian yang dilakukan penulis maka perlu adanya tinjauan pusaka dari peneliti sebelumnya. Tinjauan pustaka yang digunakan dalam penelitian adalah sebagai berikut:

Dari jurnal dengan judul "Rancangan Perbaikan Tata Letak Bahan Baku Pada Gudang Bahan Baku Pt ABC Dengan Menggunakan Sistem *Dedicated Storage*" oleh (Rahardjo 2017) menjelaskan bahwa permasalahan yang dihadapi oleh PT. ABC adalah perusahaan tidak memiliki pengaturan mengenai tata letak produk jadi. Saat ini pengaturan posisi penyimpanan dan penyusunan produk-produk tersebut dilakukan secara acak bergantung pada posisi gudang yang kosong. Akibatnya waktu angkut menjadi lebih lama (ada proses mencari) dan terjadi penumpukan produk yang berlebihan.. Dengan adanya rancangan penyusunan penerapan *Dedicated Storage* ini diharapkan produk yang akan disimpan dapat menempati lokasi yang tetap untuk memudahkan operator dalam menyimpan dan mengambil produk sehingga aliran produk menjadi lancar dan pemakaian area penyimpanan (*Space Requirement*) menjadi lebih optimal.

Dari jurnal dengan judul "Perencanaan Tata Letak Gudang Menggunakan metode *Shared Storage* Di Pabrik Plastik Kota Semarang" oleh (Ekoanindiyo dan Wedana 2012) Pabrik Plastik Kota Semarang .Permasalahannya adalah di sisi gudangnya dimana penyimpanan produk berdasarkan ruang yang kosong. Oleh karena itu perlu dilakukan perubahan penempatan barang agar lebih baik dalam sisi peletakan. Dengan metode *Shared Storege* ini akan merubah tata letak barang dan memberikan grouping pada setiap produk serta meletakkan produk sesuai dengan aktivitasnya sehingga jarak tempuh barang tersebut lebih pendek. Dari hasil penelitian yang di lakukan dapat di peroleh jarak tempuh eksisting 420,424m sedangkan jarak tempuh usulan 290,697m sehingga terdapat selisih prosentase 30,86%.

Dari jurnal dengan judul "Usulan Perancangan Tata Letak Gudang dengan Menggunakan Metode *Class-Based Storage*" oleh (Johan dan Suhada 2018) menyatakan bahwa masalah yang terjadi. Masalah yang dialami oleh perusahaan adalah operator kesulitan masuk, mencari, dan mengeluarkan kain dari/ke gudang pra-proses (kain mentah) karena kain disimpan di area lorong dan ada beberapa jenis yang sama. kain di lokasi penyimpanan yang berbeda. Pendekatan penyimpanan berbasis *Class-Based Storage* digunakan dalam mengembangkan arsitektur gudang baru dengan menggunakan perangkat penyimpanan kain yang disarankan, yang telah diperbarui dari perangkat penyimpanan kain sebelumnya, untuk mengatasi tantangan perusahaan.

Dari jurnal dengan judul "Perancangan Tata Letak Gudang Bahan Baku Dengan *Metode Shared Storage* Pada Pt. Pantjatunggal Knitting Mill" oleh (AHMAD AFIF FAHRUDIN 2006) Penelitian dilakukan dengan cara melakukan perhitungan dan menganalisis usulan tata letak gudang produk jadi dengan menggunakan metode *Dedicated Storage*. Data yang digunakan adalah data produksi, data penjualan, dan data penyimpanan. Adapun tujuan dari metode dedicated storage adalah untuk memberikan usulan perbaikan tata letak gudang produk jadi yang lebih fleksibel terhadap pemindahan produk jadi di gudang, mendapatkan rancangan tata letak gudang produk jadi yang efektif, meminimalkan biaya simpan pada gudang dengan menghemat pemindahan dan pengaturan barang dalam gudang produk jadi. Adapun hasil dari perhitungan tersebut didapatkan layout usulan dengan jarak tempuh sebesar 60,08 m dan biaya *material handling* Rp 601,- lebih efisien dari pada *layout* eksisting dengan jarak tempuh sebesar 172,87 m dan biaya material handling Rp 1.729,-.

Menurut penelitian "Desain Tata Letak Gudang Pada PT. Panatrade Menggunakan Metode *Shared Storage*" yang dilakukan oleh (Sukoco 2017). Manajemen gudang yang baik dapat membantu mempercepat proses manufaktur. Dengan peningkatan kapasitas produksi, jumlah kaleng yang diproduksi mencapai 93.624 (setara dengan 3.901 boks), dengan 20 jenis barang. Hal ini memerlukan desain tata letak gudang untuk mengontrol lokasi penyimpanan dan persiapan barang jadi. Akibatnya, metode penyimpanan *Shared Storage* harus digunakan

untuk mengoptimalkan tata letak gudang barang jadi. Dari hasil desain *layout* didapatkan tiga pilihan dengan jenis aliran barang yang berbeda. Jarak tempuh keseluruhan pengaturan dengan aliran lurus, aliran "U", dan aliran "L" masingmasing adalah 177.714 meter, 178.147,71 meter, dan 178.455,8 meter. Aliran lurus dipilih sebagai pola alternatif karena memiliki jarak tempuh terkecil dan prosedur penyimpanan dan pengambilan barang yang jauh lebih cepat.

Dari jurnal dengan judul "Usulan Perbaikan Tata Letak Gudang Bahan Baku Dengan Menggunakan Metode Blocplan (Di Pt.Chitose Mfg)" oleh (Luftimas, Mustofa, dan Susanty 2014). Permasalahan yang dihadapi oleh PT.Chitose Mfg yaitu terletak pada gudang paint atau cat dimana tidak adanya aturan tertentu tentang penempatan barang jadi atau paint tersebut dari sistem gudang, akibatnya tata letak penyimpanan dan penyusunan dilakukan secara acak atau sembarangan tergantung posisi gudang pada yang kosong, tanpa mempertimbangkan aktivitas produk, ukuran produk, jenis paint dan indikator lainnya. Berdasarkan pemaparan diatas perlu dilakukan penataan lokasi penyimpan<mark>an produk</mark>paint atau cat pada gudang produk jadi dengan menggunakan salah satu metode penataan lokasi penyimpananan yaitu metode Blocplan, sehingga aliran produk yang masukdan keluar dari gudang dapat terkoordinasi dengan baik da<mark>n</mark> penggunaan daerah penyimpananpada gu<mark>d</mark>ang menjadi optimal.

Dari penelitian dengan judul "Usulan Perbaikan Sistem *Inventory* Dengan Metode *Shared Storage* Untuk Peningkatan Tata Kelola Gudang Di PDAM Kota Batu" oleh (Nursanty Ellysa 2019). Permasalahan nya adalah tata penyimpanan sebagian *inventory* di gudang ini tersimpan tidak sesuai dengan idealnya. Tujuan dari penelitian ini adalah merancang *layout* baru dan memudahkan dalam administrasi untuk inventory masuk dan keluar. Perbaikan sistem inventory usulan penelitian ini dimulai dari pengolahan data dari merancang usulan layout baru dan memudahkan dalam administrasi untuk *inventory* keluar dan masuk. Hasil pengolahan data dengan menggunakan metode *Share Storage* dapat digunakan untuk peningkatan tata kelola *inventory* gudang. Dari data tersebut didapatkan hasil seperti rancangan layout baru dan tata kelola inventory masuk dan keluar. Hasil dari

penelitian ini adalah layout baru yang lebih efisien serta tata kelola inventory yang lebih mudah dalam administrasi.

Sesuai dengan penelitian "Usulan Desain Tata Letak Gudang Penyimpanan Kantong Semen Menggunakan Metode Shared Storage" yang dilakukan oleh (Fitri dan Irsya Putri2 2021). Persoalannya, kantong semen ditempatkan secara acak, dan sistem pemasukan bahan baku baru ditempatkan di ruang kosong tanpa memperhatikan produk yang paling sering digunakan di pintu masuk dan keluar, sehingga kapasitas penyimpanan tidak mencukupi saat kapasitas gudang yang digunakan. Untuk mengatasi permasalahan tersebut, penulis melakukan penelitian dengan membangun kembali arsitektur gudang kantong semen menggunakan metode *shared storage*. Berdasarkan temuan, tiga bagian penyimpanan di gudang kantong semen 1 dan dua area penyimpanan di gudang kantong semen 2 dibuat, masing-masing dengan pengaturan palet tiga tingkat untuk mengurangi kebutuhan ruang.

Dari penelitian dengan judul "Usulan Tata Letak Gudang Dengan Metode Shared Storage Di Pt. Agility International Customer Pt. Herbalife Indonesia" oleh (Mulyati, Numang, dan Aditya Nurdiansyah 2020). Masalahnya adalah bahwa item yang salah diambil. Solusi yang diusulkan untuk masalah ini adalah dengan mengadopsi metode penyimpanan Shared Storage untuk mengoptimalkan tata letak gudang. Urutan penempatan barang adalah dari produk dengan penugasan terbesar hingga produk dengan penugasan terkecil. Sesuai dengan jumlah aktivitas, kelompok penyimpanan bersama produk yang akan disimpan di rak menggunakan prinsip First in First out (FIFO), dan setiap produk digabungkan menjadi satu komponen. Berdasarkan hasil perhitungan, barang dengan penugasan tertinggi harus diletakkan pada rak pertama atau terdekat dari pintu (I/O), dimana total jarak yang ditempuh untuk semua produk di gudang adalah 203,6 m, sehingga memudahkan untuk picker dalam proses picking dimana penempatan sebelumnya tidak diketahui.

Dari jurnal dengan judul "Penentuan Tata Letak Gudang Sparepart Non Genuine Pada Bengkel Mobil di Surabaya dengan Metode *Dedicated Storage*" oleh (Kelvin, Pram Eliyah Yuliana, dan Sri Rahayu 2020). Permasalahan yang dihadapi

oleh bengkel resmi mobil di Surabaya adalah pengelolaan gudang yang kurang baik, khususnya pada gudang suku cadang yang tidak asli. Karena lokasi barang yang belum ditemukan, suku cadang dengan jumlah lebih dari 90 jenis suku cadang tidak efektif dipesan, sehingga sulit untuk mencari suku cadang yang dibutuhkan. Untuk mengatasi masalah ini, tata letak gudang harus diperbaiki dengan menggunakan strategi yang sesuai. Metode *dedicated storage* merupakan salah satu metode yang dapat digunakan. Jarak perpindahan suku cadang yang dihitung dengan penataan lokasi baru adalah 12.942,2 meter setiap bulan, turun dari 17.047,6 meter per bulan sebelum perbaikan.

Dari jurnal dengan judul "Analisis Tata Letak Gudang Barang Jadi Menggunakan Metode Shared Storage Untuk Meningkatkan Efektifitas Penyimpanan" oleh (Shima dan Syakhroni 2021) permasalahannya adalah yang sering dihadapi adalah dalam penanganan barang masuk dan keluar di gudang perusahaan masih belum memiliki system yang ditetapkan, sehingga penempatan barang di gudang menjadi tidak tertata rapi sehingga gudang terkesan sempit. Hasil dari pendekatan shared storage dapat meminimalisasi jarak tempuh material handling tata letak usulan adalah 1386 m sedangkan kondisi sebelumnya jarak tata letak awal adalah 1900 m. Memiliki selisih nilai total jarak tempuh sebesar 514 meter dari total jarak tempuh awal. Hal ini berarti tata letak usulan dapat memperpendek jarak tempuh yang dilalui oleh karyawan gudang dalam mengambil barang.

Adapun tabulasi literatur dari beberapa penelitian terdahulu diatas sebagai berikut:

Tabel 2.1 Studi Literatur

No	Penulis	Judul	Sumber	Permasalahan	Metode	Hasil
1	(Rahardjo	Rancangan Perbaikan	Jurnal Teknik Industri,	Permasalahan Yang Dihadapi Oleh	Dedicated	Hasil yang diperoleh dari penelitian
	2017)	Tata Letak Bahan	Vol.1, No.4, Desember	PT. PT A Akan Mengirimkan	Storage.	yaitu area penyimpanan yang
		Baku Pada Gudang Bahan	2013, Pp.272-277 ISSN	Bahan Baku, Bahan Tambahan,		dipergunakan yaitu pallet kayu,
		Baku Pt A Dengan	2302-495X	Dan Bahan Kemas Ke PT A Untuk		diperuntukan pada penghematan
		Menggunakan Sistem		Diolah Menjadi Produk Jadi.		area yang dilaksanakan untuk
		Dedicated Storage		Gudang Bahan Baku PT A Saat Ini		penumpulan enam tinkat,
				Tidak Memiliki Suatu Acuan		dikeseluruhan pallet menyusun 2x2
				Dalam Pengaturan Tata Letak		terdiri dari barang makanan ataupun
				Penyimpanan Bahan Baku		minuman, yang dilaksanakan untuk
				Tersebut, Sehingga Telah		kemudahan menyusun barang
				Menyebabkan Terjadinya		ditempat penyimpanan untuk
				Complain Dari Costumer Serta		pengehematan ruangan. Aisle
				Tidak Optimalnya Proses		pemanfaatannya untuk gang atau
			77	Penyimpanan Dan Pengambilan		jalur material, perpindahal yang
			\\\	Bahan Baku.		diperlukan berdasarkan yang selaras
				VISSULA /	/	dengan tolak ukur dimensi
			للامية	مامعند اوالدناه ونحالا		handpallet.
				المجالك المجالك المحالية المحالة المحا		

Tabel 2.1 Studi Literatur (lanjutan)

2	(Ekoanindiy	Perencanaan Tata Letak	DINAMIKA TEKNIK	Permasalahan Yang Dihadapi Oleh	Shared Storage	Hasil yang diperoleh dari penelitian
	o dan	Gudang Menggunakan	Vol. VI, No. 1 Januari	Pabrik Plastik Terjadi Di Gudang		adalah area penyimpanan
	Wedana	Metode Shared Storage	2012 Hal 46 – 57	Bahan Baku Dan Produk Jadi.		dipergunakan yaitu pallet kayu,
	2012)	Di Pabrik Plastik Kota		Kurang Baiknya Prosedur		untuk penghematan yang
		Semarang		Penataan Barang Pada Gudang		dilaksanakan, dengan menumpulkan
				Menimbulkan Masalah Pada		dua tingkatan pallet, menyusun x2
				Gudang Tersebut, Sehingga		dengan terdiri pada 8 karung barang,
				Gudang Terkesan Sempit Dan		bahan bakunya ataupun
			C. C.	Kurang Tertata. Kondisi Tata		kemudahan untuk susunan
				Letak Gudang Yang Tidak		barang penyimpanan. Aisle menjadi
				Berdasarkan Suatu Perancangan		pemanfaatan barang handling,
				Tata Letak Yang Menyeluruh		perpindahan yang dipergunakan
				Dapat Menyebabkan		yaitu handpallet. Jadi aisle yang
				Ketidakefisienan Waktu		diperlukan berdasarkan keperluan
				Pengambilan Dan Penyimpanan		yang selaras dengan tolak ukur
			77	Material Serta Menyulitkan		dimensi handpallet. Menentuka
			\\	Operator Dalam Menangani	//	luasan gang yang dibutuhkan
			\\ UI	Material Karena Keterbatasan	/	berdasarkan dari dua kali dimensi
			للصة \\	Gudang Tersebut.		yang panjang dan lebar pada bawaan
				~ () () () () () () () () () (barang

Tabel 2.1 Studi Literatur (lanjutan)

3	(Johan dan	Usulan Perancangan Tata	JOURNAL OF	Masalah yang dihadapi oleh	Class-Based	Hasil yang diperoleh dari penelitian
	Suhada	Letak Gudang dengan	INTEGRATED SYSTEM	perusahaan ini adalah operator	Storage	adalah Terdapat dua hal yang
	2018)	Menggunakan Metode	VOL 1. NO. 1, JUNI	mengalami kesulitan dalam		dilakukan untuk mengurangi jumlah
		Class-Based Storage	2018: 52-71	melakukan aktivitas pemasukan,		produk out of block, yaitu
			acak.	pencarian, dan pengeluaran kain		menambah kapasitas ruang
				dari/ke gudang pra-proses (kain		penyimpanan dan menentukan
				grey) dikarenakan kain diletakkan		besarnya ukuran blok. Penambahan
				di area gang dan banyak jenis kain		kapasitas dilakukan untuk
				yang sama berada di beberapa		meminimumkan jumlah produk
				lokasi penyimpanan. Dalam		yang tidak tertampung dalam blok,
				memecahkan permasalahan yang		sedangkan penentuan ukuran blok
				dihadapi perusahaan, digunakan		dilakukan untuk meminimumkan
				metode class-based storage dalam		jumlah produk sisa
				merancang tata letak gudang yang		dalam blok
				baru dengan menggunakan alat		
			77	penyimpanan kain usulan yang		
			\\\	sudah dimodifikasi dari alat		
			\\ UI	penyimpanan kain sebelumnya	/	
4	(AHMAD	Perancangan Tata Letak	DINAMIKA TEKNIK	Permasalahan Yang Dihadapi Oleh	Shared Storage	Hasil yang diperoleh dari penelitian
	2020)	Gudang Bahan Baku	Vol. XI, No. 1 Januari	PT. Pantjatunggal Knitting Mill		adalah Utilitas ruang gudang yaitu
		Dengan Metode Shared	2018 Hal Hlm. 39-47	Terjadi Di Gudang Penyimpanan		perbandingan antara jumlah area
		Storage		Bahan Baku. Jarak Pemindahan		luas rak yang digunakan untuk

Tabel 2.1 Studi Literatur (lanjutan)

		Pada Pt. Pantjatunggal		Barang Yang Terlalu Jauh Dan		meletakkan bahan baku dengan
		Knitting Mill		Penempatan Produk Yang Tidak		jumlah area yang tersedia saat ini
				Memiliki Pengaturan Dalam		adalah 65,47%. Utilitas ruang
				Penyusunan Barang Sehingga		gudang dengan layout usulan, yaitu
				Menyebabkan Penumpukan		dengan menambahkan jumlah rak
				Barang Disatu Tempat Di Gudang		maka didapatkan peningkatan
				Yang Dapat Mengakibatkan		utilitas menjadi
				Kemungkinan Kerusakan Produk.		78,69%.
5	(Sukoco	Perancangan Tata Letak	Jurnal ASIIMETRIK:	Permasalahan Yang Dihadapi Oleh	Shared Storage	Hasil yang diperoleh dari penelitian
	2017)	Gudang Di PT.Panatrade	Jurnal Ilmiah Rekayasa &	Perusahaan PT.Panatrade Saat Ini		ialah pada tata letak yang menjadi
		Dengan Mengunakan	Inovasi Volume 1.1,	Adalah Ketidakteraturan Dalam		pengusulan, mempunyai
		Metode Shared Storage.	JANUARI 2019	Penyus <mark>unan P</mark> roduk, Hal Ini Akan		keseluruhan jarak tempuk dengan
				Menghambat Waktu Proses Proses		memperbaiki penyusunan media
				Pengiriman, Allowance Forklift		penyimpanan. Keseluruhannya
				Yang Terlalu Melebar Sehingga		dengan awal ialah dengan
			77	Pemanfaatan Ruang Menjadi		penjumlahan 124.295meter.
			\\\	Kurang Efektif Dan Ada Beberapa	//	Totalnya ialah 24.225meter. Dengan
			\\ UI	Gang Yang Tidak Sesuai Dengan	/	yang menjadi selisihnya yaitu
			للصية \	Ukuran Material Handling		100,070meter dari keseluruhan di
			\\.	Sehingga Menyulitkan Operator		awal, dengan arti tata letaknya
				Forklift Dalam Melakukan Proses		pendek dari jarak tempu
						yang akan dilalui pekerja.
1	1					

Tabel 2.1 Studi Literatur (lanjutan)

				Pengambilan Produk Jadi Dalam		
				Gudang		
6	(Luftimas,	Usulan Perbaikan Tata	Reka Integra ISSN: 2338-	Mengalami Permasalahan Adanya	Blocplan	Hasil yang diperoleh dari penelitian
	Mustofa,	Letak Gudang Bahan	5081 Jurnal Online	Bahan Baku Yang Cacat Digudang		ialah pada tata letak yang menjadi
	Dan	Baku Dengan	Institut Teknologi	Bahan Baku, Akibat Penyimpanan		pengusulan, mempunyai usual
	Susanty)	Menggunakan Metode	Nasional	Yang Tidak Beraturan. Hal Ini		yangakan dipindahkan pada media
		Blocplan (Di Pt.Chitose	©Jurusan Teknik Industri	Berdampak Pada Waktu Pencarian		gudang, transit dengan optimalnya
		Mfg)	Itenas No.03 Vol.02	Dan Pengambilan Bahan Baku		kapasitas gudang, dengan kapasitas
			Juli 2014	Menjadi Lebih Lama. Penempatan		awalnya 44 aera penyimpanan dan
				Bahan Baku Yang Tidak Sesuai		penilaian tata letak pengusulannya,
				Dengan Frekuensi Keluar Masuk		mempunyai kapasitas yang besar
				Menye <mark>babkan</mark> Jarak Pengangkutan		yaitu 61 area penyimpanan, maka,
				Bahan Baku Menjadi Lebih Jauh.		dengan hal tersebut, kapasitas tata
				Perusahaan Menginginkan		letak dengan nilai yang besar dari
				Penempatan Setiap Bahan Baku		awalnya. Memakai metode activity
			77	Sesuai Dengan Karakteristiknya,		relation chart dan shared storage
			\\\	Serta Menempatkan Bahan Baku	//	baik dengan penerapan dari sebuah
			\\ UI	Menuju Pintu Keluar Sesuai	/	perusahaan dengan produksi yang
			ملاصية \\	Frekuensi Pengangkutan.		khusu di gudang transit, dikarenakan
			\\	Permasalahan Ini Dapat		optimalnya kapasitas area gudang
				Diselesaikan Dengan Mengunakan		transit.
	_			Metode Blocplan Yang Berfungsi		

Tabel 2.1 Studi Literatur (lanjutan)

				Untuk Merancang Penempatan		
				Bahan Baku Dengan Melihat		
				Derajat Kedekatan Setiap Bahan		
				Baku.		
7	(Nursanti	Usulan Perbaikan Sistem	Jurnal Teknik Industri,	tata penyimpanan sebagian	Share Storage	Hasil yang diperoleh dari penelitian
	2019)	Inventory Dengan	Vol.1, No.15, Desember	inventory di gudang ini tersimpan		ialah pada tata letak yang menjadi
		Metode Share Storage	2019, Pp.272-277 ISSN	tidak sesuai dengan idealnya.		pengusulan, mempunyai usual
		Untuk Peningkatan Tata	9836-483X	Tujuan dari penelitian ini adalah		yangakan dipindahkan pada media
		Kelola Gudang Di	c	merancang layout baru dan		gudang, transit dengan optimalnya
		PDAM Kota Batu		memudahkan dalam administrasi		kapasitas gudang, dengan kapasitas
				untuk inventory masuk dan keluar.		awalnya 44 aera penyimpanan dan
			\\ <u>\$</u>	Perbaikan sistem inventory usulan		penilaian tata letak pengusulannya,
				penelitian ini dimulai <mark>dari</mark>		mempunyai kapasitas yang besar
				pengolahan data dari merancang		yaitu 61 area penyimpanan, maka,
				usulan layout baru dan		dengan hal tersebut, kapasitas tata
			77	memudahkan dalam administrasi		letak dengan nilai yang besar dari
			\\\	untuk inventory keluar dan masuk.	//	awalnya. Memakai metode activity
			\\ UI	Hasil pengolahan data dengan	/	relation chart dan shared storage
			ملاصية \\	menggunakan metode Share		baik dengan penerapan dari sebuah
				Storage dapat digunakan untuk		perusahaan dengan produksi yang
				peningkatan tata kelola inventory		khusu di gudang transit, dikarenakan
				gudang.		optimalnya kapasitas area gudang.

