TUGAS AKHIR

ANALISIS EFEKTIVITAS RENCANA SUDETAN UNTUK MENGURANGI BEBAN DEBIT POLDER KALI TENGGANG

Diajukan Untuk Memenuhi Persyaratan Dalam Menyelesaikan Pendidikan Program Sarjana (S1) Program Studi Teknik Sipil Fakultas Teknik Universitas Islam Sultan Agung

Disusun Oleh:

Nabila Khairunisa Vina Ajeng Ali Lesmaya

NIM: 3.02.017.00135 NIM: 3.02.017.00179

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS ISLAM SULTAN AGUNG SEMARANG

2021

Penelitian Tugas Akhir

Analisis Efektivitas Rencana Sudetan untuk Mengurangi Debit Polder Kali Tenggang

Yang diajukan oleh:

Nabila Khairunisa NIM: 3.02.017.00135

Vina Ajeng Ali Lesmaya

NIM: 3.02.017.00179

Telah disetujui oleh :

Tanggal, 12 Juli 2021

Pembimbing II

Pembimbing I

Dr. Henny Pratiwi Adi, ST., MT

Prof. Dr. Ir. H. S. Imam Wahyudi, DEA

Mengetahui

rogram Studi Teknik Sipil

Rydi Ahyar, ST.,M.Eng

.

YAYASAN BADAN WAKAF SULTAN AGUNG UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA) FAKULTAS TEKNIK

FAKULTAS TEKNIK
Jalan Raya Kaligawe KM. 4 Po. BOX 1054 Telp.(024)6583584 Ext.507 Semarang 50112

LEMBAR PENGESAHAN

Analisis Efektivitas Rencana Sudetan untuk Mengurangi Debit Polder Kali Tenggang

Olch:

Nabila Khairunisa

NIM: 3.02.017.00135

Telah disetujui dan disahkan di Semarang

Tim Penguji

- 1. Dr. Henny Pratiwi Adi, ST., MT
- 2. Prof. Dr. Ir. H. S Imam Wahyudi, DEA
- 3. Ir. M. Faiqun Ni'am, MT, Ph.d.

Vina Ajeng Ali Lesmaya NIM: 3.02.017.00179

Tanda Jangair

YAYASAN BADAN WAKAF SULTAN AGUNG UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA) FAKULTAS TEKNIK

Jalan Raya Kaligawe KM. 4 Po. BOX 1054 Telp.(024)6583584 Ext.507 Semarang 50112

BERITA ACARA BIMBINGAN TUGAS AKHIR

.7	
NO:	

Pada hari ini tanggal ,,, Februari 2021 berdasarkan surat keputusan Kaprodi Teknik Sipil Universitas Islam Sultan Agung (UNISSULA) Semarang perihal penunjukan dosen pembimbing dan asisten dosen pembimbing :

1. Nama : Dr. Henny Pratiwi Adi, ST.,MT.

Jabatan Akademik : Lektor Kepala

Jabatan : Dosen Pembimbing I

2. Nama : Prof. Dr. Ir. H. S.Imam Wahyudi, DEA.

Jabatan Akademik : Guru Besar

Jabatan : Dosen Pembimbing II

Dengan ini menyatakan bahwa mahasiswa yang tersebut di bawah ini telah menyelesaikan

bimbingan Tugas Akhir / Skripsi:

Nama : Nabila Khairunisa Nama : Vina Ajeng Ali Lesmaya

NIM : 3.02.017.00135 NIM : 3.02.017.00179

Judul: Analisis Efektivitas Rencana Sudetan untuk Mengurangi Beban Debit Kali Tenggang

Dengan tahapan sebagai berikut :

No	Tahapan	Tanggal	Keterangan
1 2	Penunjukan dosen pembimbing Proposal	24 februari 2021	ACC
3	Pengumpulan data	ATTR STEEL	
4	Analisis data	N 100 S 100	
5	Penyusunan laporan		
6	Selesai laporan	12 Juli 2021	ACC

Demikian Berita Acara Bimbingan Tugas Akhir/Skripsi ini dibuat untuk diketahui dan dipergunakan seperlunya oleh pihak-pihak yang berkepentingan

Pembimbing

Dr. Henny Pratissi Adi, ST., M.P. Prof. Dr. Ir. H. S. Inam Wahyadi DEA

Mengetahui, Phogram Studi Teknik Sipil

RODI TERRE SPR AKU PE Rusli Anyar, ST., M.Eng

PERNYATAAN KEASLIAN

Yang bertanda tangan di bawah ini :

Nama

: Nabila Khairunisa

(30201700135)

Vina Ajeng Ali Lesmaya

(30201700179)

Dengan ini menyatakana bahwa Tugas Akhir yang berjudul: Analisis Efektivitas Rencana Sudetan untuk Mengurangi Beban Debit Polder Kali Tenggang merupakan hasil penelitian, pemikiran dan pemaparan asli kami sendiri. Kami tidak mencantumkan tanpa pengakuan bahan-bahan yang telah dipublikasikan sebelumnya atau ditulis oleh orang lain dan benar bebas dari plagiasi, dan apabila pernyataan ini terbukti tidak benar maka saya bersedia menerima sanksi sesuai ketentuan yang berlaku.

Demikian surat pernyataan ini saya buat untuk dipergunakan sebagaimana mestinya.

Yang membuat pernyataan,

Semarang, 12 Juli 2021

Yang membuat pernyataan,

APTERIAL PENIFEL AS203AJX269108747

Vina Ajeng Ali Lesmaya

METERAL TEMPEL 5240AJX269104748

Nabila Khairunisa

PERNYATAAN BEBAS PLAGIASI

Saya yang bertanda tangan di bawah ini:

bila Khairunisa

Nama: Nabila Khairunisa (30201700135)

Vina Ajeng Ali Lesmaya (30201700156)

Dengan ini menyatakan bahwa Tugas Akhir dengan judul : ANALISA EFEKTIVITAS RENCANA SUDETAN UNTUK MENURANGI BEBAN DEBIT KALI TENGGANG.

Benar bebas plagiat dan apabila pernyataan ini terbukti tidak benar maka saya bersedia menerima sanki sesuai ketentuan yang berlaku.

Demikian surat pernyataan ini saya buat untuk dipergunakan sebagaimana mestinya.

Semarang, Juli 2021

Yang membuat Pernyataan

Vina Ajeng Ali Lesmaya

UNISSULA جامعتنسلطان أجونج الإسلامين

MOTTO DAN PERSEMBAHAN

MOTTO

"Kamu (umat Islam) adalah umat terbaik yang dilahirkan untuk manusia, (karena kamu) menyuruh (berbuat) yang makruf, dan mencegah dari yang mungkar, dan beriman kepada Allah. Sekiranya Ahli Kitab beriman, tentulah itu lebih baik bagi mereka.." (Qs.Ali Imran: 110)

"Awali niat baik dengan ucapan Bismillah dan berserah diri kepada Allah, agar diberi jalan yang sebaik-baiknya" (Anonim)

"Maka Sesungguhnya bersama kesulitan ada kemudahan, Sesungguhnya bersama kesulitan ada kemudahan" (Qs. Al – Insyirah : 5 - 6)

"Jangan beli persahabatan dengan harta, karena ia tak akan kekal. Jangan beli cinta dengan harta karena suatu saatpun akan berkhianat." (Ust. Jefri Al-Buchori).