Tabel 2.1 Studi Literatur (lanjutan)

8	(Fitri da	n Usulan Usulan	Jurnal Teknologi dan	kantong semen (sak) diletakkan	Shared	Hasil yang diperoleh dari penelitian
	Irsya Putri	2 Rancangan Tata Letak	Informasi Bisnis ISSN:	secara acak dan sistem penempatan	Storage	adalah Pasca dilaksanakannya
	2021)	Gudang Penyimpanan	2655-8238	barang yang baru datang,		pengolahan data memakai shared
		Kantong Semen	Vol. 3 No.1 31Januari	diletakkan pada area yang kosong,		storage di gudang barang
		Menggunakan Metode	2021	dengan tidak memperhatikan		PT.International Premium
		Shared Storage	https://doi.org/10.47233/j	barang yang paling banyak dipakai		Pratama Surabaya, ditarik garis
			teksis.v3i1.219	yang diletakkan di pintu masuk-		besarnya jika Tata letak usulan
				keluar sehingga kapasitas		pertama mempunyai keseluruhan
				penyimpanan tidak mencukupi		
				dengan pemanfaatan kapasitas		jarak tempuh yang kecil dengan
				gudang belum maksimal		pengusulan kedua dan perbaikan
						penyusnan serta penyimpanan.
						Keseluran jaraknya ialah 11.868
						meter. Total jaraknya ialah
				2 (4) 5		4833,8 meter dengan letak
			77	4		pengusulannya ke 2 adalah
			\\\	- W		sebesar 5379,5 meter.
			\\ UI	NISSULA /	/	Perselisihan nilai jarang tempuh
			للعية \\	// جامعتنسلطانأهونجالك		diawal yaitu dengan 7034,2
			\\	~ / /		meter dari keseluruhan jarak
						meter dari keserurunan jarak

Tabel 2.1 Studi Literatur (lanjutan)

						tempuh dan nilai pengusulan
						yaitu 6488,5 dari awalnya.
9	(Mulyati,	Usulan Tata Letak	Jurnal Logistik Bisnis,	kesalahan pengambilan barang.	Shared Storage	Berdasarkan penelitian yang telah
	Numang,	Gudang Dengan Metode	Vol. 10, No.02,	Metode usulan dalam mengatasi		dilakukan, dapat disimpulkan bahwa
	dan Aditya	Shared Storage Di Pt.	November 2020 ISSN:	permasalahan tersebut dengan		pada tata letak gudang usulan
	Nurdiansyah	Agility International	2086-8561	melakukan perbaikan tata letak		digunakan rak sebagai penyimpanan
	2020)	Customer Pt. Herbalife		gudang menggunakan metode		sehingga dapat menambah kapasitas
		Indonesia		shared storage. Penempatan barang		gudang. Dengan penggunaan rak ini
				diurutkan mulai dari produk yang		terdapat kapasitas cadangan gudang
				memiliki assignment paling besar		yaitu sebanyak 1.600 polybag.
				hingga produk yang memiliki		Dengan kebijakan penempatan
				assignment paling kecil		class-based storage, kain
						dikelompokkan berdasarkan
						jenisnya dan diurutkan menurut
				0005		jumlah permintaannya. Kain dengan
			3/	4		permintaan terbesar diletakkan
			\\	- W	//	paling dekat dengan pintu keluar
			\\ UI	NISSULA /	/	masuk. Sehingga mempercepat
			للصية \	// حامعننسلطانأجونجالك		pencarian kain karean tidak perlu
			\\			mencari ke seluruh gudang,
						melainkan cukup

Tabel 2.1 Studi Literatur (lanjutan)

						mencari pada rak dimana jenis kain
						ditempatkan.
10	(Kelvin,	Penentuan Tata Letak	JOURNAL OF	Permasalahan yang dihadapi	Dedicated	Hasil yang diperoleh dari penelitian
	Pram Eliyah	Gudang Sparepart Non	INFORMATION	sebuah bengkel mobil resmi yang	Storage	adalah Utilitas ruang gudang yaitu
	Yuliana, dan	Genuine Pada Bengkel	SYSTEM, GRAPHICS,	berada di Surabaya adalah tidak		perbandingan antara jumlah area
	Sri Rahayu	Mobil di Surabaya	HOSPITALITY AND	adanya manajemen penataan		luas area yang digunakan untuk
	2020)		TECHNOLOGY	gudang yang baik, khususnya pada		meletakkan bahan baku dengan
				gudang sparepart non genuine.		jumlah area yang tersedia saat ini
			C	Sparepart dengan jumlah lebih dari		adalah 63,47%. Utilitas ruang
				90 jenis part tidak tertata dengan		gudang dengan layout usulan, yaitu
				baik, sehingga mengakibatkan		dengan menambahkan jumlah area
				pencarian sparepart yang		tempat maka didapatkan
				dibutuhkan menjadi sulit karena		peningkatan utilitas
				lokasi barang yang tidak terdeteksi		menjadi 76,69%
11	(Shima dan	Analisis Tata Letak	JAST : Journal of	permasalahan yang sering dihadapi	Shared storage	Hasil dari pendekatan shared storage
	Syakhroni	Gudang Barang Jadi	Applied Science and	adalah dalam penanganan barang		dapat meminimalisasi jarak tempuh
	2021)	Menggunakan Metode	Technology	masuk dan keluar di gudang		material handling tata letak usulan
		Shared Storage Untuk	Vol. 1, No. 1, Januari	perusahaan masih belum memiliki	/	adalah 1386 m sedangkan kondisi
		Meningkatkan Efektifitas	2021, pp. 26 - 35	system yang ditetapkan, sehingga		sebelumnya jarak tata letak awal
		Penyimpanan		penempatan barang di gudang		adalah 1900 m. Memiliki selisih
		(Studi Kasus. Di Pt Nes		menjadi tidak tertata rapi sehingga		nilai total jarak tempuh sebesar 514
		Logistic Link)		gudang terkesan sempit. Demikian		meter dari total jarak tempuh awal.

Tabel 2.1 Studi Literatur (lanjutan)

	juga garis atau line lay out gudang	Hal ini berarti tata letak usulan dapat
	sudah tidak terlihat jelas,	memperpendek jarak tempuh yang
	penempatan barang jadi baik	dilalui oleh karyawan gudang dalam
	produk untuk ekspor dan lokal	mengambil barang.
	ditempatkan satu lokasi dengan	
	material (Completely Knock	
	Down/CKD) dalam satu lokasi	
	warehouse, tidak ada pembatas	
	antara barang milik customer yang	
	satu dengan yang lainya, barang	
	ditempatkan menutup area jalan	
	atau <mark>jalur f</mark> orklift dan pintu	
	gudang, serta barang yang lebih	
	dulu masuk tertutup dengan barang	
	yang baru masuk sehi <mark>ngg</mark> a	
	menghambat proses penanganan	
	barang	

Berdasarkan beberapa tinjauan literature diatas maka dapat disimpulkan metode yang terbaik untuk penelitian adalah dengan menggunakan Metode *Shared storage* adalah suatu penyusunan area-area penyimpanan berdasarkan kondisi luas lantai gudang, kemudian diurutkan area yang paling dekat sampai area yang terjauh dari pintu keluar masuk I/O sehingga penempatan barang yang akan segera dikirim diletakkan pada area yang paling dekat dan begitu seterusnya. *Shared storage* merupakan metode pengaturan tata letak ruang gudang dengan menggunakan prinsip *FIFO* (*First In First Out*) dimana barang yang cepat dikirim diletakan pada area penyimpanan yang terdekat dengan pintu masuk-keluar.

Alasan menggunakan metode *Shared Storage* adalah metode penyimpanan untuk beberapa jenis produk yang disimpan secara berurutan. Pengisian kembali area penyimpanan dapat dilakukan untuk jenis material yang berbeda jika area tersebut telah kosong sepenuhnya. Metode ini akan lebih baik digunakan pada jenis pabrik yang memiliki ukuran dimensi material yang sama atau tidak jauh berbeda. Karena setiap area penyimpanan bisa saja ditempati oleh jenis produk yang berbeda-beda berdasarkan waktu produksi dan tanggal pengiriman produk tersebut. *Layout* yang dihasilkan dari metode *Shared Storage* yaitu *layout* yang lebih efektif dan efisien dalam peletakan dan pengambilan produk karena serta dapat meminimasi jarak dan *material handling*.

2.2 Landasan Teori

Dibawah ini yang menjadi landasan, mendukung pada penyelesaian masalah dan hipotesa yang ada.

2.2.1 Tata Letak Fasilitas

Perencanaan tata letak fasilitas produksi merupakan suatu hal yang sangat berpengaruh di dalam dunia industri. Perencanaan tata letak fasilitas produksi dikatakan sangat berpengaruh karena berkaitan dengan tingkat keefisienan dan kesuksesan kinerja industri. Perencanaan tata letak fasilitas produksi merupakan pemilihan secara optimum penempatan mesin—mesin, peralatan pabrik, tempat kerja, dan fasilitas servis bersama— sama dengan penentuan bentuk gedung pabriknya (Reksohadiprodho, 2008).

Menurut (Handoko (2013) salah satu hal yang terpenting dari tata letak pabrik adalah jarak, waktu, biaya, dan jarak perpindahan material. Tata letak fasilitas produksi menentukan efisiensi produksi dalam jangka panjang. Suatu proses produksi yang memiliki aliran produksi yang panjang membutuhkan pengaturan tata letak dan pemindahan bahan yang efisien sehingga mengurangi back tracking (arus berbalik arah) pada proses produksi. Pengaturan tata letak fasilitas produksi juga akan berguna dalam penentuan penempatan luas mesin maupun fasilitas penunjang produksi lainnya, perpindahan material, penyimpanan material maupun perpindahan pekerja (Wignjosoebroto, 2009).

2.2.2 Gudang (Warehouse)

Gudang merupakan komponen penting dari rantai pasokan modern. Rantai pasok melibatkan kegiatan dalam berbagai tahap: produksi, distribusi barang, dari penanganan bahan baku, sparepart, dan barang dalam proses hingga produk jadi. Gudang (warehouse) adalah tempat penerimaan, penyimpanan sementara dan persediaan part, material dan barang yang akan dipakai untuk kebutuhan produksi atau support produksi.

Manajemen pergudangan dirancang untuk kepentingan pengolahan aktivitas pergudangan yang akan berpengaruh terhadap keseluruhan proses produksi. Manajemen pergudangan yang dikelola dengan baik akan mampu meningkatkan efisiensi penanganan bahan atau material handling dalam gudang. Pada kasus perbaikan sistem pergudangan langkah strategus yang perlu dilakukan adlaha mengevaluasi sumber daya yang kurang efisien. Kemudian uraikan sebuah studi kasus evaluasi sistem penyimpanan pada gudang yang memiliki jenis dan jumlah barangyang cuup banyak.Pentingnya studi dilakukan karena gudang belum pernah melakukan evaluasi secara tekniks dan ergonomis dengan fokus kepada fungsi kondisi tata letak penyimpanan dengan mengacu kepada prinsip-prinsio yang seharusnya berlaku (Putri dan Nurcaya 2019).

Kemajuan bidang teknologi menjadi solusi untuk mempermudah dalam mengakses dan mengontrol aktifitas pergudangan, yaitu dengan menggunakan suatu sistem pergudangan terkomputerisasi yang dinilai memiliki efektivitas pengerjaan dan akurasi dalam pengolahan datanya (Putri dan Nurcaya 2019).

2.2.3 Aktifitas Pergudangan

Pergudangan adalah Kegiatan menyimpan barang di gudang dikenal dengan istilah *warehousing* (Warman 2012) sedangkan menurut (Purnomo 2004), menyatakan bahwa ada tiga fungsi utama dalam kegiatan gudang diantaranya:

1. Perpindahan (*Movement*)

Salah satu tujuannya adalah untuk meningkatkan perputaran persediaan dan mempersingkat waktu antara pembuatan dan pengiriman. Tindakan berikut membentuk fungsi kegiatan yang ada di gudang:

a. Penerimaan (Receiving)

Merupakan kegiatan penerimaan barang yang meliputi kegiatan operasional seperti bongkar muat, penghitungan jumlah yang diterima, pemeriksaan mutu dan kerusakan, serta kegiatan penerimaan barang lainnya di gudang.

b. Put Away

Adalah proses pengangkutan produk dari dokumen penerima ke fasilitas penyimpanan.

c. Customer Order Picking

Adalah proses pengangkutan barang dari fasilitas penyimpanan atau pemilihan lokasi yang akan disiapkan untuk pengiriman.

d. Packing

Proses pengepakan adalah tindakan mempersiapkan barang untuk dikirim ke pelanggan.

e. Cross Docking

Proses ini merupakan proses pemindahan barang dari bagian penerimaan langsung ke lokasi pengiriman tanpa melalui kegiatan penyimpanan di gudang

f. Shipping

Kegiatan ini meliputi proses manufaktur serta pengiriman produk.

2. Penyimpanan (*Storage*)

Ini adalah proses penyimpanan komoditas seperti bahan mentah dan barang jadi.

3. Pertukaran informasi

(*Transfer Informasi*) Merupakan tindakan yang melibatkan pertukaran informasi, seperti informasi mengenai stok gudang atau informasi lain yang relevan. Data ini untuk pihak di luar gudang maupun gudang itu sendiri.

2.2.4 Material Handling

Pengertian dari pemindahan bahan (material handling) dirumuskan oleh American Material Handling Society (AMHS), yaitu sebagai suatu seni dari ilmu yang meliputi penanganan (handling), pemindahan (moving),pembungkusan/pengepakan (packaging), penyimpanan (storing) sekaligus pengendalian pengawasan (controlling) dari bahan atau material dengan segala bentuknya (Apple, 1990). Menurut Bowersox, Closs, & Cooper (2002) penanganan bahan (material handling) merupakan kunci kegiatan logistik yang tidak bisa diabaikan. Investasi dalam teknologi dan peralatan penanganan bahan (material handling) menawarkan potensi substansial untuk meningkatkan produktivitas logistik. Proses penanganan bahan dan teknologinya mempengaruhi produktivitas dengan mempengaruhi personil, ruang, dan kebutuhan peralatan modal. Menurut Warman (2012), memindahkan barang dari sesuatu tempat, berhenti di tempat lain kemudian be<mark>rpindah l</mark>agi adalah persoalan yang umum terjadi sebagai akibat dari adanya kebutuhan.

Material dapat dipindahkan secara manual maupun dengan menggunakan metode otomatis, material dapat dipindahkan satu kali ataupun beribu kali, material dapat dialokasikan pada lokasi yang tetap maupun secara acak, atau material dapat ditempatkan pada lantai maupun di atas. Apabila terdapat dua buah stasiun kerja/departemen i dan j yang koordinatnya ditunjukkan sebagai (x,y) dan (a,b), maka untuk menghitung jarak antar dua titik tengah didapat dilakukan beberapa metode, yaitu: (Purnomo, 2004)

1. Rectilnier Distance

Rectilinear distance merupakan jarak yang diukur mengikuti jalur tegak lurus (orthogonal) antara satu dengan yang lain. Pengukuran Rectilinear Distance sering digunakan karena lebih mudah dalam penghitungan untuk beberapa masalah, lebih sesuai dan mudah dimengerti. Misalnya, untuk menentukan jarak perpindahan

material sepanjang gang (aisle) di pabrik. Pada pengukuran Rectilinear distance digunakan notasi sebagai berikut :

$$dij = |xi - xj| + |yi - yj|$$

Dimana:

dij = jarak antar pusat fasilitas i dan j (meter).

xi = titik awal perhitungan berada pada sumbu y

xj = titik awal perhitungan berada pada sumbu

yi = jarak awal pertungan berada pada sumbu y

yj = jarak awal pertungan berada pada sumbu x

2. Euclidean Distance

Euclidean distance merupakan jarak yang diukur sepanjang lintasan garis lurus antara dua buah titik. Jarak euclidean dapat diilustrasikan sebagai conveyor lurus yang memotong dua buah stasiun kerja. Pada pengukuran Euclidean Distance digunakan notasi sebagai berikut:

$$d_{ij} = \sqrt{|(x-a)^2 + (y-b)^2|}$$

3. Squared Euclidean Distance

Jarak diukur sepanjang lintasan sebenarnya yang melintas antara dua buah titik. Sebagai contoh, pada sistem kendaraan terkendali (*guided vehicle system*), kendaraan dalam perjalanan harus mengikuti arah-arah yang sudah ditentukan pada jaringan lintasan terkendali. Oleh karena itu, jarak lintasan aliran bisa lebih panjang dibandingkan dengan *rectilinear* atau *euclidean* .

$$dij = (x-a)^2 + (y-b)^2$$

Kegiatan material handling terkait deengan kegiatan produksi di perusahaan mulai dari input proses sampai deri input proses dengan output, sehingga kegiatan *material handling* ini menjadi perhatian perusahaan. Adapun tujuan material handling adalah (zulfikarizah,2005):

a. Menyiapkan barang dari input sampai dengan output.

- b. Menghindari penumpukan produk setengah jadi dalam proses produksi.
- c. Mengantisipasi terjadinya kemacetan kegiatan *material handling* dalam proses produksi.
- d. Mempertimbangkan penggunaan gudang secara efesien.
- e. Menekan biaya, waktu dan tenaga yang diperlukan dalam kegiatan proses produksi
- f. Menjamin kelancaran proses produksi secara menyeluruh.

2.2.5 Metode-metode Penyimpanan dalam Gudang

Menurut Francis & White (1992), Ada beberapa kebijakan (metode) penyimpanan yang biasa digunakan, antara lain:

1. Metode Dedicated Storage

Karena posisi setiap item telah diidentifikasi, strategi ini umumnya disebut sebagai penyimpanan tetap. Jumlah tempat penyimpanan untuk suatu produk harus cukup untuk memenuhi persyaratan ruang penyimpanan maksimal produk. Jika produk yang akan disimpan lebih dari satu jenis, ruang penyimpanan yang diperlukan adalah jumlah dari kebutuhan penyimpanan maksimum setiap jenis produk.

2. Metode Randomized Storage

Floating lot storage, sesuai dengan namanya, adalah penyimpanan yang memungkinkan produk yang disimpan dapat berpindah lokasi penyimpanannya setiap saat. Setiap saat, jarak terdekat ke lokasi penyimpanan diperhitungkan saat menempatkan produk. Dengan rotasi penyimpanan menggunakan teknik FIFO (First in First Out), penempatan produk semata-mata mempertimbangkan jarak terdekat dengan lokasi penyimpanan. Pertimbangan lain, seperti jenis produk yang dipegang, dimensi, dan jaminan keamanan untuk barang, kurang penting. Hal ini membuat penyimpanan produk kurang tertata dengan baik.