"Bahwa tiada yang orang dapatkan, kecuali yang ia usahakan, dan bahwa usahanya akan kelihatan nantinya." (Qs. An Najm: 39-40)

"Jika kamu tidak tahan dengan lelahnya belajar, maka kamu harus tahan dengan perihnya kebodohan." (Imam Syafi'i)

PERSEMBAHAN

Puji syukur kehadirat Allah SWT, Tuhan pemilik jiwa dan Semesta alam. Sholawat

serta salam semoga senantiasa tercurahkan kepada Nabi Muhammad SAW.

Tugas Akhir ini saya persembahkan kepada:

1. Kedua orang tua saya, Bapak saya Kusyanto dan Ibu saya Nanik Yuliati, atas semua

dukungan moral maupun material, kasih sayang, kesabaran dan do'a.

2. Saudara dan keluarga besar saya yang telah memberikan dukungan dan doa sehingga

Tugas Akhir ini dapat terselesaikan.

3. Ibu Dr. Henny Pratiwi Adi, ST, MT, dan Bapak Prof. Dr. Ir. H. S Imam Wahyudi, DEA

yang telah meluangkan waktu, tenaga dan pikirannya untuk memberikan bimbingan

pada kami agar bisa menyelesaikan tugas akhir ini dengan baik.

4. Semua dosen Fakultas Teknik Program Studi Teknik Sipil UNISSULA, terimakasih atas

semua ilmunya yang sangat bermanfaat.

5. Partner laporan tugas akhir Vina Ajeng Ali Lesmaya. Terimakasih atas waktu dan

semangatnya sehingga dapat menyelesaikan tugas akhir ini.

6. Semua tem<mark>an-teman kariawan PT. Studi Teknik yang tela</mark>h membantu dan

memberikan data yang dibutuhkan untuk menyelesaikan tugas akhir (Mba vyxy).

7. Rimanda Anggrani Sanjaya dan Wahyu Nazali terimakasih atas semangat yang telah

diberikan.

8. Semua teman-teman Fakultas Teknik Sipil UNISSULA angkatan 2017, terimakasih atas

semua bantuan, perhatian dan semangatnya.

Nabila Khairunisa

NIM: 3.02.017.00135

vii

PERSEMBAHAN

Puji syukur kehadirat Allah SWT, Tuhan pemilik jiwa dan Semesta alam. Sholawat

serta salam semoga senantiasa tercurahkan kepada Nabi Muhammad SAW.

Tugas Akhir ini saya persembahkan kepada:

1. Kedua orang tua saya, Bapak saya Ali Mashar dan Ibu saya Wasilah atas semua

dukungan moral maupun material, kasih sayang, kesabaran dan do'a.

2. Saudara dan keluarga besar saya yang telah memberikan dukungan dan doa sehingga

Tugas Akhir ini dapat terselesaikan.

3. Ibu Dr. Henny Pratiwi Adi, ST, MT, dan Bapak Prof. Dr. Ir. H. S Imam Wahyudi, DEA

yang telah meluangkan waktu, tenaga dan pikirannya untuk memberikan bimbingan

pada kami agar bisa menyelesaikan tugas akhir ini dengan baik.

4. Semua dosen Fakultas Teknik Program Studi Teknik Sipil UNISSULA, terimakasih

atas semua ilmunya yang sangat bermanfaat.

5. Partner laporan tugas akhir Nabila Khairunisa. Terimakasih atas waktu dan

semangatnya sehingga dapat menyelesaikan tugas akhir ini.

6. Semua tem<mark>an</mark>-tem<mark>an kariawan PT. Studi Teknik yang telah memba</mark>ntu memberikan

data yang dibutuhkan untuk menyelesaikan tugas akhir. (Mba vyxy).

7. Nurul Isna L, Yusia Nanda A, Jauharotun Nisa dan Pratama Sudrajat W. Terimakasih

atas semangat yang telah diberikan.

8. Semua teman-teman Fakultas Teknik Sipil UNISSULA angkatan 2017, terimakasih

atas semua bantua<mark>n, perhatian dan semangatnya.</mark>

Vina Ajeng Ali Lesmaya

NIM: 3.02.017.00179

viii

KATA PENGANTAR

Syukur Alhamdulillah, segala puji bagi Allah SWT, karena hanya dengan rahmat dan karunia-Nya laporan Tugas Akhir ini dapat terselesaikan dengan baik tentang "Analisis Efektivitas Rencana Sudetan Kali Tenggang untuk Mengurangi Beban Debit Polder Kali Tenggang". Tugas Akhir ini diajukan untuk memenuhi persyaratan dalam menyelesaikan Program Sarjana Teknik Sipil di Universitas Islam Sultan Agung Semarang.

Pada kesempatan ini, penulis hendak menyampaikan ucapan terima kasih yang sebesarbesarnya kepada semua pihak yang telah mendukung dalam penyusunan Tugas Akhir ini, yaitu :

- Bapak Ir. Rachmat Mudiyono, MT., PhD selaku Dekan Fakultas Teknik Universitas Islam Sultan Agung.
- 2. Bapak M. Rusli Ahyar, ST., M.Eng selaku Ketua Program Studi Teknik Sipil Universitas Islam Sultan Agung.
- 3. Ibu Dr. Henny Pratiwi Adi, ST, MT selaku Dosen Pembimbing I Tugas Akhir, yang telah meluangkan waktu, tenaga dan pikirannya untuk memberikan bimbingan pada kami agar bisa menyelesaikan tugas akhir ini dengan baik.
- 4. Bapak Prof. Dr. Ir. H. S Imam Wahyudi, DEA selaku Dosen Pembimbing II Tugas Akhir yang telah meluangkan waktu, tenaga dan pikirannya untuk memberikan bimbingan pada kami agar bisa menyelesaikan tugas akhir ini dengan baik.
- 5. Seluruh dosen, staf, dan karyawan Program Studi Teknik Fakultas Teknik Sipil UNISSULA.
- 6. Kedua orang tua yang telah memberikan doa dan motivasi.
- 7. Semua pihak yang telah membantu dalam penyelesaian Tugas Akhir ini yang tidak dapat kami sebutkan satu persatu.

Penulis menyadari bahwa Tugas Akhir ini masih banyak kekurangan baik isi maupun susunannya. Semoga Tugas Akhir ini dapat bermanfaat tidak hanya bagi penulis juga bagi para pembaca.

Semarang, 12 Juli 2021

Penulis

ABSTRAK

Nabila Khairunisa ¹⁾, Vina Ajeng Ali Lesmaya ¹⁾, Henny Pratiwi Adi ²⁾, S. Imam Wahyudi ²⁾

. Kali Tenggang merupakan salah satu sistem drainase di Semarang Timur dengan daerah aliran sungai membentang dari Banjir Kanal Timur di sebelah barat sampai Kali Babon di sebelah timur. Daerah layanan yang luas membuat Kali Tenggang tidak lepas dengan masalah banjir dan rob. Sebagai langkah mengatasi banjir dan rob yang terjadi di kawasan Kali Tenggang, Pemerintah Kota Semarang telah membangun Sistem Polder Kali Tenggang. Sistem ini merupakan salah satu teknologi pengendalian banjir dan rob yaitu penanggulangan banjir dengan bangunan fisik yang meliputi sistem drainase, kolam retensi, tanggul yang mengelilingi kawasan, serta stasiun pompa. Polder Kali Tenggang dibangun di muara Kali Tenggang dan berfungsi mencegah wilayah terkena banjir dan rob. Selain sistem polder Pemerintah Kota Semarang juga telah merencanakan sudetan kali pada bagian hulu Tenggang untuk program pengendalian banjir dan rob pada sistem Tenggang. Sudetan kali diharapkan dapat mengurangi beban kapasitas debit Kali Tenggang sekaligus mengurangi beban kerja pompa Tenggang. Penelitian ini bertujuan untuk mengetahui rencana sudetan dan mengetahui debit Kali Tenggang sebelum adanya sudetan dan sesudah adanya sudetan.