3. *Metode Class-Based Dedicated Storage*

Pendekatan Penyimpanan Khusus Berbasis *Class-Based Dedicated Storage* yaitu menggabungkan keunggulan penyimpanan acak dan khusus. Berdasarkan rasio *throughput* (T) dan rasio penyimpanan (S), metode ini mengklasifikasikan item yang ada menjadi tiga, empat, atau lima kelas, memungkinkan perencanaan

ruang yang lebih fleksibel. Masing-masing ruang tersebut dapat diisi secara acak dengan berbagai komoditas yang telah dikategorikan menurut jenis dan ukurannya.

4. *Metode Shared Storage*

Kuantitas informasi yang tersedia tentang tingkat inventaris dari waktu ke waktu menentukan jumlah ruang yang diperlukan untuk penyimpanan bersama dan solusi penyimpanan khusus. Penyimpanan *Shared Storage* dan metode penyimpanan *randomized storage* berbeda karena metode penyimpanan acak *randomized storage* menentukan lokasi penyimpanan lengkap produk, sedangkan pendekatan penyimpanan *Shared Storage* menentukan lokasi berdasarkan tampilan ruang gudang yang kosong.

Tabel 2.2 Perbandingan metode penyimpanan

Metode	Kelebihan	Kekurangan
Dedicated Storage	Memudahkan karyawan untuk	Bisa banyak lokasi kosong
	mengingat lokasi produk di	karena tidak bisa diisi dengan
	gudang dan penataan produk	jenis produk lain. Maka dari itu,
\\ <u>\</u>	lebih teratur berdasarkan	perlu di atur agar tempat
\\ \	jenisnya.	penyimpanan suatu jenis barang
\\ <u>=</u>		mencukupi kebutuhan secara
		maksimal
Shared Storage	Bisa menjadi sistem	Memerlukan sistem informasi
\\	pemindahan barang dalam	yang baik, umumnya cara ini
\\\	waktu cepat dan tetap teratur.	dilakukan pada sistem AS/RS
\\ ~	Jika ada lokasi kosong di titik	(Automated Storage/Retrievel
	penyimpanan bisa langsung	System)
	diisi, sehingga meningkatkan	
	manfaat ruang penyimpanan di	
	gudang. Mengurangi jumlah	
	kebutuhan luas gudang dan	
	mampu peningkatkan utilisasi	
	area penempatan persediaan .	
Randomized	Penyimpanan di gudang dapat	Metode randomized
Storage	dilakukan dengan cara acak.	storage bisa menyebabkan
	Barang atau produk mungkin	lokasi barang tidak teratur
	mengalami perpindahan lokasi	dengan baik. Jenis, kondisi,
	penyimpanan. Penyimpanan	dimensi dan karakteristik

	juga	bisa	dilakukan	di	barang tidak diperhatikan
	sembara	ng	tempat	yang	selama barang disimpan di
	memung	gkinka	n		gudang. Jika jumlah barang
					yang disimpan banyak jumlah
					dan jenisnya, maka bisa
					mempersulit proses pencarian
					barang.
Class based	penyimp	panan	produk	lebih	Metode class based storage pada
Storage	fleksibe	1	karena	diatur	penerapannya butuh ruang
	berdasaı	rkan	kecepatan	gerak	penyimpanan atau rak lebih
	barang.	Baran	ng yang be	rgerak	banyak.
	cepat bi	sa disi	mpan dekat	depot	
	agar mu	dah di	jangkau		_

2.2.6 Metode Shared Storage

Jika setiap palet diisi di lokasi gudang yang terpisah dari waktu ke waktu, penyimpanan *Shared storage* dapat dianggap sebagai mekanisme untuk transportasi cepat item untuk suatu produk. Perbedaan yang melekat dalam jumlah waktu masing-masing palet berada di gudang dapat dimanfaatkan oleh penyimpanan *Shared storage*. Beberapa manajer gudang menggunakan bentuk penyimpanan khusus di mana penempatan produk akhir diatur lebih hati-hati untuk mengurangi kebutuhan ruang penyimpanan dari penyimpanan khusus. Secara khusus, berbagai hasil menggunakan slot hemat ruang yang sama dari waktu ke waktu, meskipun produk akhir hanya menempati slot tersebut satu kali. Jika 100 palet tiba dengan sejumlah besar "pemindahan cepat" produk yang akan disimpan, promosikan pertimbangan penyimpanan *Shared storage*. Palet dengan jumlah yang signifikan akan digunakan kembali dan dikirim dengan kecepatan hingga 5 palet per hari selama periode 20 hari.

Jika *randomized storage* yang digunakan, setiap kali suatu beban palet dipindahkan dari ruang simpan, slot tersedia untuk digunakan oleh produk yang memerlukan ruang simpan berikutnya. Namun dengan *dedicated storage*, masingmasing kepindahan dari suatu palet dari ruang simpan membuat satu slot yang kosong yang tidak akan mungkin diisi paling awal sampai kedatangan dari

pengiriman yang berikutnya dari produk yang sama. *Shared storage* bisa dianggap sebagai system pemindahan barang yang cepat terhadap suatu produk, jika masingmasing palet diisi di dalam area gudang yang berbeda dari waktu ke waktu. *Shared storage* dapat mengambil keuntungan dari perbedaan perbedaan yang tidak bisa dipisahkan yaitu lamanya waktu dari palet secara individu untuk tinggal di dalam gudang. Variabel dari metode *Shared storage* yang harus diketahui adalah:

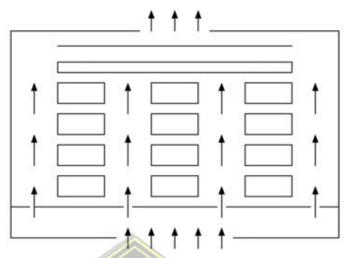
- 1. Lama waktu work in process
- 2. Waktu pengiriman masing-masing produk
- 3. Jumlah produk tiap pemesanan
- 4. Frekuensi pemesanan tiap periode waktu
- 5. Jarak tiap-tiap area penyimpanan terhadap pintu keluar-masuk
- 6. Kebutuhan ruang

Tergantung pada jumlah informasi yang tersedia tentang tingkat persediaan dari waktu ke waktu untuk setiap produk, persyaratan kapasitas penyimpanan untuk penyimpanan *Shared storage* berkisar dari yang diperlukan untuk penyimpanan *randomized storage* hingga yang diperlukan untuk penyimpanan *dedicated storage*. Seperti yang dinyatakan sebelumnya, perbedaan antara penyimpanan *Shared storage* dan penyimpanan *randomized storage* adalah bahwa yang pertama memerlukan spesifikasi lengkap dari lokasi ruang penyimpanan produk, sedangkan yang terakhir hanya bergantung pada pembuatan slot gudang kosong. Penyimpanan *dedicated storage* digunakan untuk pengisian total kelompok produk terhadap sejumlah ruang penyimpanan untuk pengisian ulang. penyimpanan *Shared storage* digunakan untuk pengisian total kelompok produk terhadap sejumlah ruang penyimpanan berdasarkan rata-rata lama waktu dalam ruang penyimpanan berdasarkan rata-rata lama waktu dalam ruang penyimpanan untuk pengisian ulang.

Perbedaan antara penyimpanan *Shared storage* dan penyimpanan *dedicated storage* adalah bahwa penyimpanan *dedicated storage* digunakan di perusahaan yang membuat banyak item dengan berbagai dimensi, dan area penyimpanan untuk setiap produk dengan berbagai dimensi telah ditentukan. Karena setiap tempat penyimpanan dapat ditempati oleh jenis produk dan permintaan konsumen yang berbeda, maka cara ini lebih baik digunakan pada jenis pabrik yang memiliki

dimensi produk yang sama atau tidak jauh berbeda, karena setiap tempat penyimpanan dapat ditempati oleh jenis produk yang berbeda dan tuntutan konsumen. berdasarkan waktu produksi dan tanggal pengiriman produk.

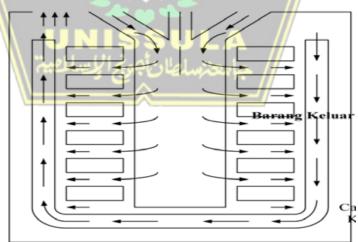
Pada teknik *Shared storage*, penempatan produk dilakukan dengan terlebih dahulu menata area penyimpanan berdasarkan keadaan ruang lantai gudang, kemudian memilah area yang paling dekat dengan area terjauh dari pintu masuk dan keluar I/O sedemikian rupa sehingga barang yang akan segera dipindahkan berada ditempatkan di area terdekat dan seterusnya (Schiavo 2014).


Kelebihan metode *Shared Storage* di banding metode lainnya adalah kemampuan pemanfaatan ruang sehingga ruangan dapat di gunakan secara efektif dan efisien. Sedangkan pada metode *dedicated storage* memiliki kelemahan bila ada slot palet yang kosong maka tidak bisa di gunakan untuk penyimpanan produk lain. Lalu dengan metode *randomized storage* memiliki kelemahan dalam pencarian produk sehingga akan memakan waktu yang lebih lama.

2.2.7 Jenis Layout gudang

Menurut (Schiavo 2014) selain ditentukan oleh luasnya ruangan kapasitias gudang juga dipengaruhi oleh cara mengatur tata letak material yang disimpan. Gudang dengan tata ruang sembarangan dan berserakan tentunya kurang efisien dibandingkan dengan tata gudang yang teratur dengan rapi. Berdasarkan arus keluar masuknya material terdapat beberapa bentuk layout gudang yang dapat diterapkan yaitu:

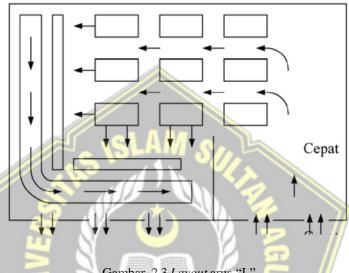
1. Arus garis lurus sederhana


Dengan menggunakan garis lurus sederhana arus material akan berbentuk garis lurus.proses keluar masuk material tidak melalui lorong yang berkelok-kelok sehingga proses penyimpanan dan pengambilan material relatif lebih cepat. Lokasi barang yang disimpan dibedakan antara barang yang bersifat *fastmoving* dan *slowmoving*. Barang yang bersifat *fastmoving* disimpan di lokasi yang dekat dengan pintu keluar. Sebaliknya, barang yang bersifat *slowmoving* disimpan di lokasi yang dekat dengan pintu masuk. Arus garis lurus sederhana adalah seperti gambar berikut:

Gambar 2.1 Layout Arus Garis Lurus

2. Arus "U"

Dengan menggunakan *layout* arus "U", arus barang berbentuk "U". Proses keluar masuk barang melalui lorong/gang yang berkelok-kelok sehingga proses penyimpanan dan pengambilan barang relatif lebih lama. Lokasi barang yang akan disimpan dibedakan antara barang yang bersifat *fastmoving* dan *slowmoving*. Barang yang bersifat *fastmoving* disimpan di lokasi yang dekat dengan pintu keluar. Sebaliknya barang yang bersifat *slowmoving* disimpan di lokasi yang dekat dengan pintu masuk. *Layout* dengan arus "U" adalah seperti gambar berikut:



Gambar 2.2 Layout Arus "U"

3. Arus "L"

Dengan menggunakan *layout* arus "L", arus barang berbentuk "L" dan proses keluar masuk barang melalui lorong/gang yang tidak terlalu berkelok-kelok

sehingga proses penyimpanan dan pengambilan barang relatif cepat. Lokasi barang yang akan disimpan dibedakan antara barang yang bersifat fastmoving dan slowmoving. Barang yang bersifat fastmoving disimpan di lokasi yang dekat dengan pintu keluar. Sebaliknya barang yang bersifat slowmoving disimpan di lokasi yang dekat dengan pintu masuk. Layout dengan arus "L" adalah seperti pada gambar berikut:

Gambar 2.3 Layout arus "L"

2.3 Hipotesa dan Kerangka Teoritis

Adapun hipotesa dan kerangka teoritis dari laporan ini sebagai berikut:

2.3.1 Hipotesa

Hipotesa merupakan suatu pernyataan sementara atau dugaan jawaban sementara yang paling memungkinkan walaupun masih harus dibuktikan dengan penelitian.

Berdasarkan dari latar belakang masalah tata letak gudang PT. Nihon Seiki Indonesia yaitu permasalahan yang dihadapi adalah dalam penanganan material di gudang perusahaan masih belum memiliki system yang ditetapkan, sehingga penempatan material di gudang menjadi tidak tertata rapi sehingga gudang terkesan sempit dan jarak material handling yang lebih jauh. Demikian juga garis atau line layout gudang sudah tidak terlihat jelas, material yang sering keluar masuk diletakkan pada bagian yang jauh dari pintu keluar-masuk sehingga menghambat proses penanganan material.

Dan dari tinjauan pustaka yang menunjang penelitian ini, maka penelitian ini bertujuan untuk merancang ulang tata letak penyimpanan material yang lebih teratur dan lebih baik sehingga dapat memperoleh jarak perpindahan *material handling* yang lebih pendek dengan menggunakan metode *Shared storage*. Berdasarkan studi literature yang sudah ada metode *Shared storage* ini dapat menyelesaikan masalah yang dihadapi oleh PT. Nihon Seiki Indonesia dimana metode *Shared storage* dapat memperlancar proses penanganan material dalam penyimpanan agar lebih efektif dan efisien serta terciptanya *free area warehouse* yang lebih luas dari sebelumnya.

2.3.2 Kerangka Teoritis

Pada penelitian ini, peneliti ingin membahas tentang pengusulan untuk memperbaiki tata letak gudang, efektif untuk memindahkan material dengan menggunakan metode *Shared Storage*.

Perusahaan memiliki masalah pada tata letak penyimpanan didalam gudang. Untuk itu perusahaan perlu melakukan perbaikan pada tata letak penyimpanan dengan cara *relayout* dalam gudang material dengan dimensi 20 x 30 meter agar penyimpanan didalam gudang lebih optimal.

Melakukan studi lapangan dan penentuan metode untuk mendapatkan data yang ada didalam gudang. Langkah - Langkah: Perumusan Masalah Tujuan Penelitian Jumlah material dalam gudang Penentuan kebutuhan ruang Penentuan luas area penyimpanan Penentuan allowance ruang Peletakan area penyimpanan Menghitung jarak tempuh tiap area gudang ke masing – masing pintu keluar Tahap Pelaksanaan: Perhitungan metode Shared Storage menggunakan Euclidean distance Analisa: Analisa hasil dari metode Shared Storage, serta menemukan layout perbaikan.

Gambar 2.4 Kerangka Teoritis

BAB III

METODE PENELITIAN

Pada bab ini, akan dilakukan penjelasan dengan kelengkapan mengenai metodologi penelitian, ialah cara atau yang menjadi prosedur, tahapan yang jelas dengan penyusunan yang tersistem dari pengkajian ini. Tahapan ini merupakan yang menjadi bagian dari penentuan berikutnya, dengan penyusunan dan kecermatan.

3.1 Pengumpulan Data

Dalam tahap ini dilakukan pengumpulan data-data yang dibutuhkan untuk penelitian. Langkah-langkah yang akan ditempuh dalam penelitian ini adalah sebagai berikut:

a. Data primer

Data primer adalah informasi yang dikumpulkan melalui observasi dan investigasi di lapangan. Pengumpulan data primer dilakukan dengan cara memantau secara langsung aktivitas di Perusahaan, khususnya di gudang bahan baku. Berikut ini informasi yang diperlukan:

- 1. Data rincian Pemesanan *raw material* apa saja yang dibutuhkan oleh proses produksi
- 2. Data kondisi *warehouse* penyimpanan *raw material* di PT.Nihon Seiki Indonesia
- 3. Data lainnya, seperti ukuran muatan slot, dimensi slot penyimpanan, total slot tersedia, dan jumlah *raw material* yang diperoleh melalui observasi dan dokumentasi

b. Data sekunder

Data sekunder merupakan data yang diperoleh peneliti secara tidak tidak langsung. Data sekunder tersebut biasanya berbentuk dokumen, file, arsip atau catatan-catatan perusahaan. Data ini diperoleh melalui dokumntasi perusahaan dan literatur yang berhubungan dengan penelitian selama periode tertentu. Data sekunder meliputi:

- Data permintaan, produksi dan pengiriman produk bulan Juli sampai Desember 2021, serta data terbesar pada bulan terpilih, diperoleh melalui dokumentasi.
- 2. Standar Operation Procedure (SOP), diperoleh melalui dokumentasi.
- 3. Data proses produksi, diperoleh melalui dokumentasi

3.2 Teknik Pengumpulan Data

Teknik pengumpulan data yang dilakukan dalam penelitian di PT. Nihon Seiki Indonesia adalah sebagai berikut:

- 1. Tempat Penelitian
 - Penelitian dilakukan di PT. Nihon Seiki Indonesia Cikarang Bekasi.
- 2. Objek penelitian
 - Objek penelitian adalah gudang PT. Nihon Seiki Indonesia Cikarang Bekasi
- 3. Identifikasi Masalah

Melakukan pendugaan, perkiraan ataupun penguraian yang terjadi atas permasalahan dari sebuah organisasi, identifikasi dari penelitian ini terdiri dari:

a. Metode observasi lapangan

Tahapan ini bertujuan untuk mengetahui kondisi real yang ada pada perusahaan, dengan diperolehnya gambaran tersebut diharapkan dapat mengetahui pendekatan yang sesuai dalam efektivitas pada mesin saat operasi produksi yang sedang berjalan yang dapat diterapkan diperusahaan..

b. Metode wawancara

Wawancara ini melibatkan pewawancara secara langsung menanyakan dan menjawab pertanyaan dari sumber yang ditanyai. Penulis berperan sebagai pewawancara dengan cara ini, sedangkan sumber bertindak sebagai pihak yang berwenang.

c. Metode literature

Metode kepustakaan ini melakukan pencarian literatur melalui buku-buku referensi untuk mendapatkan informasi tentang judul tugas akhir penulis.

3.3 Pengujian Hipotesa

Untuk mendapatkan hasil usulan *layout* bahan baku yang efektif dan menciptakan *free* area yang lebih luas, digunakan metode *Shared Storage* yaitu

metode penyimpanan tempat berdasarkan kondisi luas lantai gudang, kemudian sortir area yang paling dekat hingga terjauh dari pintu masuk I/O, sehingga material yang akan dikirim segera ditempatkan pada area yang terdekat, dan seterusnya.

3.4 Metode Analisis

Setelah melakukan penelitian tentang *Shared Storage* maka perlu dilakukan analisis dari penguji hipotesa dengan olah data yang telah dilaksanan dengan fase sebelumnya.

Pada penelitian ini, analisis dilakukan terhadap tata letak sekarang, dan melakukan rancangan perbaikan tata letak usulan dengan menggunakan metode *Shared Storage*. Berdasarkan penyusunan produk dengan menggunakan metode *Shared Storage*, akan diperoleh tata letak produk di gudang produk jadi yang efisien sehingga mempermudah operator dan *material handling* yang digunakan untuk menyimpan/mengambil produk pada slot yang tersedia. Dengan demikian waktu dan jarak tempuh pengangkutan serta keterlambatan bahkan penundaan pengiriman karena rusakan produk akan semakin kecil.

3.5 Pembahasan

Tahapan ini dengan pemberian analisa dari hasil pengolahan data yang dilaksanakan sebelumnya. Dilaksanakan dari awal pengolahan hingga hasil dari perbaikan permasalahan.

Langkah - langkah peneliti dalam penelitian ini yaitu sebagai berikut:

- 1. Perhitungan kapasitas area gudang (lama waktu work in process, waktu pengiriman, dan jumlah material)
- 2. Pengklasifikasian produk berdasarkan *supplier*
- 3. Perhitungan kebutuhan area untuk masing-masing item

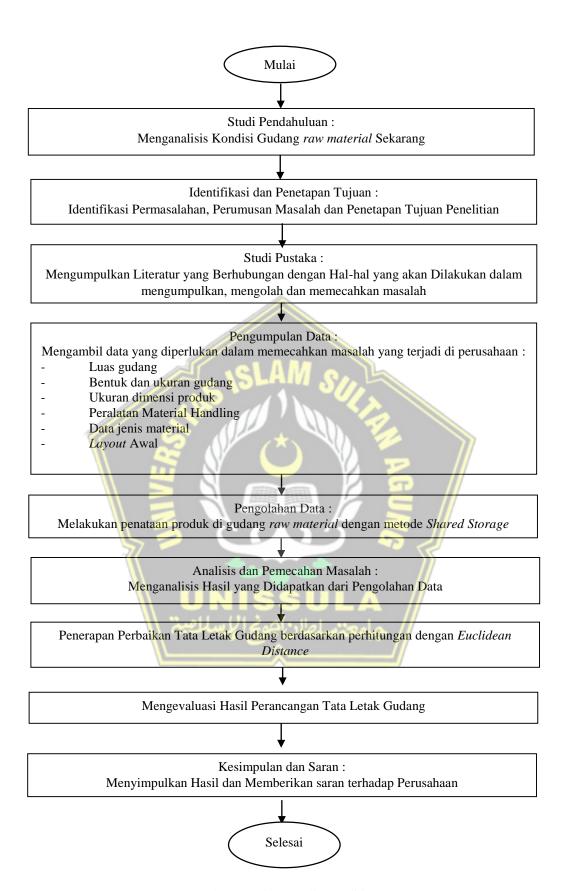
> Euclidean Distance

Jarak diukur sepanjang lintasan dengan menggunakan garis tegak lurus (orthogonal) satu dengan yang lainnya. Sebagai contoh adalah material yang berpindah sepanjang gang (aisle) *rectilinear* di pabrik.

$$d_{ij} = \sqrt{(x-a)^2 + (y-b)^2}$$

keterangan:

- dij = jarak fasilitas i ke fasilitas
- x = jarak titik tengah fasilitas i terhadap sumbu x (horizontal)
- a = jarak titik tengah fasilitas j terhadap sumbu x
- y = jarak titik tengah fasilitas i terhadap sumbu y (vertikal)
- b = jarak titik tengah fasilitas j terhadap sumbu y
- 4. Penentuan urutan *moving* untuk masing-masing area (pengurutan area berdasarkan jarak ke pintu keluar masuk I/O)
- 5. Penentuan tata letak.


Dalam hal ini yaitu pada proses penataan *raw material* keluar masuk gudang untuk dapat menghasilkan menghasilkan sistem penyimpanan dan pengiriman *material* pada gudang *raw material* PT. Nihon Seiki Indonesia Dan Memperoleh Perbaikan tata letak yang Pemindahan *material handling* lebih efektif Pada Gudang *raw material* PT. Nihon Seiki Indonesia.

3.6 Kesimpulan dan Saran

Tahap akhir penelitian ini adalah penarikan kesimpulan atas keseluruhan hasil yang diperoleh dari langkah-langkah penelitian yang dilakukan. Penarikan kesimpulan merupakan jawaban dari permasalahan yang ada. Selain itu akan diberikan saran sebagai masukkan yang positif berkaitan dengan hasil penelitian.

3.7 Diagram Alir Penelitian

Berikut ini adalah diagram alir yang digunakan dalam proses penelitian:

Gambar 3.1 Diagram alir penelitian

BAB IV

HASIL PENELITIAN DAN PEMBAHASAN

4.1 Pengumpulan Data

Pada bab ini akan dijelaskan mengenai data yang dikumpulkan untuk dilakukan pengolahan berdasarkan metode yang dipilih untuk didapatkan hasil pembahasan dan analisis dalam penelitian ini.

4.1.1 Gambaran Umum Perusahaan

PT. Nihon Seiki Indonesia adalah perusahaan yang memproduksi *Precision Shaft* yang telah mendapatkan sertifikat mutu produk dan lingkungan, sadar diperlukannya komitmen yang harus terus dijaga dalam rangka mewujudkan produk yang berkualitas, kelestarian dan keharmonisan lingkungan. Didirikan pada bulan Juni 1997. PT Nihon Seiki Indonesia mencakup situs industri seluas 10.500 meter persegi, sebuah usaha bersama antara perusahaan Jepang dan Malaysia, setiap ahli di bidang manufaktur masing-masing memberikan PT Nihon Seiki Indonesia terdepan dalam industri. Sertifikat yang telah dicapai PT Nihon Seiki Indonesia mulai dari pendiriannya pada tahun 1997 hingga tahun 2014 telah mendapatkan beberapa penghargaan berupa sertifikat ISO.

Gambar 4.1 PT.Nihon Seiki Indonesia

Sejak pendirian PT Nihon Seiki Indonesia, NSI memproduksi dan mengirimkan suku cadang ke Asia dan Amerika. NSI memiliki lebih dari 200 mesin yang dapat melakukan berbagai proses pembubutan dan proses pendukung dari bahan baku diameter 1.00 mm ~ diameter 25.00 mm. PT Nihon Seiki Indonesia

berlokasi di Kawasan Industri Delta Silicon Industrial Park, Jl. Angsana Raya No.2, Sukaresmi, Cikarang Selatan., Bekasi, Jawa Barat 17550. dengan luas 10,500 meter persegi, memiliki karyawan sekitar 270 orang dan 220 *unit* mesin termasuk mesin *CNC*. Tabel 4.1 menunjukan Pembagian jam kerja di PT.Nihon Seiki Indonesia.

No	Departemen	Jam istirahat sift	Jam istirahat sift	Jam Kerja	Jam Kerja
		1	2	Sift 1	Sift 2
1	Office	12.00-12.55	-	07.00-16.10	-
2	PPIC	12.00-12.50	-	07.00-16.10	-
3	Produksi	11.00-11.50	23.00-23.50	07.00-16.10	19.00-04.10
4	Quality Control	13.00-13.50	00.00-00.50	07.00-16.10	19.00-04.10
5	Maintenence	11.00-11.50	00.00-00.50	07.00-16.10	19.00-04.10

Tabel 4.1 Pembagian jam kerja PT.Nihon Seiki Indonesia

Berikut ini adalah lokasi PT.Nihon Seiki Indonesia:

Gambar 4.2 Lokasi PT.Nihon Seiki Indonesia

4.1.2 Produk & Klien Industri

PT Nihon Seiki Indonesia memproduksi berbagai macam suku cadang *precision shaft* yang melayani perusahaan multinasional, suku cadang tersebut digunakan dalam berbagai aplikasi mulai dari otomatisasi kantor, otomotif, audio, dan lainnya. Adapun produk & klien sebagai berikut :

1. Otomatisasi Kantor

Part yang termasuk peralatan otomatisasi kantor yang diproduksi pada umumnya adalah sparepart yang terdapat di printer,mesin fotocopy dll. Part Otomatisasi Kantor lebih jelasnya lagi dapat dilihat pada gambar 1.1 Otomatisasi Kantor. Berikut ini adalah beberapa konsumen dari produk Otomatisasi Kantor.

PT Indonesia Epson Industry	PT Tenma Cikarang Indonesia	PT Patco Elektronik Teknologi
PT Kiyokuni Technologies	PT IK Precision Indonesia	PT Indonesia TRC Industry
PT Muramoto Elektronika Indonesia	PT Takita Manufacturing Indonesia	PT Showa Denso Materials Indonesia
PT Kawai NIP	PT Shin Heung Indonesia	PT HTP Metalworks
PT Progress Diecast	PT Kiyokuni Indonesia	PT Nesinak Industries
PT Standard Indonesia Industry	PT Nidec Sankyo Precision Indonesia	PT Padma Soodie Indonesia

2. Otomotif

Berikut ini adalah beberapa produk yang tergolong kategori otomotif dapat dilihat pada gambar 4.3 Produk Otomotif.

Gambar 4.3 Produk Otomotif

Sumber: PT.Nihon Seiki Indones	sia	
PT Yamaha Indonesia	PT Yamaha Electronics	PT Yamaha Motor Parts
Motor Manufacturing	Manufacturing Indonesia	Manufacturing Indonesia
PT Tjokro Bersaudara	PT Ihara Manufacturing	PT Denso Manufacturing
Kompenenindo	Indonesia	Indonesia
PT Keihin Indonesia	PT Mikuni Indonesia	PT Mitsuba Indonesia

PT Aisan Nasmoco	PT Kyowa Indonesia	PT Kyoei Denki
Industri		Indonesia
PT Toyota Tsusho	PT IMC Tekno Indonesia	PT Indonesia Nippon
Indonesia		Seiki

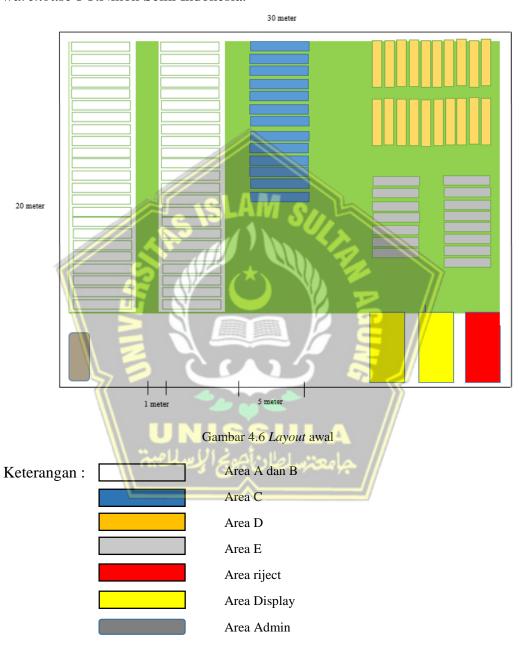
3. Audio

Berikut ini adalah beberapa produk yang tergolong kategori otomotif dapat dilihat pada gambar 4.4 Produk Audio.

Sumber: PT.Nihon Seiki Indonesia PT JVC Electronics Indonesia

4. Lainnya

Berikut ini adalah beberapa produk yang tergolong kategori otomotif dapat dilihat pada gambar 4.5 Produk Lainnya


Gambar 4.5 Produk Lainnya

Sumber: PT.Nihon Seiki Indonesia

PT. Omron Manufacturing Of Indonesia

4.1.3 Data Jenis Material

Berdasarkan pada pengukuran, apa yang diamati dan berdasarkan dari tanya jawab dengan tenaga kerja. Pada gambar 4.6 digambarkan *layout* awal dari *warehouse* PT.Nihon Seiki Indonesia.

Volume pada Area A = P x L x T
=
$$1140 \times 250 \times 40$$

= 11.4 M^3

Volume pada Area B = P x L x T
$$= 1140 x 250 x 40$$

$$= 11.4 M^{3}$$
Volume pada Area C = P x L x T
$$= 640 x 200 x 40$$

$$= 5.12 M^{3}$$
Volume pada Area D = P x L x T
$$= 490 x 500 x 40$$

$$= 9.8 M^{3}$$
Volume pada Area E = P x L x T
$$= 390 x 500 x 40$$

$$= 7.8 M^{3}$$

 $=45.52 \text{ M}^3$

Total volume

Keterangan data jenis material pada tiap area yang disimpan ditunjukan pada tabel diatas 4.2-4.6:

Tabel 4.2 Jenis material Layout Area A

= $11.4 \text{ M}^3 + 11.4 \text{M}^3 + 5.12 \text{ M}^3 + 9.8 \text{M}^3 + 7.8 \text{ M}^3$

	7	AREA A	
No.	Item	Description	Supplier
1	RM1002	1215(HS)DIA8.05mm(+0/-30)x2.8M OSD	OSD
2	RM1005	1215(HS)DIA13.08mm(+0/-30)x2.65M OSD	OSD
3	RM1007	1215(HS)DIA13.08mm(+0/-30)x2.87M OSD	OSD
4	RM1014	1215(HS)DIA8.00mm(+0/-30)x2.8M OSD	OSD
5	RM1015	1215(HS)DIA10.10mm(+10/-10)x2.2M OSDH	OSD
6	RM1016	1215(HS)DIA10.10mm(+10/-10)x2.8M OSDH	OSD
7	RM1101	1215(MS)DIA2.00mm (-0.01 / -0.03)x2M CLI	CLI
8	RM1103	1215(MS)DIA2.99mm (+0/-20)x2.5M)CLI	CLI
9	RM1105	1215(MS)DIA3.05mm (+0/-20) x2.5M CLI	CLI
10	RM1106	1215(MS)DIA3.50mm (+0/-0.02)x2,5M CLI	CLI
11	RM1107	1215(MS)DIA3.99mm (+0/-20) x2.5M CLI	CLI
12	RM1110	1215 (MS) DIA4.10mm (+0/-30)x2.5M CLI	CLI
13	RM1112	1215(MS)DIA5.00mm(+0/-30) x 2.5M CLI	CLI
14	RM1116	1215(MS)DIA6.05mm(+0/-30)x2.8M CLI	CLI
15	RM1117	1215(MS)DIA7.05mm(+0/-30)x2.5M CLI	CLI
16	RM1118	1215(MS)DIA8.00mm(+0/-30)x2.5M CLI	CLI

Tabel 4.2 Jenis material *Layout* Area A (Lanjutan)

17	RM1120	1215(MS)DIA9.05mm(+0/-30) x 2.7M CLI	CLI
18	RM1121	1215(MS)DIA10.00mm(+0/-30) x 2.67M CLI	CLI
19	RM1124	1215(MS)DIA18.05mm(+0/-40)x3.0M CLI	CLI
20	RM1126	1215(MS)DIA5.05mm (+0/-40)x 2.5M CLI	CLI
21	RM1129	1215 (MS)DIA4.94mm(+0/-20)x2.5M CLI	CLI
22	RM1130	1215 (MS)DIA5.50mm(+0/-30)x2.5M CLI	CLI
23	RM1133	1215 (MS)DIA12.00mm(+0/-30)x2.7M CLI	CLI

Tabel 4.3 Jenis material Layout Area B

No.	Item	Description	Supplier	
1	RM1012	1215(HS)DIA12.60Gmm(+28/+18)x2.5M OSD	OSD	
2	RM1132	1215 (MS)DIA11.00mm(+0/-30)x2.7M CLI	CLI	
3	RM1135	1215(MS)DIA4.985mm (+0/-20)x2.5M CM	CLI	
4	RM1136	1215(MS)DIA6.00mm (+0/-20) x2.5M CM	CLI	
5	RM1137	1215(MS)DIA5.98mm (+0/-20) x2.5M CM	CLI	
6	RM1138	1215(MS)DIA6.00mm(+0/-20) x2.66M CM	CLI	
7	RM1141	1215(MS)DIA8.05mm(+0/-30) x 2.96M CLI	CLI	
8	RM1306	A2017BD T4_DIA17.00mm(+0/-0.05)x2.5M SMC	SMC	
9	RM1805	C3602 BD RO DIA5.5mm (+0/-0.03) X 2.5M SMC	SMC	
10	RM2003	C6782BDF DIA10.05 (+0/-0.02) X 2.97M SMC	SMC	
11	RM2101	C6801BD-F DIA 8.5(-10/-30) x2.5M SMC	SMC	
12	RM3901	SUM22 MTKH DIA8.08mm(+20/-0) x2.66M SMC	SMC	
13	RM4403	AISI1215 DIA14.0(+0/-40) X 2.5M CLI	CLI	
14	RM4505	SUS303 DIA7.00mm(0/-30) X 2.5M OSD	OSD	
15	RM4507	SUS303_DIA11.00mm(+0/-43) X 2.5M SMC	SMC	
16	RM4508	SUS303_DIA14.00mm(+0/-43) X 2.5M SMC	SMC	
17	RM4601	SUS303CU DIA4.0mm(+0/-30)x2.5M OSD	OSD	
18	RM4602	SUS303CU DIA5.00mm(+0/-30)x2.5M OSD	OSD	
19	RM4603	SUS303CU DIA6.00mm(+0/-30)x2.5M OSD	OSD	
20	RM4605	SUS303CU DIA7.00mm(+0/-0.03)X2.5M OSD	OSD	
21	RM4613	SUS303CU_DIA12.0mm(+0/-30)x2.5M OSD	OSD	
22	RM4614	SUS303CU DIA10.06mm(+0/-30) X 2.72M OSD	OSD	
23	RM4702	SUS303G DIA5.00mm(+0-18)x2.5M OSD OSD		

Sumber: PT.Nihon Seiki Indonesia

Tabel 4.4 Jenis material Layout Area C

No.	Item	Supplier	
1	RM3601	STKM12B DIA14.0MM X DIA9.6 X 2.7~3.0M SSJ	SSJ
2	RM3602	STKM12C-EC DIA13.50MM X DIA8.6MM X 2.1~3.0M SSJ	SSJ
3	RM3901	SUM22 MTKH DIA8.08mm(+20/-0) x2.66M SSJ	SSJ
4	RM4202	12L14 DIA2.50(0/-30) X 2.0M CLI	CLI
5	RM4312	SUM24L_DIA4.985mm(+0/-20)x2.5M OSD	OSD
6	RM4403	AISI1215 DIA14.0(+0/-40) X 2.5M CLI	CLI
7	RM4505	SUS303 DIA7.00mm(0/-30) X 2.5M OSD	OSD
8	RM4507	SUS303_DIA11.00mm(+0/-43) X 2.5M SMC	SMC
9	RM4508	SUS303_DIA14.00mm(+0/-43) X 2.5M SMC	SMC
10	RM4511	SUS303_DIA11.06mm(+0/-43)x2.5M SMC	SMC
11	RM4601	SUS303CU DIA4.0mm(+0/-30)x2.5M OSD	OSD
12	RM4602	SUS303CU DIA5.00mm(+0/-30)x2.5M OSD	OSD
13	RM4603	SUS303CU DIA6.00mm(+0/-30)x2.5M OSD	OSD

Tabel 4.5 Jenis material Layout Area D

	AREA D				
No.	Item	Description	Supp;ier		
1	RM1011	1215(HS)DIA11.05mm(+0/-30)x2.7M OSD	OSD		
2	RM1108	1215(MS)DIA4.00mm(+0/-15) x2.5M CLI	CLI		
3	RM1128	1215 (MS)DIA3.93mm(+0/-20)x2.5M CLI	CLI		
4	RM1132	1215 (MS)DIA11.00mm(+0/-30)x2.7M CLI	CLI		
5	RM1308	A2017-T4_DIA7.00mm(+0/-50)x2.5M SMC	SMC		
6	RM1310	2017BD-T4_DIA8.00mm (+0/-50) x 2.5M SMC	SMC		
7	RM1401	A2011-T3 DIA7.00mm(+0/-40)x2.5M SMC	SMC		
8	RM1601	A5056BD_DIA10.0mm(+10/-40)x2.0MSSJ	SSJ		
9	RM1602	A5056BD_DIA13.0mm(+10/-40)x2.0M SSJ	SSJ		
10	RM1603	A5056BD_DIA16.0mm(+0/-60)x2.0M SSJ	SSJ		
11	RM1702	AL KS-21 DIA9.00mm(+0/-40)x2.5M SMC	SMC		
12	RM1806	C3602 DIA6.00(+0/-30)x2.5M SMC	SMC		
13	RM1809	C3602 DIA7.00mm(+0/-30)X 2.5M SMC	SMC		
14	RM1812	C3602 DIA9.00mm(+0/-30)x2.5M SMC	SMC		
15	RM1815	C3602 BD RO DIA 4.0mm(+0/-0.03) x2.5M IBI	IBI		
16	RM1901	C3604 DIA4.00mm(-10/-30)x2.5M SMC	SMC		
17	RM2809	S45C_DIA12.00mm(+0/-43)X2.0M SSJ	SSJ		
18	RM3001	S50C DIA18.1 x 12.1 x 3M IBI	IBI		
19	RM3302	SK-4_DIA4.0mm(0/-30) x 2.5M IBI	IBI		
20	RM3702	SUJ2 DIA3.05(0/-25) X 2.5M SMC	SMC		

Tabel 4.6 Jenis material Layout Area E

No.	No. Item Description			
1	RM4605	SUS303CU DIA7.00mm(+0/-0.03)X2.5M OSD	OSD	
2	RM4702	SUS303G DIA5.00mm(+0-18)x2.5M OSD	OSD	
3	RM4808	SUS304 DIA8.05mm (+0/-36)X 2.5M OSD	OSD	
4	RM4811	SUS304 DIA4.0mm(+0/-30) X 2.5M SMI	IBI	
5	RM4812	SUS304 DIA7.5mm(+0/-36) X 2.5M SMI	IBI	
6	RM5003	SUS416F2 DIA5.0(0/-36) X 2.5M OSD	OSD	
7	RM5004	SUS416F(DSR16F)DIA6.00mm (+0/-30) x 2.5M SMI	IBI	
8	RM5007	SUS416F2 DIA9.00(0/-30)X2.5M OSD	OSD	
9	RM5407	SUS440C DIA 9.0(+0/-20) X 2.5M SMI	IBI	
10	RM1010	1215(HS)DIA20.04mm(+20/-20)x2.95M OSD	IBI	
11	RM1122	1215(MS)DIA10.06mm(+0/-20)x2.66M CLI	IBI	
12	RM1131	1215 (MS)DIA9.08mm(+0/-30)x2.65M CLI	IBI	
13	RM2602	KS-1 SQ_DIA7.00mm(+0/-40)x2.88MDK) IBI	
14	RM2808	S45C DIA8.10mm(+0/-30)x3.0M CLI	IBI	
15	RM4322	SUM24L_DIA8.05 (+0/-20) X 2.5M OSD	IBI	

4.1.4 Material Handling

Material handling merupakan penyediaan material dalam jumlah yang tepat, pada kondisi yang tepat, pada waktu dan tempat yang tepat, pada posisi yang tepat, pada urutan yang tepat, dengan biaya yang tepat dan menggunakan metode yang tepat (Oktafiansyah 2018). Pada tabel 4.7 berisi tentang prinsip-prinsip material handling yang terdapat di PT.Nihon Seiki Indonesia.

Tabel 4.7 Prinsip-prinsip material handling

No	Prinsip	Keterangan		
1	Perencanaan	Semua perencanaan material dan aktivitas-aktivitas penyimpanan untuk mendapatkan efisiensi operasi semaksimal mungkin		
2	Sistem Aliran	Mengintegrasi sebanyak mungkin aktivitas penanganan dan mengkoordinasikan sistem operasi meliputi agen, penerimaan, penyimpanan, produksi, inspeksi, pengawasan, trasportasi dan konsumsi.		
3	Aliran material	Merencanakan urutan operasi dan tata letak peralatan untuk mengoptimumkan aliran barang/ material.		