Tahapan penelitian ini dilakukan dngan beberapa tahapan yaitu melakukan survey pada rencana sudetan Kali Tenggang dan Polder Kali tenggang, melakukan pengumpulan data primer dan sekunder yang mendukung sebagai dasar penyelesaian masalah, melakukan pengolahan data meliputi anaisis hidrologi, perhitungan debit dan analisis efektivitas sudetan Kali Tenggang dalam mengurangi beban kapasitas dan beban kerja pompa Polder Kali Tenggang.

Hasil dari analisis data maka diketahui bahwa Sudetan Hulu Tenggang dibangun pada Jalan Gemah Raya dengan konstruksi *Box Culvert* sepanjang 628 m dengan kapasitas debit 2,7 m³/dt – 3,5 m³/dt, sudetan hulu Tenggang ini akan dialirkan ke sistem Kanal Banjir Timur dengan nilai Q_{2 tahun} sebesar 6,359 m³/dt, Q_{5tahun} sebesar 7,330 m³/dt, Q_{10tahun} sebesar 7,909 m³/dt. Disimpulkan bahwa sudetan Kali Tenggang dapat mengurangi beban kapasitas debit karena dapat mengurangi Q_{2tahun} menjadi 3,659 m³/dt dan mengurangi beban kerja pompa Kali Tenggang.

Kata Kunci: banjir rob; box culvert; pompa; sudetan

- 1). Mahasiswa Program Studi Teknik Sipil Fakultas Teknik Unissula
- ²⁾. Dosen Program Studi Teknik Sipil Fakultas Teknik Unissula.

DAFTAR ISI

HALA	MAN	JUDUL i
HALA	MAN	PENGESAHANii
PERNY	YATA	AN KEASLIANiii
BERIT	'A AC	CARA BIMBINGAN TUGAS AKHIRiv
MOTT	O DA	N PERSEMBAHANv
KATA	PEN	GANTARvii
		viii
		Lx
DAFTA	AR G	AMBARxii
DAFTA	AR TA	ABELxiii
BAB I	PEN	NDAHULUAN
	1.1	Latar Belakang1
	1.2	Rumusan Masalah2
	1.3	Tujuan3
	1.4	Manfaat 3
	1.5	Batasan Masalah
BAB II	TINJ	AUAN PUSTAKA
	2.1	Siklus Hidrologi5
		2.1.1 Daerah Aliran Sungai (DAS)6
		2.1.1.1 Debit6
		2.1.1.2 Limpasan
		2.1.2 Hujan
		2.1.2.1 Pengukuran Hujan11
		2.1.2.2.Analisis Hujan Wilayah
		2.1.2.3 Analsis Frekuensi Hujan Rencana
	2.2	Hujan Rencana
		2.2.1. Analisis Intensitas Hujan

	2.3 1	Penurunan Muka Tanah (Land Supsidence)	25
	2.4 \$	Sistem Polder	26
		2.4.1 Efektivitas Pompa	29
	2.5	Sudetan	29
	2.61	Review Terhadap Penelitian Sebelumnya	33
BAB II	I ME'	TODE PENELITIAN	
	3.1	Lokasi Penelitian	37
	3.2	Tahapan Penelitian	37
	3.3	Metode Pengumpulan Data.	38
	3.4	Metode Pengolahan Data	
	3.5	Metode Analisis Data	
	3.6	Bagan Alir	39
	1		
BAB IV		SIL DAN PEMBAHASAN	
	4.1	Sudetan Kali Tenggang	
		4.1.1 Lokasi Sudetan Kali Tenggang	
		4.1.2 Perencanaan Tata Letak Saluran Sudetan Kali Tenggang	
		4.1.3 Perencanaan Saluran Hidrolis Sudetan	
	4.2	Spesifikasi Sistem Kerja Polder Kai Tenggang	
	4.3	Perhitungan Debit Banjir Sudetan Kali Tenggang	
		4.3.1 Analisis Hujan Wilayah	45
		4.3.2 Analisis Frekuensi	46
		4.3.3 Analisis Statistik	46
		4.3.4 Perhitungan Distribusi Log Pearson III	50
		4.3.5 Intensitas Hujan Rencana	51
		4.3.6 Intensitas Hujan Jam – jaman	52
		4.3.7 Kurva Intensyty Duration Frequency	53
		4.3.8 Pola Intensitas Hujan Metode Talbot	53
		4.3.9 Pola Intensitas Hujan Metode Sherman	56
		4.3.10 Pola Intensitas Hujan Metode Ishiguro	58

	4.3.11 Pola Intensitas Hujan Metode SDR-IDF61
	4.3.12 Intensitas Hujan64
	4.3.13 Debit Banjir Rencana dengan Metode Rasional65
	4.4 Analisis Debit Banjir Sebelum Adanya Sudetan dan Sesudah Adanya
	Sudetan65
	4.5 Volume air yang mengalir di Kali Tenggang dan volume air yang bisa
	dialirkan ke sudetan dalam waktu satu hari serta tingkat penurunan
	beban kerja pompa68
	4.5.1 Volume air yang mengalir di Kali Tenggang dalam waktu satu
	hari68
	4.5.2 Volume air yang dialirkan ke sudetan dalam waktu satu hari 69
	4.5.3 Tingkat penurunan bebankerja pompa69
BAB V	KESIMPULAN DAN SARAN
	5.1 Kesimpulan
	5.2 Saran
DAFTA	R PUSTAKAxiv
LAMPI	RAN UNISSULA

DAFTAR TABEL

Tabel 2.1 Keadaan Hujan dan Intensitas Hujan	10
Tabel 2.2 Penggunaan Metode berdasarkan Jaring-jaring Penangkar Hujan	13
Tabel 2.3 Penggunaan Metode berdasarkan Luas DAS	14
Tabel 2.4 Penggunaan Metode berdasarkan Topografi DAS	14
Tabel 2.5 Prameter Statistik untuk Menentukan Jenis Distribusi	17
Tabel 2.6 Konstanta X dan Y Rumus SDR-IDF	22
Tabel 2.7 Rumums Intensitas Hujan	22
Tabel 2.8 Koefisien Limpasan untuk Metode Rasional	24
Tabel 2.9 Review Terhadap Penelitian sebelumnya	33
Tabel 4.1 Data Hujan Tahunan Rata-rata Kota Semarang	46
Tabel 4.2 Perhitungan Dispersi Curah Hujan	47
Tabel 4.3 Perhitungan Dispersi Curah Hujan dalam Logaritma	48
Tabel 4.4 Syarat dan Batas tertentu Distribusi	
Tabel 4.5 Analisis Distribusi Metode Log Pearson III	
Tabel 4.6 Nilai KT untuk Distribusi Log Pearson III	51
Tabel 4.7 Curah Hujan Rencana	51
Tabel 4.8 Intensitas Hujan Jam-jaman Kala Ulang 2 Tahun	52
Tabel 4.9 Intensitas Hujan Jam-jaman Kala Ulang 5 Tahun	52
Tabel 4.10 Intensitas Hujan Jam-jaman Kala Ulang 10 Tahun	52
Tabel 4.11 Hujan Rencana dengan Persamaan Mononobe	53
Tabel 4.12 Perhitungan Metode Talbot Kala Ulang 2 Tahun	53
Tabel 4.13 Nilai Tetapan Metode Talbot Kala Ulang 2, 5, 10 Tahun	54
Tabel 4.14 Intensitas Hujan Kala Ulang 2 Tahun Metode Talbot	55
Tabel 4.15 Intensitas Hujan Kala Ulang 5 Tahun Metode Talbot	55
Tabel 4.16 Intensitas Hujan Kala Ulang 10 Tahun Metode Talbot	55
Tabel 4.17 Perhitungan Intensitas Hujan Kala Ulang 2 Tahun Metode Sherman	56
Tabel 4.18 Nilai Tetapan A dan B Metode Sherman	57

Tabel 4.19 Pola Intensitas Metode Sherman Kala Ulang 2 Tahun	57
Tabel 4.20 Pola Intensitas Metode Sherman Kala Ulang 5 Tahun	57
Tabel 4.21 Pola Intensitas Metode Sherman Kala Ulang 10 Tahun	58
Tabel 4.22 Perhitungan Metode Ishiguro Kala Ulang 2 Tahun	59
Tabel 4.23 Tetapan A dan B Metode Ishiguro	59
Tabel 4.24 Pola Intensitas Metode Ishiguro Kala Ulang 2 Tahun	60
Tabel 4.25 Pola Intensitas Metode Sherman Kala Ulang 5 Tahun	60
Tabel 4.26 Pola Intensitas Metode Sherman Kala Ulang 10 Tahun	61
Tabel 4.27 Pola Intensitas Metode SDR-IDF Kala Ulang 2 Tahun	62
Tabel 4.28 Pola Intensitas Metode SDR-IDF Kala Ulang 5 Tahun	62
Tabel 4.29 Pola Intensitas Metode SDR-IDF Kala Ulang 10 Tahun	62
Tabel 4.30 Tabel Intensitas Hujan Berbagai Kala Ulang	65
Tabel 4.31 Debit Rencana Berbagai Kala Ulang	65

DAFTAR GAMBAR

Gambar 2.1	Siklus Hidrologi	6
Gambar 3.1	Peta Lokasi Penelitian	38
Gambar 3.2	Bagan Alir Penelitian	40
Gambar 4.1	Lokasi Sudetan Kali Tenggang	41
Gambar 4.2	Lokasi Box Culvert	42
Gambar 4.3	Perencanaan Dimensi Saluran Tipe Drain Tenggang 1	43
Gambar 4.4	Perencanaan Dimensi Saluran Tipe Drain Sudetan	43
Gambar 4.5	Perencanaan Dimensi Tipe Drain tenggang 1B	44
Gambar 4.6	Catchment Area Sudetan Kali Tenggang	45
Gambar 4.7	Kurva IDF Kala Ulang 2 Tahun	63
Gambar 4.8	Kurva Sherman Kala Ulang 2, 5, 10 Tahun	64
Gambar 4.9	Kurva debit sesudah dan sebelum sudetan kala ulang 2 tahun	67
Gambar 4.10	Kurva debit sesudah dan sebelum sudetan kala ulang 5 tahun	67
Gambar 4.11	Kurva debit sesudah dan sebelum sudetan kala ulang 10 tahun	68

BAB I

PENDAHULUAN

1.1 Latar Belakang Masalah

Sebagai salah satu kota berkembang di Pulau Jawa, Semarang menjadi kota metropolitan dengan luas wilayah 364,4 km² dengan letak geografis terbentang antara garis 06°50′-07°10′ Lintang Selatan dengan garis 110° 35′ Bujur Timur. Secara administratif Kota Semarangg terdiri dari 17 kecamatan dan 166 kelurahan. Kawasan *Mega-Urban* Semarang memiliki jumlah penduduk lebih dari 1,68 juta jiwa terhitung dari Juni 2020 (Dispendukcapil Semarang, 2020). Kota Semarang dibatasi oleh Kabupaten Demak pada wilayah timur, Kabupaten Kendal di wilayah barat, Kabupaten Semarang di wilayah selatan dan Laut Jawa di wilayah utara. Panjang garis pantai adalah 13,6 km dengan kerentanan bencana di daerah pesisir yaitu banjir. (Sidabalok, 2015)

Kota Semarang memiliki wilayah topografi yang unik, sisi utara merupakan dataran rendah dikenal sebagai Semarang bawah, sedangkan daerah perbukitan yang memanjang pada sisi selatan disebut Semarang atas. Daerah Semarang bawah memiliki topografi yang landai dengan kemiringan 0% - 2% dengan sebagian wilayahnya hampir sama tingginya dengan laut bahkan dibeberapa daerah pesisir Semarang berada bawah ketinggian permukaan laut. (BAPPEDA, 2015). Kota Semarang memiliki masalah kerusakan lingkungan yang disebabkan oleh adanya genangan banjir. Wilayah Semarang bawah yang rendah menyulitkan drainase untuk mengalirkan air, terlebih adanya pasang air laut. Kondisi banjir di Semarang semakin parah dengan adanya penurunan permukaan tanah yang memiliki peranan penting dalam perluasan genangan banjir. Selain itu, beban fisik bangunan dan pengambilan air tanah berlebih menyebab kondisi tanah di Kota Semarang mengalami pemampatan yang mengakibatkan turunnya permukaan tanah (Setyawan, 2009).

Kali Tenggang merupakan salah satu sistem drainase di Semarang Timur dengan daerah aliran sungai membentang dari Banjir Kanal Timur di sebelah barat sampai Kali Babon di sebelah timur. Daerah layanan yang luas membuat Kali Tenggang tidak lepas dengan masalah banjir. Sebagai langkah mengatasi banjir yang terjadi dikawasan Kali Tenggang, Pemerintah Kota Semarang telah

membangun Sistem Polder Kali Tenggang. Berdasarkan penanggulangan banjir di Semarang dan daerah lain, menyimpulkan sitem polder akan dapat dan cocok menanggulangi banjir (Mondel & Budinetro, 2010). Sistem ini merupakan salah satu teknologi pengendalian banjir yaitu penanggulangan banjir dengan bangunan fisik yang meliputi sistem drainase, kolam retensi, tanggul yang mengelilingi kawasan, serta stasiun pompa. Polder Kali Tenggang dibangun di muara Kali Tenggang dan berfungsi mencegah wilayah terkena banjir. Wilayah yang rentan terhadap genangan banjir adalah wilayah Kaligawe, Tlogosari dan Palebon. Selain sistem polder Pemerintah Kota Semarang juga telah merencanakan sudetan kali pada bagian hulu Tenggang untuk program pengendalian banjir pada sistem Tenggang. Sudetan kali diharapkan dapat mengurangi beban kapasitas debit Kali Tenggang sekaligus mengurangi beban kerja pompa Tenggang.

Oleh karena itu untuk mengatahui apakah rencana sudetan kali yang telah direncanakan dapat mengurangi kapasitas debit banjir dan mengurangi beban kerja pompa Tenggang maka diperlukan kajian untuk menilai efektivitas dari rencana sudetan Kali Tenggang untuk mengurangi debit banjir pada sistem Polder Kali Tenggang. Penelitian tingkat efektifitas rencana sudetan Kali Tenggang dalam menguranngi debit banjir ini dilakukan dengan perhitungan kuantitas debit air yang masuk dengan sumber data curah hujan yang terjadi pada wilayah Semarang Timur.