Tabel 4.7 prinsip-prinsip *material handling* (Lanjutan)

4	Penyederhanaan	Menyederhanakan penanganan dengan cara mengurangi,		
		menghilangkan, menggabungkan, pemindahan atau peralatan yang		
		tidak perlu		
5	Memanfaatkan	Memanfaatkan volume bangunan seoptimal mungkin		
	ruangan			
6	Pemilihan	Dalam pemilihan peralatan, pertimbangkan semua aspek		
	peralatan	penanganan material, pemindahan dan metode yang digunakan		
7	utilisasi	Rencanakan pemakaian peralatan penanganan dan man power atau		
		SDM secara optimum		
8	Perawatan	Rencanakan perawatan pencegahan dan jadwal perbaikan dari semua		
		peralatan penanganan		
9	Pengawasan	Gunakan aktivitas-aktivitas penanganan material untuk		
		meningkatkan pengendalian produksi, pengendalian persediaan, dan		
		penanganan biaya.		
10	Efektivitas	Tentukan efektivitas kinerja penanganan dalam bentuk biaya persatuan yang ditangani		

Berikut ini adalah data waktu yang diperlukan dari proses *material handling* dapat dilihat pada tabel 4.8 waktu yang diperlukan dalam proses *handling*.

Tabel 4.8 Waktu yang diperlukan dalam proses handling

B <mark>ulan</mark>	Aktivitas K Gudan	an ch	Waktu
سية ∖\	In (Peti kayu)	Out (Peti kayu)	Jam
Juni	100	88	18,45
Juli	87	90	16,15
Agustus	97	80	16,30
September	112	96	18,15
Oktober	90	84	15,45
November	98	92	17,30
Desember	74	83	14,45
Total	658	613	116,25

Dari tabel tersebut diatas menunjukan bahwa selama periode tahun 2021, periode Juni sampai dengan Desember 2021, waktu yang paling tinggi diperlukan pada bulan Juni yaitu 18,45 Jam untuk proses *receiving material* sebanyak 188 peti , dan waktu terendah pada bulan Desember yaitu 14,45 jam pada proses delivery material. Rata-rata waktu per bulan dalam kegiatan *handling raw material* pada periode tahun 2021 sampai dengan Desember : 16,60 Jam.

Makna dari Efesien merupakan hal yang akan dicapai dengan pembiayaan ataupun masukan menjadi pengeluaran yang tidak sedikit. Efisien bahwa dalam hal penanganan atau *handling* barang yaitu bagaimana proses penanganan barang tidak memerlukan penambahan biaya BBM untuk alat mekanis (*forklift*) dan penambahan *man power* (tenaga kerja) serta jam kerja atau lembur dalam proses *handling* barang. Dapat dilihat pada tabel 4.9 Pemakaian BBM Solar untuk Forklift Tahun 2021 Gudang material.

Tabel 4.9 Pemakaian BBM Solar untuk Forklift Tahun 2021 Gudang material

Bulan	Aktivitas Kegiatan Di Gudang		Pemakai an BBM (Solar)	
E	In (Peti kayu)	Out (Peti kayu)	Liter	
Juni	100	88	18,50	
Juli	87	90	15,00	
Agustus	97	80	17,25	
September	112	96	19,00	
Oktober	90	84	16,50	
November	98	92	17,50	
Desember	74	83	14,50	
Total	658	613	118,25	

Dari tabel tersebut diatas menunjukan bahwa selama periode tahun 2021, pemakian bbm (solar) terbesar di bulan September yaitu 19,00 liter untuk proses *receiving* material sebanyak 208 *case*, dan pemakaian terendah pada bulan Desember yaitu 14,50 liter proses *receiving* material sebanyak 157 *case*.

Rata-rata pemakaian solar per bulan sampai dengan Desember pada gudang material adalah : 16,89 liter.

Gambar 4.7 Case material

4.1.5 Peralatan Gudang

Alat dibawah ini dipergunakan untuk kemudahan dalam kegiatan *inbound* - *outbound* pada gudang. Ketersedian alat mekanis harus disesuaikan dengan jenis dan karakterisitik material dan penanganannya. Alat mekanis yang yang dipergunakan dalam proses penerimaan, penyimpanan dan pengeluaran barang didalam gudang yang dimiliki oleh PT.Nihon Seiki Indonesia yaitu : *Forklif*, *Trolley transfer*, *dan Hand Pallet/Jack*.

Gambar 4.8 Forklift Toyota

Sumber: PT.Nihon Seiki Indonesia

Keterangan:

Dimensi :

Kapasitas Muat : 3 Ton

Dimesi Keseluruhan : 2800 mm x 1300 mm

Bahan Bakar : Solar

Transmisi : Manual

Tinggi tiang : 4.5 M

Panjang Garpu : 1070 mm

Lebar Garpu : 125 mm

Tahun Pembuatan : 2015

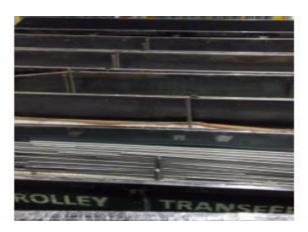
Gambar 4.9 Hand pallet

Sumber: PT.Nihon Seiki Indonesia

Keterangan:

Merk : Krisbow

Dimensi : 1550 x 550x 400 mm


Kapasitas : 2 Ton

Spanfork : 53 mm

Height max : 190 mm

Fork Length : 1150mm

Tipe alat : Manual

Gambar 4.10 Trolley Transfer material

Keterangan:

Dimensi : $2500 \times 30 \times 100 \text{ cm}$

Kapasitas : 100 kg

Tipe alat : Manual

4.1.6 Data Supplier

Data yang dibutuhkan yaitu data penerimaan barang digudang PT. Nihon Seiki Indonesia, pada Gudang material data ini dihasilkan dari hasil penelitian selama 6 bulan pada PT. Nihon Seiki Indonesia. Tabel 4.10 berisi Data Supplier PT.Nihon Seiki Indonesia.

Tabel 4.10 Data Supplier PT. Nihon Seiki Indonesia

No	Supplier Supplier	Receiving /item code	Jumlah (case)
1.	OSD	26	78
2.	CLI	29	87
3.	SSJ	9	27
4.	SMC	19	57
5.	IBI	7	21
	Total	90	270

Sumber: PT.Nihon Seiki Indonesia

Keterangan:

 Pada periode bulan tersebut diterima (*receiving*) material sebanyak 271 peti kayu yang terdiri atas lima supplier yaitu OSD sebanyak 78 peti kayu,CLI sebanyak 87 peti kayu, SSJ sebanyak 28 peti kayu, SMC sebanyak 57 peti kayu, IBI sebanyak 21 peti kayu.

4.1.7 Inbound-Outbound Warehouse

Inbound logistics merupakan aliran material dari pemasok ke pabrik atau departemen operasi ke dalam perusahaan, sedangkan *outbound* adalah aliran produk dari pabrik atau departemen operasi ke pelanggan atau konsumen (Komara 2016). Proses pemesanan, inventaris, transportasi, pergudangan, penanganan material, pengemasan, dan desain jaringan fasilitas adalah lima aktivitas yang ada dalam Logistik Masuk dan Keluar. Operasi *inbound-outbound* di PT. Nihon Seiki Indonesia tercantum pada Tabel 4.11.

Tabel 4.11 Aktifitas inbound-outbound PT.Nihon Seiki Indonesia

No	Area	Current Situation	Sugggested Condition
1	Order Processing	Saat menelepon pemasok,	Ini berjalan dengan baik dan
		terkadang tidak ada jawaban.	merespons dengan cepat.
2	Inventory	Petugas gudang tidak	Untuk mengatur pemasukan
		mencatat keluar masuknya	dan pengeluaran bahan, kartu
		material	stok harus diisi.
		Tidak ada waktu yang	Perhitungan stok minimum
	5	ditentukan untuk pemesanan	digunakan untuk menentukan
	\\	ulang.	berapa banyak yang akan
		ALIISSIN	dipesan ulang.
	الماصة \	Saat stok hampir habis,	Pemasok akan selalu
	15	hubungi pemasok namun,	merespons saat pesanan
		waktu tunggu terlalu lama,	dilakukan, memastikan aliran
		dan persediaan terkadang	bahan yang lancar ke dalam
		tidak tersedia.	inventaris.
3	Transportation	Keterlambatan pengiriman	Untuk menghindari kemacetan
		bahan baku akibat kemacetan	lalu lintas yang ada, pihak
		ekspedisi	ekspedisi harus cerdas memilih
			jalur alternatif.
		Tidak cukupnya transportasi	Untuk mendongkrak
		untuk mengirimkan produk	penjualan, transportasi harus
		ke konsumen akhir di daerah	memadai.
		tertentu.	

Tabel 4.11 Aktifitas *inbound-outbound* PT.Nihon Seiki Indonesia (lanjutan)

4	Warehousing Material	Fasilitas penyimpanan	Alat kebersihan harus
	Handling Packaging	material dengan fasilitas	ditambahkan ke fasilitas
		minimal (kartu stok dan alat	sehingga bahan baku yang
		kebersihan)	masuk dan keluar gudang
			dapat dipantau dengan baik
			dengan kartu stok.
		penanganan material dapat	Untuk mengurangi kerugian,
		terjadi sebagai akibat dari	diperlukan sosialisasi dan
		penanganan yang tidak tepat	penetapan peraturan
		4	penanganan bahan baku yang
			tepat.
		Karena pekerja yang tidak	Menambah jumlah staf di
		mencukupi antara mereka	bagian pemindahan material
		y <mark>ang mem</mark> uat dan	untuk menghindari
		membongkar dan mereka	keterlambatan pengiriman ke
		yang melakukan pemindahan	area manufaktur.
		material, kinerja terkadang	
		bisa ter <mark>hambat</mark> .	
5	F <mark>ac</mark> ility N <mark>etwo</mark> rk	Ketiadaan fasilitas di area	Meningkatkan produktivitas
	Design	gudang mengurangi	dan kinerja secara keseluruhan
		efektifitas PT. Nihon Seiki	dengan melengkapi jumlah
		Indonesia.	fasilitas di area gudang.

4.1.8 Data Permintaan Material

Berikut ini adalah data permintaan material yang ada di gudang *raw material* PT.Nihon Seiki Indonesia dapat dilihat pada tabel 4.12 Area A– 4.16 Area E :

Tabel 4.12 Area A

		AREA A		
No.	Item	Description	Supplier	Jumlah kuantum (kg)
1	RM1002	1215(HS)DIA8.05mm(+0/-30)x2.5M OSD	OSD	4320
2	RM1005	1215(HS)DIA13.08mm(+0/-30)x2.5M OSD	OSD	1440
3	RM1007	1215(HS)DIA13.08mm(+0/-30)x2.5M OSD	OSD	480
4	RM1014	1215(HS)DIA8.00mm(+0/-30)x2.5M OSD	OSD	465
5	RM1015	1215(HS)DIA10.10mm(+10/-10)x2.5M OSDH	OSD	1728
6	RM1016	12 <mark>15</mark> (HS)DIA10.10mm(+10/-10)x2.5M OSDH	OSD	1631
7	RM1101	1215(MS)DIA2.00mm (-0.01 / -0.03)x2M CLI	CLI	3456
8	RM1103	1215(MS)DIA2.99mm (+0/-20)x2.5M)CLI	CLI	1800
9	RM1105	1215(MS)DIA3.05mm (+0/-20) x2.5M CLI	CLI	518
10	RM1106	1215(MS)DIA3.50mm (+0/-0.02)x2,5M CLI	CLI	2880
11	RM1107	1215(MS)DIA3.99mm (+0/-20) x2.5M CLI	CLI	480
12	RM1110	1215 (MS) DIA4.10mm (+0/-30)x2.5M CLI	CLI	2880
13	RM1112	1215(MS)DIA5. 00mm(+0/-30) x 2.5M CLI	CLI	1330

Tabel 4.12 Area A (lanjutan)

14	RM1116	1215(MS)DIA6.05mm(+0/-30) x2.5M CLI	CLI	500
15	RM1117	1215(MS)DIA7.05mm(+0/-30)x2.5M CLI	CLI	5400
16	RM1118	1215(MS)DIA8.00mm(+0/-30)x2.5M CLI	CLI	2058
17	RM1120	1215(MS)DIA9.05mm(+0/-30) x 2.5M CLI	CLI	3086
18	RM1121	1215(MS)DIA10.00mm(+0/-30) x 2.5M CLI	CLI	1571
19	RM1124	1215(MS)DIA18.05mm(+0/-40)x2.5M CLI	CLI	430
20	RM1126	1215(MS)DIA5.05mm (+0/-40)x 2.5M CLI	CLI	1029
21	RM1129	1215 (MS)DIA4.94mm(+0/-20)x2.5M CLI	CLI	910
22	RM1130	1215 (MS)DIA5.50mm(+0/-30)x2.5M CLI	CLI	1920
23	RM1133	1215 (MS)DIA12.00mm(+0/-30)x2.5M CLI	CLI	2058

Tabel 4.13 Area B

		AREA B		
No.	Item	Description	Supplier	Jumlah kuantum (kg)
1	RM1012	1215(HS)DIA12.60Gmm(+28/+18)x2.5M OSD	OSD	2619
2	RM1132	1215 (MS)DIA11.00mm(+0/-30)x2.5M CLI	CLI	864
3	RM1135	1215(MS)DIA4.985mm (+0/-20)x2.5M CM	CLI	738
4	RM1136	1215(MS)DIA6.00mm (+0/-20) x2.5M CM	CLI	864
5	RM1137	1215(MS)DIA5.98mm (+0/-20) x2.5M CM	CLI	1017
6	RM1138	1215(MS)DIA6.00mm(+0/-20) x2.5M CM	CLI	720
7	RM1141	1215(MS)DIA8.05mm(+0/-30) x 2.5M CLI	CLI	174

Tabel 4.13 Area B (lanjutan)

8	RM1306	A2017BD T4_DIA17.00mm (+0/-0.05)x2.5M SMC	SMC	1041
9	RM1805	C3602 BD RO DIA5.5mm (+0/-0.03) X 2.5M SMC	SMC	468
10	RM2003	C6782BDF DIA10.05 (+0/-0.02) X 2.5M SMC	SMC	1029
11	RM2101	C6801BD-F DIA 8.5(-10/-30) x2.5M SMC	SMC	1168
12	RM3901	SUM22 MTKH DIA8.08mm(+20/-0) x2.66M SMC	SMC	7855
13	RM4403	AISI1215 DIA14.0(+0/-40) X 2.5M CLI	CLI	5760
14	RM4505	SUS303 DIA7.00mm(0/-30) X 2.5M OSD	OSD	3600
15	RM4507	SUS303_DIA11.00mm(+0/-43) X 2.5M SMC	SMC	8640
16	RM4508	SUS303_DIA14.00mm(+0/-43) X 2.5M SMC	SMC	5760
17	RM4601	SUS303CU DIA4.0mm(+0/-30)x2.5M OSD	OSD	5083
18	RM4602	SUS303CU DIA5.00mm(+0/-30)x2.5M OSD	OSD	4115
19	RM4603	SUS303CU DIA6.00mm(+0/-30)x2.5M OSD	OSD	3324
20	RM4605	SUS303CU DIA7.00mm(+0/-0.03)X2.5M OSD	OSD	4800
21	RM4613	SUS303CU_DIA12.0mm(+0/-30)x2.5M OSD	OSD	4800
22	RM4614	SUS303CU DIA10.06mm(+0/-30) X 2.5M OSD	OSD	4548
23	RM4702	SUS303G DIA5.00mm(+0-18)x2.5M OSD	OSD	1235
'1 ' T 1			17	•

Tabel 4.14 Area C

		AREA C		
	Item	Description	Supplier	Jumlah kuantum
No.				(kg)
1	RM3601	STKM12B DIA14.0MM X DIA9.6 X 2.7~3.0M SSJ	SSJ	3928
2	RM3602	STKM12C-EC DIA13.50MM X DIA8.6MM X 2.1~3.0M SSJ	SSJ	3456
3	RM3901	SUM22 MTKH DIA8.08mm(+20/-0) x2.5M SSJ	SSJ	5400
4	RM4202	12L14 DIA2.50(0/-30) X 2.0M CLI	CLI	4320
5	RM4312	SUM24L_DIA4.985mm(+0/-20)x2.5M OSD	OSD	7200
6	RM4403	AISI1215 DIA14.0(+0/-40) X 2.5M CLI	CLI	4800
7	RM4505	SUS303 DIA7.00mm(0/-30) X 2.5M OSD	OSD	4548
8	RM4507	SUS303_DIA11.00mm(+0/-43) X 2.5M SMC	SMC	4320
9	RM4508	SUS303_DIA14.00mm(+0/-43) X 2.5M SMC	SMC	5400
10	RM4511	SUS303_DIA11.06mm(+0/-43)x2.5M SMC	SMC	2400
11	RM4601	SUS303CU DIA4.0mm(+0/-30)x2.5M OSD	OSD	4800
12	RM4602	SUS303CU DIA5.00mm(+0/-30)x2.5M OSD	OSD	3316
13	RM4603	SUS303CU DIA6.00mm(+0/-30)x2.5M OSD	OSD	2980

Tabel 4.15 Area D

AREA D				
No.	Item	Description	Supp;ier	Jumlah kuantum (kg)
1	RM1011	1215(HS)DIA11.05mm(+0/-30)x2.5M OSD	OSD	4320
2	RM1108	1215(MS)DIA4.00mm(+0/-15) x2.5M CLI	CLI	4800
3	RM1128	1215 (MS)DIA3.93mm(+0/-20)x2.5M CLI	CLI	4320
4	RM1132	1215 (MS)DIA11.00mm(+0/-30)x2.5M CLI	CLI	5083
5	RM1308	A2017-T4_DIA7.00mm(+0/-50)x2.5M SMC	SMC	7200
6	RM1310	2017BD-T4_DIA8.00mm (+0/-50) x 2.5M SMC	SMC	5760
7	RM1401	A2011-T3 DIA7.00mm(+0/-40)x2.5M SMC	SMC	6172
8	RM1601	A5056BD_DIA10.0mm(+10/-40)x2.0MSSJ	SSJ	6647
9	RM1602	A5056BD_DIA13.0mm(+10/-40)x2.0M SSJ	SSJ	2880
10	RM1603	A5056BD_DIA16.0mm(+0/-60)x2.0M SSJ	SSJ	5760
11	RM1702	AL KS-21 DIA9.00mm(+0/-40)x2.5M SMC	SMC	4800
12	RM1806	C3602 DIA6.00(+0/-30)x2.5M SMC	SMC	2700
13	RM1809	C3602 DIA7.00mm(+0/-30)X 2.5M SMC	SMC	5083
14	RM1812	C3602 DIA9.00mm(+0/-30)x2.5M SMC	SMC	7200
15	RM1815	C3602 BD RO DIA 4.0mm(+0/-0.03) x2.5M IBI	IBI	5400
16	RM1901	C3604 DIA4.00mm(-10/-30)x2.5M SMC	SMC	1571
17	RM2809	S45C_DIA12.00mm(+0/-43)X2.0M SSJ	SSJ	5760
18	RM3001	S50C DIA18.1 x 12.1 x 2M IBI	IBI	4548

Tabel 4.15 Area D (lanjutan)

I	19	RM3302	SK-4_DIA4.0mm(0/-30) x 2.5M IBI	IBI	3600
	20	RM3702	SUJ2 DIA3.05(0/-25) X 2.5M SMC	SMC	6172

Tabel 4.16 Area E

	AREA E			
No.	Item	Description	Supplier	Jumlah kuantum (kg)
1	RM4605	SUS303CU DIA7.00mm(+0/-0.03)X2.5M OSD	OSD	48000
2	RM4702	SUS303G DIA5.00mm(+0-18)x2.5M OSD	OSD	5083
3	RM4808	SUS304 DIA8.05mm (+0/-36)X 2.5M OSD	OSD	2469
4	RM4811	SUS304 DIA4.0mm(+0/-30) X 2.5M SMI	IBI	4320
5	RM4812	SUS304 DIA7.5mm(+0/-36) X 2.5M SMI	IBI	7200
6	RM5003	SUS416F2 DIA5.0(0/-36) X 2.5M OSD	OSD	534
7	RM5004	SUS416F(DSR16F)DIA6.00mm (+0/-30) x 2.5M SMI	IBI	5760
8	RM5007	SUS416F2 DIA9.00(0/-30)X2.5M OSD	OSD	6172
9	RM5407	SUS440C DIA 9.0(+0/-20) X 2.5M SMI	IBI	4320
10	RM1010	1215(HS)DIA20.04mm(+20/-20)x2.5M OSD	IBI	3928
11	RM1122	1215(MS)DIA10.06mm(+0/-20)x2.5M CLI	IBI	2274
12	RM1131	1215 (MS)DIA9.08mm(+0/-30)x2.5M CLI	IBI	5400
13	RM2602	KS-1 SQ_DIA7.00mm(+0/-40)x2.5MDK	IBI	1920
14	RM2808	S45C DIA8.10mm(+0/-30)x2.0M CLI	IBI	5083
15	RM4322	SUM24L_DIA8.05 (+0/-20) X 2.5M OSD	IBI	4800

 $Keterangan: \quad CLI \quad = PT. \; Chih \; Lien \; Industrial$

OSD = PT. Oriental Shimomura Drawing

SSJ = PT. Sumi Shoji Responsibility

IBI = PT. International Brass Industries

SMC = PT. Shinso Metal Corporation

4.2 Pengolahan Data

Pasca diperoleh data yang diperlukan, dan dilakukan pengumpulan, berikutnya adalah olah data berdasarkan dari teori yang dipakai yaitu metode *Shared storage*.

4.2.1 Penentuan Kebutuhan Ruang

Metode *Shared Storage* ialah untuk Menyusun area penyimpanan berdasarkan dari keadaan lantai gudang, dengan pengurutan yang dekat hingga jauh dari pintu masuk dengan penempatan material dan peletakan berikutnya. Jangka waktu antara tanggal produksi dan pengiriman harus dipertimbangkan agar material di gudang dapat dijadwalkan dengan tepat, dan lamanya waktu antara tanggal produksi dan pengiriman dapat dihitung sebagai waktu yang diperlukan satu jenis produk di gudang produk jadi.

- 1. Dimensi case : P = 2000-2500 cm
 - L = 40 cm
- 2. item code = Maksimal tumpuk 3 case

Kapasitas maksimal gudang dengan *allowance* 25% (Sirait 2018) dari luas gudang 600 meter persegi x 75% = 450 meter persegi.

4.2.2. Penentuan Luas Area Penyimpanan

Area penyimpanan yang digunakan adalah Gudang material, dengan luas lantai gudang 600 M2. Dalam hal barang atau produk yang akan ditempatkan karena sudah dalam kemasan *case* (peti kayu). Dalam merencanakan tata letak barang atau produk agar memudahkan dalam proses penerimaan, penyimpanan dan pengeluaran barang atau produk, terlebih dulu menentukan luas area penempatan dengan membagi menjadi beberapa *space* per masing-masing kolom.

Jumlah ruang penyimpanan dan media penyimpanan yang dibutuhkan ditentukan oleh berbagai faktor. Setiap *item code* harus dievaluasi, dan temuan digunakan untuk memilih media penyimpanan yang memungkinkan. Itu juga tergantung pada sifat Material dalam hal berat, tahan lama atau tidak, dan faktor lain setelah menghitung jumlah material yang disimpan per lini Material dan

menerjemahkannya ke jumlah kotak material yang disimpan tergantung pada lini Material.

Untuk menentukan luas area penyimpanan rumus yang saya ambil berdasarkan dari jurnal – jurnal , prosiding, serta tugas akhir mengenai tata letak gudang menggunakan metode shared storage dengan perhitungan jarak rectilinier distance. Sebagai salah satu referensi dari Tugas akhir yang berjudul "Perancangan Tata Letak Gudang Di PT.Panatrade dengan mengunakan metode shared storage " oleh Indra Sukoco, Universitas Mercu Buana 2017.

Sistem tiga kunci diterapkan, yaitu penempatan tumpukan 3x3 di gudang, yang tidak disatukan tetapi diproduksi secara berkelompok/blok. Hal ini dilakukan untuk memudahkan dalam menata material ke dalam tempat penyimpanan sekaligus juga menghemat ruang, oleh karena itu tempat penyimpanan dapat dihitung dengan cara sebagai berikut:

Luas area Penyimpanan

- 1. Case 2.5 m = (3) panjang case material x (3) lebar case material = (3) 2,5m x (3) 0,40m = 9m2
- 2. Case 2 m = (3) panjang case material x (3) lebar case material = (3) 2m x (3) 0,40m = 7.2 m2

Banyaknya area penyimpanan yang dibutuhkan adalah:

1. Case 2.5 = jumlah material/banyaknya lapisan material = 47/3 = 16 area

Kapasitas ruang untuk 16 area = 9 m 2 x 16 area

= 144 m2

2. Case 2 = jumlah material/banyaknya lapisan material = 47/2 = 24 area

Kapasitas ruang untuk 24 area = 7.2 m2 x 24 area = 173 m2

Total kapasitas ruang untuk semua material:

16+24 = 40 area

144+173 = 317 m

Maka dari 94 material perhari membutuhkan ruang untuk 40 area dengan luas ukuran dimensinya 317 m2 memenuhi kebutuhan ruang 450 m2 .

4.2.3. Penentuan Allowance Ruang

Penggunaan ruang lorong atau penyediaan untuk pemindahan material yang digunakan adalah forklift sebagai moda transportasi. Akibatnya, *allowance* yang diperlukan ditentukan oleh kebutuhan jalur dalam kaitannya dengan dimensi forklift.

Gudang material memiliki sistem tumpukan yang diatur dan ditentukan, yaitu sistem tiga kunci dengan forklift sebagai moda transportasi. Akibatnya, setiap blok tumpukan dipisahkan oleh jarak lorong/lorong yang masih dapat dilalui manusia untuk transportasi dan juga berfungsi sebagai jalur troli pengiriman material.

Lebar *allowance* pada gudang dihitung berdasarkan panjang maksimal *case* material dan jarak aman untuk peletakan *case material* sebesar 0,3 m pada setiap sisinya (0,6 m totalnya).

Kebutuhan lebar *allowance* = Panjang *case material* + Jarak Aman *case material*

$$= 2.5 \text{ meter} + 0.6 \text{ meter}$$

= 3,1 meter

Dengan mengetahui *allowance* yang diperlukan pada saat mengangkut material maka dapat ditentukan lebar gang adalah 3.1 meter.

4.2.4. Peletakan Area Penyimpanan Awal

Luas keseluruhan yang diperoleh setelah mengetahui kebutuhan ruang adalah luas gudang 317 meter persegi. Kemudian dapat diatur sedemikian rupa sehingga tempat penyimpanan di gudang ditempatkan berdasarkan data kebutuhan ruang (lebar gudang dan luas gudang). Pada penyimpanan tata letak awal di gudang PT. Nihon Seiki Indonesia kondisi gudang masih sangat tidak beraturan penyimpanannya, dalam satu penyimpanan ditempatkan berbagai macam material dan tidak ada pembatas sehingga membutuhkan waktu untuk proses *delivery* ke area

produksi. *Layout* gudang awal dapat dilihat gambar 4.6, sedangkan gambar 4.11 menunjukan *layout* gudang usulan.

30 meter 20 meter 1 meter Gambar 4.11 Layout Gudang Usulan Area A dan B Keterangan: Area C Area D Area Display Area riject Area part finish good Area Admin

Volume pada Area A = P x L x T = $1140 \times 250 \times 40$ = 11.4 M^3 Volume pada Area B = P x L x T = $1140 \times 250 \times 40$ = 11.4 M^3

Volume pada Area $C = P \times L \times T$

$$= 800 \times 240 \times 40$$

$$= 7.68 \text{ M}^3$$
Volume pada Area D = P x L x T
$$= 800 \times 340 \times 40$$

$$= 10.88 \text{ M}^3$$
Total volume
$$= 11.4 \text{ M}^3 + 11.4 \text{M}^3 + 5.12 \text{ M}^3 + 8 \text{M}^3 + 7.8 \text{ M}^3$$

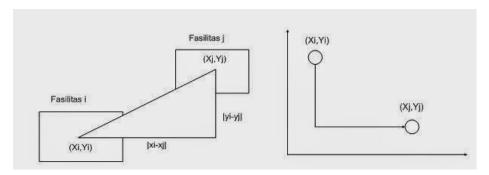
$$= 41.36 \text{ M}^3$$

4.2.5. Jarak Dari Pintu Masuk Ke Area Penyimpanan

Penempatan area berdasarkan jenis produk dengan frekuensi rata-rata tertinggi atau produk yang sering keluar di dekat pintu masuk-keluar. Jarak antara material handling dan ruang penyimpanan dimulai dari pintu (I/O). Teknik Euclidean Distance digunakan untuk menghitung jarak. Jarak antara dua titik yang dihitung sepanjang jalur garis lurus dikenal sebagai jarak Euclidean. Konveyor lurus yang mencakup dua stasiun kerja dapat mewakili jarak Euclidean. Rumus tersebut dapat direpresentasikan sebagai konveyor lurus yang memotong dua titik dari setiap lokasi penyimpanan ke pintu keluar dengan rumus:

$$d_{ij} = \sqrt{(x-a)^2 + (y-b)^2}$$

Keterangan:


dij = jarak slot ij titik I/O

x = titik awal perhitungan I/O pada sumbu x (horizontal)

a = jarak titik tengah tujuan terhadap sumbu x

y = titik awal perhitungan I/O pada sumbu y (vertical)

b = jarak titik tengah tujuan terhadap sumbu y

Gambar 4.12 Ilustrasi perhitungan metode Euclidean distance

Contoh:

$$d_1 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-20,75)^2 + (0-1,5)^2}$$

$$= \sqrt{(430,56) + (2,25)}$$

$$= \sqrt{432,81} = 20,80 \text{ meter}$$

Berikut ini adalah perhitungan area penyimpanan dengan menggunakan perhitungan metode *Euclidean distance*, perhitungan berdasarkan jarak yang diukur mengikuti jalur tegak lurus.

Area A

$$A1 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 2,5)^2 + (0 - 3,5)^2}$$

$$= \sqrt{(6,25) + (12,25)}$$

$$= \sqrt{18,5}$$

$$= 4,30 \text{ meter}$$

$$A2 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 2,9)^2 + (0 - 3,5)^2}$$

$$= \sqrt{(8.41) + (12.25)}$$

$$= \sqrt{20.66}$$

$$= 4,54 \text{ meter}$$

$$A3 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-3.3)^2 + (0-3.5)^2}$$

$$= \sqrt{(10.89) + (12.25)}$$

$$= \sqrt{23.14}$$

$$= 4,81 \text{ meter}$$

$$A4 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-3.7)^2 + (0-3.5)^2}$$

$$= \sqrt{(13.69) + (12.25)}$$

$$= \sqrt{25.94}$$

$$= 5,09 \text{ meter}$$

$$A5 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(16.81) + (12.25)}$$

$$= \sqrt{29.06}$$

$$= 5,39 \text{ meter}$$

$$A6 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-4.5)^2 + (0-3.5)^2}$$

$$= \sqrt{(20.25) + (12.25)}$$

$$= \sqrt{32.5}$$

$$= 5,70 \text{ meter}$$

$$A7 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-4.9)^2 + (0-3.5)^2}$$

 $=\sqrt{(24.01)+(12.25)}$

 $=\sqrt{36.26}$

= 6.02 meter

$$A8 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 5.4)^2 + (0 - 3.5)^2}$$

$$= \sqrt{(29.16) + (12.25)}$$

$$= \sqrt{41.41}$$

$$= 6,43 \text{ meter}$$

$$A9 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 5.8)^2 + (0 - 3.5)^2}$$

$$= \sqrt{33.64 + (12.25)}$$

$$= \sqrt{45.89}$$

$$= 6,77 \text{ meter}$$

$$A10 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(38.44) + (12.25)}$$

$$= \sqrt{50.69}$$

$$= 7,11 \text{ meter}$$

$$A11 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 6.6)^2 + (0 - 3.5)^2}$$

$$= \sqrt{(43.56) + (12.25)}$$

$$= \sqrt{55.81}$$

$$= 7,47 \text{ meter}$$

$$A12 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 7)^2 + (0 - 3.5)^2}$$

 $=\sqrt{(49)+(12.25)}$

 $=\sqrt{61.25}$

=7,82 meter

$$A13 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 7.4)^2 + (0 - 3.5)^2}$$

$$= \sqrt{(54.76) + (12.25)}$$

$$= \sqrt{67.01}$$

$$= 8.18 \text{ meter}$$

$$A14 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(60.84) + (12.25)}$$

$$= \sqrt{73.09}$$

$$= 8.54 \text{meter}$$

$$A15 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(67.24) + (12.25)}$$

$$= \sqrt{79.49}$$

$$= 8.91 \text{ meter}$$

$$A16 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 8.6)^2 + (0 - 3.5)^2}$$

$$= \sqrt{(73.96) + (12.25)}$$

$$= \sqrt{86.21}$$

$$= 9.28 \text{ meter}$$

$$A17 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 9)^2 + (0 - 3.5)^2}$$

$$= \sqrt{(81) + (12.25)}$$

 $=\sqrt{93.25}$

= 9,65 meter

$$A18 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-9.4)^2 + (0-3.5)^2}$$

$$= \sqrt{(88.36) + (12.25)}$$

$$= \sqrt{100.61}$$

$$= 10,03 \text{ meter}$$

$$A19 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-10.2)^2 + (0-3.5)^2}$$

$$= \sqrt{(104.04) + (12.25)}$$

$$= \sqrt{116.29}$$

$$= 10,78 \text{ meter}$$

$$A20 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-10.6)^2 + (0-3.5)^2}$$

$$= \sqrt{(112.36) + (12.25)}$$

$$= \sqrt{124.61}$$

$$= 11,16 \text{ meter}$$

$$A21 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-11)^2 + (0-3.5)^2}$$

$$= \sqrt{(121) + (12.25)}$$

$$= \sqrt{133.25}$$

$$= 11,54 \text{ meter}$$

$$A22 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-11.4)^2 + (0-3.5)^2}$$

 $=\sqrt{(129.96)+(12.25)}$

 $=\sqrt{142.21}$

= 11,92 meter

$$A23 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 11.8)^2 + (0 - 3.5)^2}$$

$$= \sqrt{(139.24) + (12.25)}$$

$$= \sqrt{151.49}$$

$$= 12,30 \text{ meter}$$

❖ Area B

$$B1 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 3.5)^2 + (0 - 4.5)^2}$$

$$= \sqrt{(12.25) + (20.25)}$$

$$= \sqrt{32.5}$$

$$= 5,70 \text{ meter}$$

B2 =
$$\sqrt{(x-a)^2 + (y-b)^2}$$

= $\sqrt{(0-3.9)^2 + (0-4.5)^2}$
= $\sqrt{(15.21) + (20.25)}$
= $\sqrt{35.46}$
= 5,95 meter

$$B3 = \sqrt{(x - a)^2 + (y - b)^2}$$
$$= \sqrt{(0 - 4.3)^2 + (0 - 4.5)^2}$$

$$=\sqrt{(18.49)+(20.25)}$$

$$=\sqrt{38.74}$$

$$B4 = \sqrt{(x - a)^2 + (y - b)^2}$$
$$= \sqrt{(0 - 4.7)^2 + (0 - 4.5)^2}$$
$$= \sqrt{(22.09) + (20.25)}$$

$$=\sqrt{42.34}$$

$$= 6,50 \text{ meter}$$

$$B5 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-5.1)^2 + (0-4.5)^2}$$

$$= \sqrt{26.01} + (20.25)$$

$$= \sqrt{46.26}$$

$$= 6,80 \text{ meter}$$

$$B6 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-5.5)^2 + (0-4.5)^2}$$

$$= \sqrt{(30.25) + (20.25)}$$

$$= \sqrt{50.5}$$

$$= 7,10 \text{ meter}$$

$$B7 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(34.81) + ((20.25)^2}$$

$$= \sqrt{55.06}$$

$$= 7,42 \text{ meter}$$

$$B8 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-6.4)^2 + (0-4.5)^2}$$

$$= \sqrt{40.96} + (20.25)$$

$$=\sqrt{61.21}$$

$$= 7.82 \text{ meter}$$

$$B9 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-6.8)^2 + (0-4.5)^2}$$

$$= \sqrt{(46.24) + (20.25)}$$

$$=\sqrt{66.49}$$

$$= 8,15 \text{ meter}$$

$$B10 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-7.2)^2 + (0-4.5)^2}$$

$$= \sqrt{(51.84) + (20.25)}$$

$$= \sqrt{72.09}$$

$$= 8,49 \text{ meter}$$

$$B11 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-7.6)^2 + (0-4.5)^2}$$

$$= \sqrt{(57.76) + (20.25)}$$

$$= \sqrt{78.01}$$

$$= 8,83 \text{ meter}$$

$$B12 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(64) + (20.25)}$$

$$= \sqrt{84.25}$$

$$= 9,17 \text{ meter}$$

$$B13 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-8.4)^2 + (0-4.5)^2}$$

$$= \sqrt{(70.56) + (20.25)}$$

$$= \sqrt{90.81}$$

$$= 9,52 \text{ meter}$$

$$B14 = \sqrt{(x-a)^2 + (y-b)^2}$$

 $=\sqrt{(0-8.8)^2+(0-4.5)^2}$

 $=\sqrt{(77.44)+(20.25)}$

$$=\sqrt{97.69}$$

$$= 9,88 \text{ meter}$$

$$B15 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-9.2)^2 + (0-4.5)^2}$$

$$= \sqrt{(84.64) + (20.25)}$$

$$= \sqrt{104.89}$$

$$= 10,24 \text{ meter}$$

$$B16 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(92.16) + (20.25)}$$

$$= \sqrt{112.41}$$

$$= 10,60 \text{ meter}$$

$$B17 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(100) + (20.25)}$$

$$= \sqrt{120.25}$$

$$= 10,96 \text{ meter}$$

$$B18 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-10.4)^2 + (0-4.5)^2}$$

$$= \sqrt{(108.16) + (20.25)}$$

$$= \sqrt{128.41}$$

$$= 11,33 \text{ meter}$$

$$B19 = \sqrt{(x-a)^2 + (y-b)^2}$$

 $=\sqrt{(0-10.8)^2+(0-4.5)^2}$

 $=\sqrt{(116.64)+(20.25)}$

$$=\sqrt{136.89}$$

$$= 11,7 \text{meter}$$

$$B20 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-11.2)^2 + (0-4.5)^2}$$

$$= \sqrt{(125.44) + (20.25)}$$

$$= \sqrt{145.69}$$

$$= 12,07 \text{ meter}$$

$$B21 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-11.6)^2 + (0-4.5)^2}$$

$$= \sqrt{(134.56) + (20.25)}$$

$$= \sqrt{154.81}$$

$$= 12,44 \text{ meter}$$

$$B22 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-12)^2 + (0-4.5)^2}$$

$$= \sqrt{(144) + (20.25)}$$

$$= \sqrt{164.25}$$

$$= 12,81 \text{ meter}$$

$$B23 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-12.4)^2 + (0-4.5)^2}$$

$$= \sqrt{(153.76) + (20.25)}$$

$$= \sqrt{174.01}$$

Area C
$$C1 = \sqrt{(x - a)^2 + (y - b)^2}$$

= 13,19 meter

$$= \sqrt{(0-4)^2 + (0-4.5)^2}$$

$$= \sqrt{(16) + (20.25)}$$

$$= \sqrt{36.25}$$

$$= 6,02 \text{ meter}$$

$$C2 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-4.4)^2 + (0-4.5)^2}$$

$$= \sqrt{(19.36) + (20.25)}$$

$$= \sqrt{39.61}$$

$$= 6,29 \text{ meter}$$

$$C3 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-4.8)^2 + (0-4.5)^2}$$

$$= \sqrt{(18.49) + (20.25)}$$

$$= \sqrt{43.29}$$

$$= 6,57 \text{ meter}$$

$$C4 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-5.2)^2 + (0-4.5)^2}$$

$$= \sqrt{(27.04) + (20.25)}$$

$$= \sqrt{47.29}$$

$$= 6,87 \text{ meter}$$

C5 =
$$\sqrt{(x-a)^2 + (y-b)^2}$$

= $\sqrt{(0-5.6)^2 + (0-4.5)^2}$
= $\sqrt{(31.36) + (20.25)}$
= $\sqrt{51.61}$
= 7,18 meter
C6 = $\sqrt{(x-a)^2 + (y-b)^2}$

$$= \sqrt{(0-6)^2 + (0-4.5)^2}$$

$$= \sqrt{(36) + (20.25)}$$

$$= \sqrt{56.25}$$

$$= 7,50 \text{ meter}$$

$$C7 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(40.96) + ((20.25)}$$

$$= \sqrt{61.21}$$

$$= 7,82 \text{ meter}$$

$$C8 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(46.24) + (20.25)}$$

$$= \sqrt{66.49}$$

$$= 8,15 \text{ meter}$$

$$C9 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(51.84) + (20.25)}$$

$$= \sqrt{72.09}$$

$$= 8,49 \text{ meter}$$

$$C10 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(57.76) + (20.25)}$$

$$= \sqrt{78.01}$$

$$= 8,83 \text{ meter}$$

$$C11 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-8)^2 + (0-4.5)^2}$$

$$= \sqrt{(64) + (20.25)}$$

$$= \sqrt{84.25}$$

$$= 9,17 \text{ meter}$$

$$C12 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-8.4)^2 + (0-4.5)^2}$$

$$= \sqrt{(70.56) + (20.25)}$$

$$= \sqrt{90.81}$$

$$= 9,52 \text{ meter}$$

$$C13 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(77.44) + (20.25)}$$

$$= \sqrt{97.69}$$

$$= 9,88 \text{ meter}$$

$$C14 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(84.64) + (20.25)}$$

$$= \sqrt{104.89}$$

$$= 10,24 \text{ meter}$$

$$C15 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-9.6)^2 + (0-4.5)^2}$$

$$= \sqrt{(92.16) + (20.25)}$$

$$= \sqrt{112.41}$$

$$= 10,60 \text{ meter}$$

 $C16 = \sqrt{(x - a)^2 + (y - b)^2}$

$$= \sqrt{(0-10)^2 + (0-4.5)^2}$$

$$= \sqrt{(100) + (20.25)}$$

$$= \sqrt{120.25}$$

$$= 10,96 \text{ meter}$$

$$C17 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-10.4)^2 + (0-4.5)^2}$$