1.2 Rumusan Masalah

Berdasarkan latar belakang diatas, maka rumusan masalah adalah sebagai berikut:

- 1. Bagaimanakah rencana sudetan Kali Tenggang dalam mengurangi banjir pada wilayah semarang timur?
- 2. Bagaimana spesifikasi sistem kerja Polder Kali Tenggang?
- 3. Bagaimana perhitungan debit banjir yang masuk dalam Sudetan Hulu Kali Tenggang?
- 4. Berapakah debit banjir sebelum adanya sudetan dan sesudah sudetan Kali Tenggang dibangun?
- 5. Berapakah volume air yang mengalir pada Kali Tenggang dan volume yang bisa dialirkan ke Sudetan dalam waktu satu hari serta tingkat penurunan beban kerja pompa Polder Tenggang?

1.3 Tujuan Penelitian

Berdasarkan perumusan masalah diatas, penelitian ini mempunyai tujuan untuk:

- 1. Mengetahui detail rencana sudetan Kali Tenggang.
- 2. Mengetahui spesifikasi sistem kerja Polder Kali Tenggang.
- 3. Mengetahui perhitungan debit banjir Q₂, Q₅, Q₁₀ tahun yang masuk dalam Sistem Polder Kali Tenggang.
- 4. Mengetahui debit banjir yang masuk pada sistem Polder Kali Tenggang sebelum adanya sudetan dan sesudah sudetan Kali Tenggang dibangun.
- 5. Mengetahui volume air yang mengalir pada Kali Tenggang dan volume yang bisa dialirkan ke Sudetan dalam waktu satu hari serta tingkat penurunan beban kerja pompa Polder Tenggang?

1.4 Manfaat Penelitian

Manfaat yang diharapkan dari penelitian ini adalah sebagai berikut:

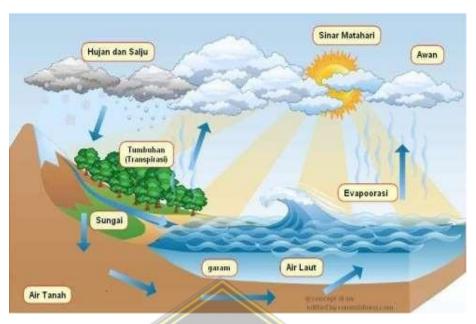
- 1. Bagi peneliti, penelitian ini diharapkan mampu menjadi tugas akhir yang berkualitas sehingga dapat menjadikan syarat kelulusan peneliti pada jenjang strata satu (S1) Teknik Sipil.
- 2. Bagi stakeholder, hasil penelitian dapat dijadikan kajian ulang dan mengoptimalkan kinerja Polder Kali Tenggang.
- 3. Bagi masyarakat, menambah pengetahuan kinerja sudetan Kali Tenggang dalam peanggulangan banjir dan rob.
- 4. Bagi peneliti selanjutnya, penelitian diharapkan mampu dijadikan referensi selanjutnya dan dikembangkan menjadi lebih sempurna.

1.5 Batasan Masalah

Agar pembahasan dalam penelitian ini tidak terlalu melebar maka permasalahan yang dibahas dibatasi pada hal – hal sebagai berikut:

- Penelitian dilakukan kepada pengelola dan masyarakat disekitar Kali Tenggang.
- 2. Detail rencana pembangunan sudetan Kali Tenggang di peroleh dari PT.Studi Teknik.
- Data fisik dan kondisi sistem polder diperoleh dari data perencana dan hasil survey lokasi.

- 4. Data curah hujan dan data pasang surut yang digunakan dalam analisis adalah data hasil pengamatan yang diperoleh dari BMKG Maritim Klas II Semarang.
- 5. Penelitian dilakuakan pada *catchment area* (daerah yang dilayani) Sistem Polder Kali Tenggang.
- 6. Efektivitas sistem yang ditinjau meliputi debit yang suk pada sistem Polder Tenggang sebelum adanya sudetan dan sesudah sudetan Kali Tenggang dibangun.


BAB II

TINJAUAN PUSTAKA

2.1 Siklus Hidrologi

Siklus Hidrologi adalah suatu rangkaian yang berisi tahapan-tahapan yang dilalui oleh air dari atmosfer ke bumi dan kembali lagi ke atmosfer yang memiliki beberapa proses didalamnya, yaitu evaporasi, transpirasi, sublimasi, intersepsi, kondensi, adveksi, presipitasi, run off, dan infiltrasi. Evaporasi adalah menguapnya air dari permukaan tanah ke udara, sedangkan transpirasi adalah menguapnya air dari tanaman ke udara. Lalu uap tersebut akan mengalami kondensasi lalu memadat menjadi awan-awan yang nantinya akan turun kembali menjadi air dan turun sebagai prepitasi. Sebagian prepitasi yang turun ke permukaan bumi akan tertahan oleh tumbuh-tumbuhan (intersepsi), lalu ada sebagian yang langsung menguap ke udara, dan sebagian lagi akan turun ke tanah mengalir melalui dana (steam flow) atau jatuh langsung dari permukaan daun ke permukaan tanah. Sebagian air yang sampai ke permukaan tanah akan ber infiltrasi atau masuk kedalam ta<mark>nah dan seb</mark>agian akan mengisi lekuk-lekukpermukaan tanah kemudian mengalir ke tempat yan lebih rendah (run off), masuk ke sungai-sungai dan akhirnya sampai ke laut. Dalam perjalanannya menuju laut, sebagian air akan mengalami penguapan (Maryanti, 2017)

Perbedaan besar presipirasi dari tahun ke tahun,dari musim ke musim dan juga dari wilayah satu ke wilayah yang lain, menyebabkan sirkulasi air ini tidak merata.yang mempegaruhi sirkulasi hidrologi ini antara lain adalah kondisi meteorologi seperti suhu, atmosfir dan lain-lain. Sirkulasi air ini juga dipengaruhi oleh kondisi topografi. Contoh siklus hidrologi bisa di lihat pada Gambar 2.1 (Maryanti, 2017)

Gambar 2.1 Siklus Hidrologi

Sumber: www.google.com, 2016

2.1.1 Daerah Aliran Sungai (DAS)

Daerah aliran sungan (DAS) adalah suatu daerah yang dibatasi oleh titiktitik yang tinggi atau punggung-punggung gunung/pegunungan dimana air yang jatuh atau air yang berasal dari hujan terkumpul dalam daerah tersebut. Fungsi DAS adalah menerima, menyimpan dan mengalirkan air yang jatuh ke daerah tersebut melalui sungai.

2.1.1.1 Debit

Debit adalah sejumlah air yang mengalir melewati sungai dalam periode tertentu sewaktu-waktu yang dinyatakan dalam satuan m³/deti dan juga liter/detik.suatu Daerah Aliran Sungai (DAS) memiliki suatu kondisi hidrologis yang akan diketaui dengan cara menghitung debit sungai tersebut. Ada 2 tipe seri yang digunakan untuk analsis frekuensi debit (Triatmodjo, 2008), yaitu:

1. Partial Duration Series

Metode *Partial Duration* merupakan rangkaian data debit banjir atau hujan yang besarnya diatas nilai batas bawah tertentu. Metode ini digunakan apabila jumlah data debit kurang dari 10 tahun. Dengan metode ini data yang bisa digunakan terdiri dari 2 sampai 5 data.