$$= \sqrt{(108.16) + (20.25)}$$

$$= \sqrt{128.41}$$

$$= 11,33 \text{ meter}$$

$$C18 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(116.64) + (20.25)}$$

$$= \sqrt{136.89}$$

$$= 11,70 \text{ meter}$$

$$C19 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-11.2)^2 + (0-4.5)^2}$$

$$= \sqrt{(125.44) + (20.25)}$$

$$= \sqrt{145.69}$$

$$= 12,07 \text{ meter}$$

$$C20 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-11.6)^2 + (0-4.5)^2}$$

$$= \sqrt{(134.56) + (20.25)}$$

 $=\sqrt{154.81}$

= 12,44 meter

Area D
$$D1 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 5)^2 + (0 - 6.5)^2}$$

$$= \sqrt{(25) + (42.25)}$$

$$= \sqrt{67.25}$$

$$= 8,20 \text{ meter}$$

$$D2 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 5.4)^2 + (0 - 6.5)^2}$$

$$= \sqrt{(29.16) + (42.25)}$$

$$= \sqrt{71.41}$$

$$= 8,45 \text{ meter}$$

$$D3 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(33.64) + (42.25)}$$

$$= \sqrt{75.89}$$

$$= 8,71 \text{ meter}$$

$$D4 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 6.2)^2 + (0 - 6.5)^2}$$

$$= \sqrt{(38.44) + (42.25)}$$

$$= \sqrt{80.69}$$

$$= 8,98 \text{ meter}$$

$$D5 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 6.6)^2 + (0 - 6.5)^2}$$

$$= \sqrt{(43.56) + (42.25)}$$

 $=\sqrt{85.81}$

$$= 9,26 \text{ meter}$$

$$D6 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-7)^2 + (0-6.5)^2}$$

$$= \sqrt{(49) + (42.25)}$$

$$= \sqrt{91.25}$$

$$= 9,55 \text{ meter}$$

$$D7 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(57.76) + (42.25)}$$

$$= \sqrt{97.01}$$

$$= 9,84 \text{ meter}$$

$$D8 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(60.84) + (42.25)}$$

$$= \sqrt{103.09}$$

$$= 10,15 \text{ meter}$$

$$D9 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(67.24) + (42.25)}$$

$$= \sqrt{109.49}$$

$$= 10,46 \text{ meter}$$

$$D10 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-8.6)^2 + (0-6.5)^2}$$

$$= \sqrt{(0-8.6)^2 + (0-6.5)^2}$$

 $=\sqrt{(73.96)+(42.25)}$

=√116.21

$$D11 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 9)^2 + (0 - 6.5)^2}$$

$$= \sqrt{(81) + (42.25)}$$

$$= \sqrt{123.25}$$

$$= 11,10 \text{ meter}$$

$$D12 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 9.4)^2 + (0 - 6.5)^2}$$

$$= \sqrt{(88.36) + (42.25)}$$

$$= \sqrt{130.61}$$

$$= 11,42 \text{ meter}$$

$$D13 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(96.04) + (42.25)}$$

$$= \sqrt{138.29}$$

$$= 11,75 \text{ meter}$$

$$D14 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 10.2)^2 + (0 - 6.5)^2}$$

$$= \sqrt{104.04) + (42.25)}$$

$$= \sqrt{146.29}$$

$$= 12,09 \text{ meter}$$

$$D15 = \sqrt{(x - a)^2 + (y - b)^2}$$

 $=\sqrt{(0-10.6)^2+(0-6.5)^2}$

 $=\sqrt{(112.36)+(42.25)}$

 $=\sqrt{154.61}$

$$= 12,43 \text{ meter}$$

$$D16 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-11)^2 + (0-6.5)^2}$$

$$= \sqrt{(121) + (42.25)}$$

$$= \sqrt{163.25}$$

$$= 12,77 \text{ meter}$$

$$D17 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(129.96) + (42.25)}$$

$$= \sqrt{172.21}$$

$$= 13,12 \text{ meter}$$

$$D18 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-11.8)^2 + (0-6.5)^2}$$

$$= \sqrt{(139.24) + (42.25)}$$

$$= \sqrt{181.49}$$

$$= 13,47 \text{ meter}$$

$$D19 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-12.2)^2 + (0-6.5)^2}$$

$$= \sqrt{148.84} + (42.25)$$

$$= \sqrt{191.09}$$

$$= 13,82 \text{ meter}$$

$$D20 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-12.6)^2 + (0-6.5)^2}$$

 $=\sqrt{(158.76)+(42.25)}$

 $=\sqrt{201.01}$

$$D21 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 13)^2 + (0 - 6.5)^2}$$

$$= \sqrt{(169) + (42.25)}$$

$$= \sqrt{211.25}$$

$$= 14,53 \text{ meter}$$

$$D22 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 13.4)^2 + (0 - 6.5)^2}$$

$$= \sqrt{179.56} + (42.25)$$

$$= \sqrt{221.81}$$

$$= 14,89 \text{ meter}$$

$$D23 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 13.8)^2 + (0 - 6.5)^2}$$

$$= \sqrt{(190.44) + (42.25)}$$

$$= \sqrt{232.69}$$

$$= 15,25 \text{ meter}$$

$$D24 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(201.64) + (42.25)}$$

$$= \sqrt{243.89}$$

$$= 15,61 \text{ meter}$$

$$D25 = \sqrt{(x - a)^2 + (y - b)^2}$$

$$= \sqrt{(0 - 14.6)^2 + (0 - 6.5)^2}$$

$$= \sqrt{(0 - 14.6)^2 + (0 - 6.5)^2}$$

 $=\sqrt{(213.16)+(42.25)}$

 $=\sqrt{255.41}$

$$D26 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-15)^2 + (0-6.5)^2}$$

$$= \sqrt{(225) + (42.25)}$$

$$= \sqrt{267.25}$$

$$= 16,34 \text{ meter}$$

$$D27 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-15.4)^2 + (0-6.5)}$$

$$= \sqrt{(237.16) + (42.25)}$$

$$= \sqrt{279.41}$$

$$= 16,71 \text{ meter}$$

$$D28 = \sqrt{(x-a)^2 + (y-b)^2}$$

$$= \sqrt{(0-15.8)^2 + (0-6.5)^2}$$

$$= \sqrt{249.64) + (42.25)}$$

$$= \sqrt{291.89}$$

$$= 17,08 \text{ meter}$$

Demikian seterusnya dengan material ini, dan rumus ini dapat menentukan jarak dari pintu masuk ke area penyimpanan, serta jarak dari penyimpanan material ke pintu keluar material untuk didistribusikan ke area Material.

Untuk membantu pemasangan, metode penyimpanan *shared storage* melibatkan pengisian kembali area penyimpanan sesuai urutan area kosong yang paling dekat dengan pintu. Pengkodean juga digunakan untuk menentukan area dari yang terdekat hingga terjauh.

Tata letak gudang yang disarankan telah selesai setelah menetapkan area pengukuran jarak dan pengkodean berdasarkan jarak ke pintu.Perhitungan jarak tempuh antara pintu ke area penyimpanan dapat dilihat pada tabel 4.17 – 4.20.

Tabel 4.17 Kode dan jarak antara pintu dan ruang penyimpanan A

NO	Area	Jarak ke area penyimpanan
1	A1	4,30 Meter
2	A2	4,54 Meter
3	A3	4,81 Meter
4	A4	5,09 Meter
5	A5	5,39Meter
6	A6	5,70 Meter
7	A7	6,02Meter
8	A8	6,43 Meter
9	A9 1	6,77 Meter
10	A10	7,11 Meter
11	A11	7,47 Meter
12	A12	7,82 Meter
13	A 13	8,1 <mark>8 M</mark> eter
14	A 14	8,54 Meter
15	A 15	8,91 Meter
16	A 16	9,28 Meter
17	A 17	9,65 Meter
18	A 18	10,03 Meter
19	A 19	10,78 Meter
20	A 20	11,16 Meter
21	A 21	11,54 Meter
22	A 22	11,92 Meter
23	A23	12,30 Meter

Tabel 4.18 Kode dan jarak antara pintu dan ruang penyimpanan B

Area	Jarak ke area penyimpanan
B1	5,70 Meter
B2	5,95 Meter
В3	6,22 Meter
B4	6,50 Meter
B5	6,80 Meter
В6	7,10 Meter
В7	7,42 Meter
B8	7,82 Meter
B9	8,15 Meter
B10	8,49 Meter
B11	8,83 Meter
B12	9 ,17 Meter
B13	9,5 <mark>2 M</mark> eter
B14	9, <mark>88 M</mark> eter
B15	10,24 Meter
B16	10,60 Meter
الدون في الماسية الماس	10,96 Meter
B18	11,33 Meter
B19	11,7 Meter
B20	12,07 Meter
B21	12,44 Meter
B22	12,81 Meter
B23	13,19 Meter
	B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16 B17 B18 B19 B20 B21 B22

Tabel 4.19 Kode dan jarak antara pintu dan ruang penyimpanan C

NO	Area	Jarak ke area penyimpanan
1	C1	6,02 Meter

Tabel 4.19 Kode dan jarak antara pintu dan ruang penyimpanan C (lanjutan)

2	C2	6,29 Meter
3	C3	6,57 Meter
4	C4	6,87 Meter
5	C5	7,18 Meter
6	C6	7,5 Meter
7	C7	7,8 Meter
8	C8	8,15 Meter
9	C9	8,49 Meter
10	C10	8,83 Meter
11	C11	9,17 Meter
12	C12 LA III	9,52 Meter
13	C13	9,88 Meter
14	C14	10,24 Meter
15	C15	10,6 <mark>0 M</mark> eter
16	C16	10,9 <mark>6 M</mark> eter
17	C17	11 <mark>,33</mark> Meter
18	C18	11,70 Meter
19	C19	12,07 Meter
20	يان أجونج الم <mark>ح</mark> كسالماسية	12,44 M eter

Tabel 4.20 Kode dan jarak antara pintu dan ruang penyimpanan D

NO	Area	Jarak ke area penyimpanan
1	D1	8,20 Meter
2	D2	8,45 Meter
3	D3	8,71 Meter
4	D4	8,98 Meter
5	D5	9,26 Meter
6	D6	9,55 Meter
7	D7	9,84 Meter

Tabel 4.20 Kode dan jarak antara pintu dan ruang penyimpanan D (lanjutan)

8	D8	10,15 Meter
9	D9	10,46 Meter
10	D10	10,78 Meter
11	D11	11,10 Meter
12	D12	11,42 Meter
13	D13	11,75 Meter
14	D14	12,09 Meter
15	D15	12,43 Meter
16	D16	12,77 Meter
17	D17	13,12 Meter
18	D18	13,47 Meter
19	D19	13,82 Meter
20	D20	14,17 Meter
21	D21	14,53 Meter
22	D22	14, <mark>89 M</mark> eter
23	D23	15 <mark>,25</mark> Meter
24	D24	15,61 Meter
25	D25	15,98 Meter
26	المالية المالية المالية ا	16,34 Meter
27	D27	16,71 Meter
28	D28	17,08 Meter

Karena sistem penempatan material di gudang berkaitan dengan proses masuknya material ke area penyimpanan kemudian dari penyimpanan ke area keluar untuk pengiriman, maka dapat dilihat pada tata letak yang diusulkan bahwa penerapan sistem penempatan material yang diusulkan menggunakan metode penyimpanan *shared storage* memiliki korelasi dengan desain tata letak fungsi pintu yang diusulkan sebelumnya. Saat kegiatan bongkar muat sedang berlangsung, lorong memisahkan setiap tumpukan sebagai jarak antar case material. Setiap

Material harus ditumpuk sesuai jenisnya atau sehomogen mungkin, artinya tidak boleh digabungkan dengan Material lain yang rusak.

Sistem penempatan Material yang baik telah diterapkan pada *layout* usulan dengan menerapkan prinsip FIFO (*First In First Out*) untuk meningkatkan efektifitas jarak perpindahan material dengan menempatkan material tercepat untuk dikirim di tempat penyimpanan yang paling dekat dengan pintu masuk dan keluarnya material. material yang bergerak cepat disimpan di pintu keluar pengiriman khusus. Untuk membantu penyimpanan, metode penyimpanan *shared storage* melibatkan pengisian kembali area penyimpanan sesuai urutan area kosong yang paling dekat dengan pintu. Setelah melakukan peletakan tersebut, kemudian dengan mengukur jarak dan kode yang berdasarkan pada jarak yang paling dekat dengan usulan telah selesai

4.2.6. Jarak Tempuh Antara Area Penyimpanan Ke Pintu Pengiriman Menggunakan Tata Letak Gudang Usulan

Jumlah pintu yang tersedia di gudang digunakan untuk menghitung jarak tempuh penyimpanan ke pintu pengiriman. Metode ini didasarkan pada pendekatan penyimpanan *Shared storage*, dimana Material yang telah disimpan dan siap untuk dikembalikan ditempatkan di dekat pintu pengiriman, sedangkan Material yang telah disimpan untuk jangka waktu yang lebih lama ditempatkan di dekat pintu masuk Material. Prosedur pengiriman ini dirancang untuk memudahkan pekerja sehingga operasi dapat lebih efisien dan material yang tiba dapat diangkut ke area produksi dengan tepat waktu.

Diketahui seluruh jarak antara pintu dan tempat penyimpanan Material, serta jarak dari tempat penyimpanan ke pintu pengiriman, sudah dapat ditentukan, sehingga setiap jarak untuk kegiatan bongkar muat diketahui lebih efektif. , dan tidak akan ada antrian selama penyimpanan atau pengiriman ke area produksi secara bersamaan.

Perhitungannya dengan *material handling* dilaksanakan dengan periode dengan anggapan mempunyai permintaan rata-rata yang dikirimkan dengan perolehan sebelumnya. Tabel 4.21 menunjukan Jumlah data permintaan material.

Tabel 4.21 Data Permintaan

No	Supplier	Receiving/item	Jumlah (case)
		code	
1.	OSD	26	78
2.	CLI	29	87
3.	SSJ	9	27
4.	SMC	19	57
5.	IBI	7	21
	Total	90	270

Penerapan penyusunannya, berdasarkan dengan metode *Shared storage*, yang telah ditandai dengan kode pada area gudang yang berguna untuk mempermudah penempatan material selanjutnya.

Prosedur Pengisian ke area Penyimpanan:

- 1. Material yang pertama kali datang yang dahulu dikirimkan dengan area penyimpanan yang kosong didekat pintu dan tingkatan dari dekat ke paling jauh.
- 2. Diperuntukan untuk kemudahan identifikasi material, yang tidak diperbolehkan dengan dua jenis material serta pada 1 area penyimpanan.
- 3. Standar penumpukan produk maksimal 3 tingkat, saat menempatkan material diletakan dengan slot yang kosong pada area yang paling dekat dengan berikutnya dilakukan pengisian dengan yang telah ditentukan.

Pada tabel 4.22-4.25 berisi tentang perhitungan Jarak Tempuh Material Handling Tata Letak Usulan A-D adalah sebagai berikut:

Tabel 4.22 Jarak Tempuh Material Handling Tata Letak Usulan A

No	Area Penyimpanan	Produk	Jarak Tempuh Saat	Jarak Tempuh
NO	Area renyimpanan	Froduk	Penerimaan (m)	Total (m)
1.	A1	RM1002	4,30 Meter	8,6
2.	A2	RM1005	4,54 Meter	9,08
3.	A3	RM1007	4,81 Meter	9,62
4.	A4	RM1014	5,09 Meter	10,18
5.	A5	RM1015	5,39Meter	10,78
6.	A6	RM1016	5,70 Meter	11,40
7.	A7	RM1101	6,02Meter	12,04
8.	A8	RM1103	6,43 Meter	12,86
9.	A9	RM1105	6,77 Meter	13,54
10.	A10	RM1106	7,11 Meter	14,22
11.	A11	RM1107	7,47 Meter	14,94
12.	A12	RM1110	7,82 Meter	15,64
13.	A13	RM1112	8,18 Meter	16v36
14.	A14	RM1116	8,54 Meter	17,08
15.	A15	RM1117	8,91 Meter	17,82
16.	A16	RM1118	9,28 Meter	18,56
17.	A17	RM1120	9,65 Meter	19,30
18.	A18	RM1121	10,03 Meter	20,06
19.	A19	RM1124	10,78 Meter	21,56
20.	A20	RM1126	11,16 Meter	22,32
21.	A21	RM1129	11.54 Meter	23,08
22.	A22	RM1130	11,92 Meter	23,84
23.	A23	RM1133	12.30 Meter	24,60
	Jumlah		183,74	367,48

Tabel 4.23 Jarak Tempuh Material Handling Tata Letak Usulan B

No	Auga Dangimmanan	Duoduk	Jarak Tempuh Saat	Jarak Tempuh
NO	Area Penyimpanan	Produk	Penerimaan (m)	Total (m)
1.	B1	RM1012	5,70 Meter	11,40
2.	B2	RM1132	5,95 Meter	11,90
3.	В3	RM1135	6,22 Meter	12,44
4.	B4	RM1136	6,50 Meter	13,00
5.	B5	RM1137	6,80 Meter	13,60
6.	В6	RM1138	7,10 Meter	14,20
7.	В7	RM1141	7,42 Meter	14,84
8.	B8	RM1306	7,82 Meter	15,64
9.	B9	RM1805	8,15 Meter	16,30
10.	B10	RM2003	8,49 Meter	16,98
11.	B11	RM2101	8,83 Meter	17,66
12.	B12	RM3901	9,17 Meter	18,34
13.	B13	RM4403	9,52 Meter	19,04
14.	B14	RM4505	9,88 Meter	19,76
15.	B15	RM4507	10,24 Meter	20,48
16.	B16	RM4508	10,60 Meter	21,20
17.	В17	RM4601	10,96 Meter	21,92
18.	B18	RM4602	11,33 Meter	22,66
19.	B19	RM4603	11,7 Meter	23,40
20.	B20	RM4605	12,07 Meter	24,14
21.	B21	RM4613	12,44 Meter	24,88
22.	B22	RM4614	12,81 Meter	25,62
23.	B23	RM4702	13,19 Meter	26,38
	Jumlah	1	212,89	425,78

Tabel 4.24 Jarak Tempuh Material Handling Tata Letak Usulan C

NI.	A D	Dog July	Jarak Tempuh Saat	Jarak Tempuh
No	Area Penyimpanan	Produk	Penerimaan (m)	Total (m)
1.	C1	RM1011	6,02 Meter	12,04
2.	C2	RM1108	6,29 Meter	12,58
3.	C3	RM1128	6,57 Meter	13,14
4.	C4	RM1132	6,87 Meter	13,74
5.	C5	RM1308	7,18 Meter	14,36
6.	C6	RM1310	7,5 Meter	15
7.	C7	RM1401	7,8 Meter	15,60
8.	C8	RM1601	8,15 Meter	16,30
9.	C9	RM1602	8,49 Meter	16,98
10.	C10	RM1603	8,83 Meter	17,66
11.	C11	RM1702	9,17 Meter	18,34
12.	C12	RM1806	9,52 Meter	19,04
13.	C13	RM1809	9,88 Meter	19,76
14.	C14	RM1812	10,24 Meter	20,48
15.	C15	RM1815	10,60 Meter	21,20
16.	C16	RM1901	10,96 Meter	21,92
17.	C17	RM2809	11,33 Meter	22,66
18.	C18	RM3001	11,70 Meter	23,40
19.	C19	RM3302	12,07 Meter	24,14
20.	C20	RM3702	12,44 Meter	24,88
	Jumlah		181,61	363,22

Tabel 4.25 Jarak Tempuh Material Handling Tata Letak Usulan D

No	Auga Dangimnanan	Duodult	Jarak Tempuh Saat	Jarak Tempuh
No	Area Penyimpanan	Produk	Penerimaan (m)	Total (m)
1.	D1	RM3601	8,20 Meter	16,40
2.	D2	RM3602	8,45 Meter	16,90

Tabel 4.25 Jarak Tempuh Material Handling Tata Letak Usulan D (lanjutan)

3.	D3	RM3901	8,71Meter	17,42
4.	D4	RM4202	8,8 Meter	17,96
5.	D5	RM4312	9,26 Meter	18,52
6.	D6	RM4403	9,55 Meter	19,10
7.	D7	RM4505	9,84 Meter	19,68
8.	D8	RM4507	10,15 Meter	20,30
9.	D9	RM4508	10,46 Meter	20,92
10.	D10	RM4511	10,78 Meter	21,56
11.	D11	RM4601	11,10 Meter	22,20
12.	D12	RM4602	11,42 Meter	22,84
13.	D13	RM4603	11,75 Meter	23,50
14.	D14	RM4605	12,09 Meter	24,18
15.	D15	RM4702	12 ,43 Meter	24,86
16.	D16	RM4808	12,77 Meter	25,54
17.	D17	RM4811	13,12 Meter	26,24
18.	D18	RM4812	13,4 <mark>7 M</mark> eter	26,96
19.	D19	RM5003	13,82 Meter	27,64
20.	D20	RM5004	14,17 Meter	28,34
21.	مالمية D21	RM5007	14,53 Meter	29,06
22.	D22	RM5407	14,89 Meter	29,78
23.	D23	RM1010	15,25 Meter	30,50
24.	D24	RM1122	15,61 Meter	31,22
25.	D25	RM1131	15,98 Meter	31,96
26.	D26	RM2602	16,34 Meter	32,68
27.	D27	RM2808	16,71 Meter	33,42
28.	D28	RM4322	17,08 Meter	34,16
	Jumlah		346,91	693,82