2. Annual Maximum Series

Metode *annual maximum* series ini digunakan apabila jumlah data debit melebihi 10 tahun atau minimal 10 tahun. Cara menggunakan metode ini adalah dengan memilih satu data tertinggi atau maximum setiap tahunnya. Dengan cara ini, data terbesar kedua dalam satu tahun mungkin akan lebih dari data tertinggi pada tahun yang tidak diperhitungkan.

2.1.1.2 Limpasan

Limpasan adalah air yang mengalir diatas suatu permukaan dikarenakan penuhnya suatu kapasitas infiltrasi tanah. Jika intensitas hujan yang jatuh di suatu Daerah Aliran Sungai (DAS) memenuhi kapasitas infiltrasinya, setelah laju infiltrasi terpenuhi, maka air akan mengisi cekungan-cekungan yang ada pada permukaan tanah. Setelah cekungan-cekungan di permukaan tanah itu peuh, lalu air akan mengalir (melimpas) di atas permukaan tanah. Limpasan permukaan (*Surface run-off*) yang merupakan air hujan yang mengalir dalam bentuk lapisan di atas permukaan lahan ini akan masuk ke parit-parit kemudian menjadi aliran sungai. Jika debit sungai lebih besar dari kapasitas sungai akan mengakibatkan luapan pada sisi tebing sungai yang akan menyebabkan banjir. Biasanya ini terjadi di DAS bagian hulu atau daerah pegunungan, limpasan sungai bisa masuk ke sungai dengan cepat yang membuat debit sungai meningkat. Di DAS bagian hulu ini kemiringan lahan dan kemiringan sungai besar atau di suatu DAS yang kecil kenaikan debit banjir dapat cepat terjadinya, sedangkan pada sungai-sungai besar kenaikan debit banjir akan lebih lambat untuk mencapai debit puncak. (Maryanti, 2016)

Banjir berasal dari aliran limpasan yang mengalir melewati sungai lalu menjadi genangan. Beberapa faktor yang mempegaruhi limpasan, yaitu :

1. Faktor Hujan

Faktor yang mempengaruhi limpasan yaitu:

- a. Kelebatan hujan
- b. Durasi curah hujan
- c. Intensitas curah hujan

2. Distribusi curah hujan pada DAS

Faktor DAS yang mempengaruhi limpasan yaitu:

- a. Tata guna lahan
- b. Topografi
- c. Jenis tanah
- d. Kelembaban tanah

2.1.2 **Hujan**

Hujan adalah air titk-titik yang jatuh ke permukaan bumi dari awan dengan melalui lapisan atmosfer sesuai dengan proses alam. Terbentuknya butiran-butiran air ini diawali dengan pembentukan awan karena adanya penggabungan uap air yang ada di atmosfer melalui proses kondensasi. Apabila butiran-butiran air ini lebih berat dari gravitasi, maka akan jatuh ke bumi berupa hujan.

Secara garis besar teori terbetuknya air hujan menurut teori kristal es dapat diterangkan dengan teori "Bergaron" yang di kemukakan oleh seorang ahli meteorologi dari Skandinavia sekitar tahun 1930. Menurut teori ini jika kondisi udara di bawah suhu 0° C, maka tekanan air yang berada diatas kristal akan lebih cepat atau lebih mudah menurun dibandingkan dengan suhu yang berada diatas air yang didinginkan natara sushu -5° C dan -25° C. Sehingga apabila kristal es dan butir-butir uap air yang didinginkan berada secara bersamaan di awan, maka titik uap air cenderung menyublim langsung di atas kristal es.selanjutknya kristal es akan terbentuk lebih besar karena adanya endapan dari uap air yang pada akhirnya akan jatuh ke permukaan bumi berbentuk butir-butir es. Terjadinya peristiwa jatuhnya butir-butir es ke permukaan bumi ini akan mengakibatkan butir-butir es akan terus tumbuh dan mengalami proses kondensasi dan bergabung dengan butir-butir es yang lain.(Maryanti, 2017)

Tipe hujan di suatu daerah ada bermacam-macam, hal ini dipengaruhi oleh kondisi meteorologi pada saat itu. Selain itu penyebab terjadinya tipe hujan juga dipengaruhi oleh kondisi topografi di suatu daerah tersebut. Macam-macam tipe hujan dapat dikategorikan sebagai berikut (Hadisusanto, 2011):

1. Hujan konvektif

Hujan kovektif adalah hujan yang disebabkan oleh terjadinya konveksi thermal dari udara yang lembab. Kondisi ini terjadi apabila udara dibawah dipanasi, yang berakibat udara akan mengembangdan dipaksa untuk naik ke atas udara dingin yang lebih berat. Sistem konveksi terdiri dari banyak sel arus udara naik dan udara turun. Jika arus naik mencapai ketinggian kondensasi, maka terbentuklah awan Comulus. Jika udara lembab sekali maka terjadi awan Comulusnimbos pada ketinggian yang tinggi kemudian ada kemungkinan terjadi hujan lebat dengan petir dan kilat.

Sifat-sifat hujan konvektif:

- a. Hujan yang terjadi lebat apalagi jika dibarengi dengan udara yang turun.
- b. Hujan ini sering terjadi pada petengahan hari menujusenja apabila hujan terjadi di daerah yang luasnya terbatas.

Hujan konvektif ini sangat sering turun lebat sehingga tidak baik untuk tanaman dibandingkan dengan hujan yang jatuhnya merata, karena hujan ini akan lebih banyak hilang di permukaan tanah atau tidak masuk meresap ke dalam tanah.

2. Hujan Orografis

Hujan orografis adalah hujan yang terjadi karena adanya rintangan topografi dan di perhebat oleh dorongan air yang berhembus dari gunung-gunung atau dataran tinggi. Curah hujan tahunan yan terjadi di dataran tinggi biasanya lebih tinggi terutama di bagian lereng-lereng tempat angin datang dibandingkan dengan dataran rendah. Lereng hujan adalah sisi gunung yang dilewati oleh banyak udara dan banyak mendapatkan hujan, sedangkan sisi yang dilewati oleh udara kering adalah bagian belakang gunung yang disebut lereng bayangan hujan. Hujan orografis ini terjadi daerah pegunungan yaang merupakan hulu daerah aliran sungai.

3. Hujan frontal

Hujan frontal adalah hujan yang sering terjadi di daerah yang sangat luas. Hujan ini sering kali terjadi di daerah pertengahan dan jarang sekali terjadi di daerah trofis. Kenaikan udara frontal ditandai dengan lerengnya yang landau, dimana udara panas akan naik ke lerengnya diatas udara yang dingin.

Di Indonesia ada 3 macam hujan yang sering terjadi, antara lain adalah hujan orografis, hujan frontal, dan hujan zenith. Hujan zenith sering hanya terjadi di daerah katulistiwa. Hujan zenith adalah hujan yangyang memicu penguapan air ke atas langit lalu bertemu dengan udara dingin dan akhirnya menjadi hujan. Hujan zenith ini disebabkan oleh suhu panas pada garis katulistiwa.

Intensitas hujan adalah jumlah curah hujan dalam satuan waktu yang dinyatakan dalammm/jam, mm/hari, mm/minggu, mm/bulan, mm/tahun dan lain sebagainya berturut-turut sehingga sering disebut hujan jam-jaman, harian, mingguan, bulanan, tahunan, dan sebagainya. Jumlah hujan yang jatuh biasanya dihitung dalam kedalaman air atau biasanya mm.