Berdasarkan dari total perhitungan diatas didapatkan hasil Jarak Tempuh Material Handling Tata Letak Usulan adalah sebagai berikut :

Total material handling = Area A+ Area B + Area C + Area D

= 183,74+212,89+181,61+346,91

= 925,15 Meter

Total jarak tempuh = Area A + Area B + Area C + Area D

= 367,48+425,78+363,22+693,82

= 1850,30 Meter

4.2.7 Jarak Tempuh Material Handling Menggunakan Tata Letak Gudang Awal

Sedangkan data jarak tempuh *Material Handling* Tata Letak awal dapat dilihat pada Tabel 4.26 – 4.30 dibawah ini :

Tabel 4.26 Jarak Tempuh Material Handling Tata Letak Awal A

No	A <mark>r</mark> ea Peny <mark>imp</mark> anan	Produk	Jarak Te <mark>mpu</mark> h Saat	Jarak Tempuh
			Penerimaan (m)	Total (m)
1.	A1	RM1002	5,35	10,70
2.	A2	RM1005	12,95	25,90
3.	A3	RM1007	9,75	19,50
4.	A4	RM1014	7,75	15,50
5.	A5	RM1015	13,75	27,50
6.	A6	RM1016	5,75	11,50
7.	A7	RM1101	10,15	20,30
8.	A8	RM1103	13,35	26,70
9.	A9	RM1105	8,15	16,30
10.	A10	RM1106	10,55	21,10
11.	A11	RM1107	6,15	12,30
12.	A12	RM1110	8,55	17,10
13.	A13	RM1112	10,95	21,90

Tabel 4.26 Jarak Tempuh Material Handling Tata Letak Awal A (lanjutan)

14.	A14	RM1116	12,55	25,10
15.	A15	RM1117	6,55	13,10
16.	A16	RM1118	11,35	22,70
17.	A17	RM1120	8,95	17,90
18.	A18	RM1121	12,15	24,30
19.	A19	RM1124	9,35	18,70
20.	A20	RM1126	6,95	13,90
21.	A21	RM1129	11,75	23,50
22.	A22	RM1130	14,15	28,30
23.	A23	RM1133	7,35	14,70
	Jumlah	PLHM !	224,25	448,50

Tabel 4.27 Jarak Tempuh Material Handling Tata Letak Awal B

No	A <mark>r</mark> ea Peny <mark>imp</mark> anan	Produk	Jarak Tempuh Saat Penerimaan (m)	Jarak Tempuh Total (m)
1.	B1	RM1012	7,25	14,50
2.	B2	RM1132	12,10	24,20
3.	В3	RM1135	10,50	21,00
4.	B4	RM1136	10,90	21,80
5.	B5	RM1137	12,90	25,80
6.	В6	RM1138	8,90	17,80
7.	В7	RM1141	14,50	29,00
8.	B8	RM1306	12,50	25,00
9.	В9	RM1805	9,30	18,60
10.	B10	RM2003	11,30	22,60
11.	B11	RM2101	7,65	15,30
12.	B12	RM3901	11,70	23,40
13.	B13	RM4403	15,30	30,60
14.	B14	RM4505	9,70	19,40

Tabel 4.27 Jarak Tempuh Material Handling Tata Letak Awal B (lanjutan)

Jumlah			268,90	537,80
23.	B23	RM4702	13,70	27,40
22.	B22	RM4614	14,90	29,80
21.	B21	RM4613	10,10	20,20
20.	B20	RM4605	16,10	32,20
19.	B19	RM4603	8,45	16,90
18.	B18	RM4602	15,70	31,40
17.	B17	RM4601	14,10	28,20
16.	B16	RM4508	8,05	16,10
15.	B15	RM4507	13,30	26,60

Tabel 4.28 Jarak Tempuh Material Handling Tata Letak Awal D

No	Area Penyimpanan	Produk	Jarak Tempuh Saat Penerimaan (m)	Jarak Tempuh Total (m)
1.	D1	RM3601	14,85	29,70
2.	D2	RM3602	12,45	24. 90
3.	D3	RM3901	13,65	27,30
4.	D4	RM4202	11,65	23,30
5.	D5	RM4312	12,85	25,70
6.	D6	RM4403	14,05	28,10
7.	D7	RM4505	11,25	22,50
8.	D8	RM4507	15,65	31,30
9.	D9	RM4508	13,25	26,50
10.	D10	RM4511	16,05	32,10
11.	D11	RM4601	14,45	28,90
12.	D12	RM4602	15,25	30,50
13.	D13	RM4603	12,05	24,10
	Jumlah	177,45	354,90	

Tabel 4.29 Jarak Tempuh Material Handling Tata Letak Awal C

No	Awaa Damainananan	Dec dede	Jarak Tempuh Saat	Jarak Tempuh
NO	Area Penyimpanan	Produk	Penerimaan (m)	Total (m)
1.	C1	RM1011	15,25	30,50
2.	C2	RM1108	14,05	28,10
3.	C3	RM1128	14,85	29,70
4.	C4	RM1132	17,65	35,30
5.	C5	RM1308	12,05	24,10
6.	C6	RM1310	18,45	36,90
7.	C7	RM1401	14,45	28,90
8.	C8	RM1601	12,45	24,90
9.	C9	RM1602	17,25	34,50
10.	C10	RM1603	18,05	36,10
11.	C11	RM1702	16,05	32,10
12.	C12	RM1806	19,25	38,50
13.	C13	RM1809	13,25	26,50
14.	C14	RM1812	16,45	32,90
15.	C15	RM1815	15,65	31,30
16.	C16	RM1901	18,85	37,70
17.	C17	RM2809	12,85	25,70
18.	C18	RM3001	16,85	33,70
19.	C19	RM3302	19,65	39,30
20.	C20	RM3702	13,65	27,30
Jumlah			317	634

Tabel 4.30 Jarak Tempuh Material Handling Tata Letak Awal E

No	Area Penyimpanan	Produk	Jarak Tempuh Saat Penerimaan (m)	Jarak Tempuh Total (m)
1.	E1	RM4605	11,75	23,50

2.	E2	RM4702	13,55	26,70	
3.	E3	RM4808	12,05	24,10	
4.	E4	RM4811	13,25	26,50	
5.	E5	RM4812	10,75	21,50	
6.	E6	RM5003	14,15	28,30	
7.	E7	RM5004	12,35	24,70	
8.	E8	RM5007	14,45	28,90	
9.	E9	RM5407	11,05	22,10	
10.	E10	RM1010	12,65	25,30	
11.	E11	RM1122	15,05	30,10	
12.	E12	RM1131	11,45	22,90	
13.	E13	RM2602	13,85	27,70	
14.	E14	RM2808	14,75	29,50	
15.	E15	RM4322	12 , 95	25,90	
	Jumlah 193,85 387,70				

Tabel 4.30 Jarak Tempuh Material Handling Tata Letak Awal E (lanjutan)

Berdasarkan dari total perhitungan diatas didapatkan hasil Jarak Tempuh Material Handling Tata Letak awal adalah sebagai berikut :

Total material handling = Area A+ Area B + Area C + Area D+Area E

= 224,25+268,90+177,45+317+193,85

= 1181,45 Meter

Total jarak tempuh = Area A + Area B + Area C + Area D + Area E

=448,50+537,80+354,90+634+387,70

= 2362,9 Meter

4.3 Analisa dan Interpretasi

Dari hasil penelitian yang sudah dilakukan maka langkah selanjutnya yaitu menganalisa hasil penelitian dengan metode *Shared storage* pada tata letak penyimpanan dalam gudang.

4.3.1 Analisa Metode Shared Storage

Tujuan dari penggunaan metode *Shared Storage* adalah untuk menata material yang ada di gudang sesuai dengan kebutuhan material yang dibutuhkan dalam proses manufaktur. Permintaan material dapat diselesaikan dengan mudah dan dipasok tepat waktu menggunakan teknik penyimpanan *Shared Storage*. Karena material dengan nilai *throughput* tertinggi akan ditempatkan pada slot yang jaraknya paling dekat dengan pintu, maka material dengan permintaan yang tinggi akan lebih efisien dan tepat waktu sesuai kapasitas produksi. Karena teknik *Shared Storage*, hal ini dimungkinkan dalam 1 slot dapat ditempati oleh lebih dari 1 jenis material, sehingga sangat aplikatif untuk penyimpanan material yang membutuhkan aktivitas tinggi.

Karena satu material dapat menempati slot yang selalu berubah-ubah, tenaga kerja di gudang membutuhkan usaha yang lebih besar dalam mencatat lokasi produk dan sangat dianjurkan untuk menggunakan *software* manajemen gudang. Metode *Shared storage* juga tidak dapat lagi digunakan apabila perusahaan menghasilkan produk dengan dimensi yang berbeda.

Proses penempatan material pada metode *Shared storage* ialah dengan susunan arena penyimpanan berdasarkan dengan keadaan lantai gudang, pengurutan dari yang dekat hingga yang jauh dari pintu keluar masuk, dengan penempatan material yang akan dilakukan pengiriman.

Metode tersebut akan baik dengan jenis pabrik yang pengukuran dimensinya sama dan tidak jauh beda, dengan penyimpanan yang bisa saja dipakai dari material yang berbeda.

4.3.2 Analisis Kebutuhan Ruang

Pada penentuan yang diperlukan untuk gudang yaitu jumlah material yang dapat ditampung didalam gudang.

Total kebutuhan ruang untuk semua material:

16+24 = 40 area

144+173 = 317 meter persegi

Maka dari 94 material membutuhkan ruang untuk 40 area dengan luas ukuran dimensinya 317 meter persegi memenuhi kebutuhan ruang 450 meter persegi . Kemudian, kebutuhan ruangan pergerakan *forklift* ialah dengan dimensi paling panjang dengan membawa material maka dibutuhkan gang sebesar 3,1 meter untuk pergerakan *forklift*.

4.3.3 Analisa Euclidean Distance

Jarak antara penanganan material dan ruang penyimpanan dihitung menggunakan metode *Euclidean Distance*, dimulai dari pintu (I/O). Ke titik setiap fasilitas penyimpanan, jarak diukur sepanjang jalan menggunakan garis ortogonal satu sama lain. Jadi perhitungan dari 40 area *layout* usulan untuk mengetahui jarak tempuh *material handling* dihitung dengan perhitungan *Euclidean distance*. Perhitungan *Euclidean distance* sangat cocok digunakan pada metoode *shared storage*, karena jarak tempuh *material handling* dimulai dari pintu (I/O). jadi untuk perhitungan metode *Shared storage* digunakan perhitungan *Euclidean distance*.

Pada tata letak awal didapatkan jarak *material handling* bernilai 1181,45 meter dengan jarak tempuh total 2362,9 meter. Sedangkan pada usulan tata letak usulan didapatkan hasil total material handling bernilai 925,15 meter dengan jarak tempuh total 1850,30 Meter .

Adanya kode area gudang dengan jarak tempuh *material handling* diatas dapat diketahui tata letak jarak tempuh *material handling* usulan lebih kecil dari tata letak *material handling* awal dengan selisih jarak *material handling* bernilai 256,3 meter dan jarak tempuh total 512,6 meter.

4.3.4 Penyusunan Tata Letak Gudang Dengan Metode Shared Storage

Berikut adalah prosedur penempatan produk, prosedur dengan tujuan menyusun barang teratur, dengan proses bongkar muat yaitu:

- 1. Material disimpan ke area penyimpanan yang terdiri atas 40 slot sesuai dengan penempatan yang telah ditentukan untuk tiap jenis material
- 2. Setiap ditemukan slot kosong maka boleh ditempati oleh material apa saja setelah disesuaikan dengan perancangan yang telah dilakukan

- Material yang akan disimpan atau diambil dibawa menggunakan forklift atau troli transfer material
- 4. Proses bongkar muat material dilakukan dengan menggunakan prinsip (*First In First Out*) FIFO
- 5. Material *riject* atau *return* ditempatkan diluar gudang

4.3.5 Jarak Tempuh Material Handling

Jarak tempuh *material handling* pada tata letak awal yaitu sebesar 2362,9 meter, dengan hasil perhitungan jarak tempuh saat penerimaan dikali 2 sehingga menghasilkan jarak tempuh total yaitu jarak tempuh *material handling* pada tata letak awal.

4.3.6 Perbandingan Tata Letak Gudang Usulan Dengan Tata Letak Awal

Jarak tempuh *material handling* pada tata letak gudang awal yaitu sebesar 2362,9 meter sedangkan untuk tata letak gudang usulan adalah 1850.30 Meter. Dari hasil perbandingan antara jarak tempuh tata letak awal dan tata letak usulan menghasilkan selisih 512,6 meter. yang artinya *layout* usulan dengan menggunakan metode *shared storage* mennghasilkan jarak tempuh *material handling* yang lebih efisien dibandingkan *layout* awal karena pada *layout* usulan menghasilkan jarak tempuh lebih kecil dari *layout* awal.

Berikut ini adalah analisis perbandingan ruang penyimpanan yang dapat diakses yang diproyeksikan dalam kondisi awal dengan kondisi yang disarankan adalah:

- 1. Gudang material dapat berjalan dengan baik untuk perjalanan forklift dengan usulan penataan gudang material di lorong.
- 2. Jarak total yang ditempuh akan berkurang.
- 3. Dengan mengatur jarak antar tumpukan, risiko kerusakan material pada forklift selama proses bongkar muat dapat diturunkan hingga nol persen.

Tujuan dari perhitungan ini adalah untuk mengetahui berapa persen dari total jarak perjalanan yang dapat dihemat pada gudang material adalah :

% Penghematan = $\underline{\text{jarak perjalanan total sekarang-jarak perjalanan usulan}}$ x 100% $\underline{\text{Jarak perjalanan total sekarang}}$ = $\underline{2362.9 - 1850.30}$ x 100%

= 21,69 %

2362,9

4.4 Pembuktian Hipotesa

Penulis menduga bahwa permasalahan di PT. Nihon Seiki Indonesia, yaitu, meningkatkan efektivitas penyimpanan dan meminimalkan jarak penanganan material, dapat diselesaikan dengan menggunakan pendekatan Penyimpanan *Shared Storage*, seperti yang dinyatakan di awal. Sebelumnya, beberapa peneliti telah melakukan penelitian serupa. Dengan hasil perbandingan *layout* usulan dan *layout* awal membuktikan bahwa jarak *material handling layout* usulan lebih kecil dari *layout* awal yaitu terdapat total penghematan jarak *material handling* sebesar 21,69 % ternyata dapat meminimalkan jarak penanganan material.

BAB V

PENUTUP

5.1 Kesimpulan

- 1. Total jarak tempuh pada tata letak usulan lebih kecil dari pada tata letak awal setelah dilakukan perbaikan metode penyimpanan. Total jarak tempuh tata letak awal adalah sebesar 2362,9 meter. Total jarak tempuh tata letak usulan adalah sebesar 1850,30 Meter .Memiliki selisih nilai total jarak tempuh sebesar 512,6 meter dari total jarak tempuh awal atau sebanyak 21,69%. Hal ini berarti tata letak usulan dapat memperpendek jarak tempuh yang dilalui oleh karyawan gudang dalam mengambil material yang dibutuhkan dalam proses produksi.
- 2. Jumlah kebutuhan yang diperlukan pada area penyimpanan ialah 40 area, dengan luas yang diperlukan adalah 317 meter persegi memenuhi ruang 450 meter persegi. Lebar gang yang diperlukan forklift yaitu 3,1 meter, area gudang yang kosong atau tidak terpakai dengan luas 133 meter persegi dapat digunakan sebagai area part finish good / part yang sudah siap dikirim ke kostumer.
- 3. Tata letak material yang menjadi usulan,maksimal 3 tumpukan tiap material apabila ada slot yang kosong maka diperbolehkan diisi oleh jenis material lainnya dengan diberi petunjuk informasi sehingga dapat mempermudah karyawan dalam proses mengambil material yang akan dibutuhkan ke area produksi karena gudang telah dialokasikan sesuai penempatan material dan gang untuk akses sudah tersusun rapi.

5.2 Saran

- 1. Pendekatan Metode *Shared storage* yang baik bila diterapkan di perusahaan bagian pergudangan, untuk meminimalkan jarak tempuh *forklift* serta untuk penghematan pembiayaan operasional *material handling*.
- 2. Terdapat tanda pada penempatan material dalam gudang sehingga pekerja tidak sulit untuk melaksanakan proses pekerjaannya baik dalam penempatan

- material maupun pengiriman material untuk keperluan proses produksi demi meminimalkan potensi *delay*.
- 3. Penempatan material dengan frekuensi pengambilan tertinggi kebutuhan untuk line produksi diletakkan di area penyimpanan paling dekat dengan pintu keluar.

DAFTAR PUSTAKA

- AHMAD. 2020. "Perancangan Tata Letak Gudang Bahan Baku Dengan Metode Shared Storage Pada Pt. Pantjatunggal Knitting Mill." *Global Shadows: Africa in the Neoliberal World Order* 44(2): 8–10.
- AHMAD AFIF FAHRUDIN. 2006. "Perancangan Tata Letak Gudang Bahan Baku Dengan Metode Class-Based Storage Dan Penataan Yang Ergonomis." *Global Shadows: Africa in the Neoliberal World Order* 44(2): 8–10.
- Ekoanindiyo, Firman Ardiansyah, dan Yaumal Agit Wedana. 2012. "Perencanaan Tata Letak Gudang Menggunakanmetode Shared Storage Di Pabrik Plastik Kota Semarang." *Jurnal Ilmiah Dinamika Teknik* 6(1): 46–57.
- Fitri, Meldia, dan Dhianada Irsya Putri2. 2021. "Usulan Rancangan Tata Letak Gudang Penyimpanan Kantong Semen Menggunakan Metode Shared Storage." *Jurnal Teknologi Dan Sistem Informasi Bisnis* 3(1): 228–33.
- Johan, Johan, dan Kartika Suhada. 2018. "USULAN PERANCANGAN TATA LETAK GUDANG DENGAN MENGGUNAKAN METODE CLASS-BASED STORAGE (Studi Kasus di PT Heksatex Indah, Cimahi Selatan)."

 Journal of Integrated System 1(1): 52–71.
- Kelvin, Pram Eliyah Yuliana, dan Sri Rahayu. 2020. "Penentuan Tata Letak Gudang Sparepart Non Genuine Pada Bengkel Mobil di Surabaya dengan Metode Dedicated Storage." *Journal of Information System, Graphics, Hospitality and Technology* 2(02): 47–53.
- Komara, Junita. 2016. "Studi Deskriptif Terhadap Inbound dan Outbound UD Jember." 5(1): 1–12.
- Luftimas, Alam Bastari, Fifi Herni Mustofa, dan Susy Susanty. 2014. "Usulan Perbaikan Tata Letak Gudang Bahan Baku Dengan Menggunakan Metode Blocplan (DI PT.CHITOSE MFG)." *Jurnal Institut Teknologi Nasional* 02(03): 152–62.
- Mulyati, Erna, Irpan Numang, dan Muchamad Aditya Nurdiansyah. 2020. "Usulan Tata Letak Gudang Dengan Metode Shared Storage di PT Agility International Customer PT Herbalife Indonesia." *Jurnal Logistik Bisnis* 10(02): 36–41.

- Nursanti, Ellysa. 2019. "Usulan Perbaikan Sistem Inventory Dengan Metode Share Storage Untuk Peningkatan Tata Kelola Gudang Di Pdam Kota Batu." *Jurnal Valtech*. https://ejournal.itn.ac.id/index.php/valtech/article/view/1484.
- Oktafiansyah, Andre. 2018. "Definisi." jurnal teknik industri 1428–8372: 27–35.
- Zaenuri, M. (2015). Evaluasi Perancangan Tata Letak Gudang Menggunakan Metode Shared Storage Di Pt . International Premium Pratama Surabaya. XV(2), 21–36.": 16–38.
- Putri, I Gusti Ayu Putu Arika, dan I Nyoman Nurcaya. 2019. "Penerapan Warehouse Management System Pada Pt Uniplastindo Interbuana Bali." *E-Jurnal Manajemen Universitas Udayana* 8(12): 7216.
- Rahardjo, Benedictus. 2017. "Perancangan Sistem Manajemen Gudang Material Penunjang Di Pt Xyz." *J@ti Undip : Jurnal Teknik Industri* 12(2): 127.
- Schiavo. 2014. "PERBAIKAN TATA LETAK GUDANG PADA PR SUKUN SIGARET MENGGUNAKAN METODE SHARED STORAGE." jurnal media teknik industri 234–317.
- Shima, Putri, dan Akhmad Syakhroni. 2021. "Analysis of the Layout of the Finished Goods Warehouse Using the Shared Storage Method To Increase Storage Effectiveness in Pt. Ncs Logistic Link." *Journal of Applied Science and Technology* 1(01): 26.
- Sirait, Nurmaya Universitas. 2018. "Perbaikan Tata Letak Gudang Produk Jadi dengan Menggunakan Metode Dedicated Storage di PT. Sinar Sosro." *JISO: Journal of Industrial and Systems Optimization* 3: 8–15.
- Sukoco, Indra. 2017. "Perancangan Tata Letak Gudang Di PT . Panatrade dengan menggunakan metode shared storage." : 1–75.