Tabel 2.1 Keadaan Hujan dan Intensitas Hujan

	Intensit	tas Hujan
Keadaan Hujan	1 Jam	24 Jam
Hujan sangat ringan	<1	<5
Hujan ringan	1-5	5-20
Hujan normal	5-10	20-50
Hujan lebat	10-20	50-100
Hujan sangat lebat	>20	>100

Sumber: Sosrodarsono, 1985

Menurut tabel diatas, curah hujan tidak bertambah sebanding dengan waktu. Hujan tersebut bisa berkurang ataupun berhenti. Maka, jika durasi waktu hujan lebih lama, kemungkinan penambahan curah hujan lebih kecil dibanding dengan penambahan waktu.

Durasi hujan adalah waktu yang dihitung dari awal mula hujan turun hingga hujan reda, durasi hujan biasanya dinyatakan dalam satuan waktu yaitu jam. Intensitas hujan rerata adalah perbandingan durasi hujan dan kedalaman hujan. Misalkan, hujan dalam selang waktu 2 jam menghasilkan kedalaman 20 mm, makaintensitas hujannya adalah 10 mm/jam.

Curah hujan harian adalah hujan yang turun lalu tercatat pada stasiun pengamatan curah hujan setiap hari atau selama 24 jam. Data curah hujan harian biasanya dipakai untuk simulasi kebutuhan air tanaman, simulasi operasi waduk. Curah hujan harian maksimum adalah curah hujan harian yang paling tinggi dalamtahun pengamatan pada suatu stasiun tertentu.

2.1.2.1 Pengukuran Hujan

Alat pengukur curah hujan yang dapat mengukur besarnya curah hujan tersebut terdiri dari 2 jenis, yaitu (Maryanti, 2017):

1. Alat penakar hujan manual

Cara menggunakan alat ini yaitu dengan mencari air hujan yang telah tertampung disuatu penampungan air yang volumenya diukur setiap interval waktu tertentu atau setiap turunnya hujan. Lalu akan diperoleh data curah hujan dalam satu periode tertentu. Bagian-bagian alat ini terdiri dari corong dan bejana. Alat penakar hujan yang banyak digunakan di Indonesia yaitu alat penakar hujan "Hellman" dengan tinggi pemasangannya 120 cm diatas muka tanah dan luas corongnya 200 cm². Sedangkan alat penakar hujan ini berbeda tinggi dan luas corongnya di berbagai negara.

2. Alat penakar hujan otomatis

Adalah alat yang bisa mencatat besarnya curah hujan secara otomatis. Selain bisa mendapat data besarnya curah hujan dalam waktu tertentu, alat ini juga dapat meperoleh data besarnya intensitas curah hujan dan lama waktu hujan.

2.1.2.2 Analisis Hujan Wilayah

Hujan wilayah adalah hujan yang pengukurannya terjadi di suatu wilayah tertentu.data hujan yang diperoleh dari suatu alatt penakar hujan adalah data hujan yang terjai hanya pada satu wilayah saja (*point rainfall*).

Ada beberapa metode yang digunakan dalam perhitungan hujan wilayah DAS, yaitu (Lashari, 2017) :

a. Metode Rata-Rata Aljabar

Metode ini digunakan pada daerah yang penyebaran statisiun hujannya merata atau untuk daerah datar. Perhitungan rata-rata metode aljabar ini dengan cara membagi rata jumlah hujan dengan n atau banyaknya pos penakar. Dapat dirumuskan sebagai berikut :

$$P = \frac{P1 + P2 + P3 + \cdots Pn}{n} \tag{2.1}$$

Dimana,

P = hujan rata-rata (mm)

P1, P2,..Pn = jumlah hujan masing-masing stasiun yang diamati (mm)

N = banyak pos penakar

b. Metode Poligon Thiessen

Metode ini cocok untuk daerah yang stasiun hujannya tidak merata atau daerah yang tidak datar misalkan pegunungan. Cara perhitungan hujan rata-rata metode polygon thiessen adalah sebagai berikut :

- 1. Menggabungkan masing-masing stasiun hujan dengan polygon.
- 2. Membuat garis antara stasiun hujan hingga bertemu dengan garis lainnya pada suatu polygon.
- 3. Garis pada polygon membatasi luas area yang mewakili masing-masing stasiun hujan. Faktor pemberat dalam menghitung hujan ratarata yaitu luas sub-area masing-masing stasiun hujan.

Perhitungan hujan rata-rata pada suatu DAS dirumuskan :

$$P = \frac{P1.A1 + P2.A2 + P3.A3 + \cdots Pn.An}{A1 + A2.A3.An}$$
 (2.2)

Keterangan:

P = hujan rata-rata (mm)

P1, P2,... Pn = jumlah hujan masing-masing stasiun yang diamati (mm)

A1, A2, .. An = luas sub-area yang mewakili masing-masing stasiun (km²)

c. Metode Isohyet

Untuk mengerjakan metode ini dibutuhkan kehalian dan pengalaman, karena metode ini adalah metode yang paling akuratdalam menentukan huja rata-rata. Cara perhitungannya secara aktual pengaruh tiap-tiap pos penakar hujan.

Langkah-langkah metode Isohyet:

- 1. Pola data kedalaman air hujan untuk tiap pos penakar hujan pada peta.
- 2. Menggambar kontur kedalaman air hujan dengan menghubungkan titik-titik yang mempuanyai kedalama air yang sama. Interval isohyet yang biasa dipakai adalah 10mm.
- 3. Menghitung luas area antara dua garis isohyet dengan menggunakan planimeter. Mengalikan masing-masing luas areal dengan rata-rata hujan antara dua Isohyet yang berbeda.

Perhitungan hujan rata-rata pada suatu DAS dapat dirumuskan :

$$P = \frac{A1^{\frac{P1+P2}{2}} + A2^{\frac{P1+P2}{2}} + \dots + An - 1^{\frac{Pn-1+Pn}{2}}}{A1 + A2 + \dots + An - 1}$$
Keterangan: (2.3)

P = hujan rata-rata (mm)

P1, P2,.. Pn = jumlah hujan masing-masing stasiun yang diamati (mm)

A1, A2, .. An = luas sub-area yang mewakili masing-masing stasiun hujan (km²)

Metode Isohyet ini cocok untuk daerah berbukit yangmemiliki luas lebih dari 5.00 km².

Pemilihan metode yang cocok dipakai pada suatu DAS dapat ditentukan dengan faktor-faktor berikut:

1. Jaring-jaring Pos Penakar Hujan

Penggunaan metode berdasarkan pada faktor jaring-jaring pos penakarhujan dapat dilihat di Tabel 2.2 dibawah ini

Tabel 2.2 Penggunaan Metode berdasarkan Jaring-jaring Pos Penakar Hujan.

Pos penakar hujan	Metode
Jumlah pos penakar hujan cukup	Metode Isohyet, Thiessen dan rata-rata aljabar bisa digunakan
Jumlah Terbatas pos penakar hujan terbatas	Rata-rata aljabar dan Thiessen
Pos penakar hujan tunggal	Metode hujan titik

2. Luas DAS

Penggunaan metode yang berdasarkan pada faktor luas DAS dapat dilihat pada Tabel 2.3 dibawah ini :

Tabel 2.3 penggunaaan metode berdasarkan Luas DAS

DAS	Metode
DAS besar (> 5000 km ²)	Metode Isohyet
DAS sedang (500 s/d 5000 km²)	Metode Thiessen
DAS kecil (<500 km ²)	Metode rata-rata aljabar

3. Topografi DAS

Penggunaan metode yang berdasarkan pada faktor topografi DAS dapat dilihat pada Tabel 2.4 dibawah ini :

Tabel 2.4 Penggunaan metode berdasarkan topografi DAS

Jenis topografi DAS	Metode
Pegunungan	Metode r <mark>ata-r</mark> ata alja <mark>ba</mark> r
Dataran	Metode Thiessen
Perbukitan	Metode Isohyet

2.1.2.3 Analisis Frekuensi Hujan Rencana

Analisis data hujan dimaksudkan untuk menentukan besarnya hujan rencana. Ada beberapa tahapan hitungan dalam analisis ini antara lain hitungan wilayah daerah aliran sungai (DAS) diikuti dengan analisis frekuensi dan intensitashujan.

Dengan menghitung parameter statistik seperti nilai rata-rata, deviasi standar, koefisien variasi, koefisien skewness dari data yang ada serta diikuti dengan uji statistik, maka distribusi probabilitas hujan yang sesuai akan dapat ditentukan.

1. Pengukuran Dispersi

a. Deviasi Standar (S)

Deviasi standar dan varian adalah disoesi yang paling banyak digunakan pada umumnya. Varian dihitung sebagai nilai kuadrat dari deviasi standar. Apabila penyebaran data sangat kecil terhadap nilai rata-rata maka deviasi standar akan kecil. Begitu juga sebaliknya,

apabila niai data sangat besar tehadap nilai rata-rata maka deviasi standar akan besar.

Rumus perhitungan deviasi standar adalah sebagai berikut :

$$S = \sqrt{(\sum_{i=1}^{h} (Xi - X)^2)/n-1}$$
 (2.4)

Keterangan:

S = deviasi standar

Xi = nilai variat ke i

X = nilai rata-rata variat

N = jumlah data

b. Koefisien Skewness (Cs)

Kemencengan (Skewness) adalah suatu nilai yang menunjukkan bentuk ketidaksimetrisan dari suatu distribusi. Biasanya ukuran kemencengan dinyatakan dengan besarnya koefisien kemencengan ataukoefisien skewness.

Rumus perhitungan koefisien skewness adalah sebagai berikut:

$$C_{S} = \frac{n \sum_{i=1}^{n} (Xi - X)^{3}}{(n-1)(n-2)S^{3}}$$
 (2.5)

Keterangan:

Cs = koefiesien skewness

S = deviasi standar

Xi = nilai variat ke i

X = nilai rata-rata variat

N = jumlah data

c. Koefisien Kurtosis (Ck)

Pengukuran koefisien Kurtosoisi adalah untuk menghitung atau mengukur keruncingan dari bentuk kurva distribusi, yang pada umumnya dibandingkan dengan distribusi normal.

Rumus perhitungan koefisien kurtosisi adalah sebagai berikut :

Ck =
$$\frac{\frac{1}{n}\sum_{i=1}^{n}(Xi-X)^4}{S^4}$$
 (2.6)

Keterangan:

Ck = Koefisien kurtosis

S = deviasi standar

 \underline{Xi} = nilai variat ke i

X = nilai rata-rata variat⁴

n = jumlah data

d. Koefisien Variasi (Cv)

Koefisien variasi adalah nilai perbandingan antara deviasi standar dengan nilai rata-rata.

Rumus perhitungan koefisien variasi adalah sebagai berikut :

$$Cv = \frac{s}{x} \tag{2.7}$$

Keterangan:

Cv = koefisien variasi

S = deviasi standar

X = nilai rata-rata variat

2. Penentuan Jenis Distribusi

Dalam ilmu statistik ada beberapa jenis dibtribusi antara lain yaitu Distribusi Normal, Gumbel, Log Normal, Los Pearson III. Karena itu diperlukan untuk meninjau jenis distribusi data hujan yang ada di daerah studi. Meninjau jenis distribusi data hujan dapat dilakuakn dengan cara analisis dengan menggunakan Tabel 2.5 dibawah ini.

Tabel 2.5 Parameter Statistik unutuk Menentukan Jenis Distribusi

No	Distribusi	Syarat Distribusi
1	Normal	$(X + S) = 68.27 \% (X \pm 2S) = 95.44 \%$
		$C_S \approx 0$
		Ck ≈ 3
2	Log Normal	$Cs = Cv^3 + 3Cv$
		$Ck = Cv^8 + 6Cv^6 + 15Cv^4 + 16Cv^2 + 3$
3	Gumbel	Cs = 1.14
		Ck = 5.4
4	Log Pearson III	Selain dari nilai diatas

(Sumber: Bambang Triatmodjo, 2008)

3. Distribusi Normal

Distribusi normal atau kurva normal disebut pula distribusi Gauss.

Persamaan yang digunakan:

$$P(X) = \frac{1}{S\sqrt{2\pi}}e^{X-\pi^2/2S^2}$$
 (2.8)

Apabila variabel X, ditulis dalam bentuk berikut:

$$Z = \frac{x - x}{c} \tag{2.9}$$

Maka persamaan diatas menjadi:

$$P(Z) = \frac{1}{2\pi} e^{-2^2/2}$$

Keterangan:

P = probabilitas

X= variabel bebas

 $\overline{\mathbf{X}}$ = nilai rata-rata

S = deviasi standar

Z = satuan standar

Sri Harto (1993) memberikan sifat-sifat distribusi normal, yaitu nilai koefisien skewness sana dengan nol (Cs \approx 0) dan koefisien kurtosis mendekati tiga (Ck \approx 3). Selain itu terdapat sifat-sifat distribusi frekuensi kumulatif berikut ini :

$$P(X - S) = 15,87\%$$

$$P(X) = 50\%$$

$$P(X + S) = 84,14\%$$

4. Distribusi Log Normal

Distribusi Log Normal digunakan jika nilai logaritmanya memenuhi distribusi normal, akan tetapi nilai variabel random tidak sesuai dengan distribusi normal.

Sifat-sifat distribusi Log Normal (Sri Harto, 1993):

Koefisien Skewness : $Cs = Cv^3 + 3Cv$

Koefisien Kurtosis : $Ck = Cv^8 + 6Cv^6 + 15 Cv^4 + 16 Cv^2 + 3$

5. Distribusi Gumbel

Distribusi Gumbel digunakan untuk analisis data tertinggi atau maksimum, misalnya untuk frekuensi banjir.

Rumus Persamaan dalam Distribusi Gumbel:

$$G = \frac{\sqrt{6}\{0.5772 + \ln\left[\ln(\frac{T}{})\right]\}}{(2.11)}$$

Keterangan:

G = Faktor frekuensi

T = kala ulang

Sifat-sifat Distribusi Gombel:

- 1. Koefisien Skewness : Cs = 1.14
- 2. Koefisien Kurtosis : Ck = 5.4

6. Distribusi Log Pearson III

Distribusi Log Pearson III digunakan jika parameter statistik Cs dan Ck memiliki nilai selain dari [arameter statistik untuk distribusi lain (Normal, Log Normal, dan Gumbel). Langkah-langkah penggunaan metode Log Pearson III :

- 1. Penyusunan data curah hujan tahunan rat-rata di tabel
- 2. Menghitung nilai logaritma dari data yang telah disusun dengan transformasi:

 $y_i = In Xi atau y_i = log Xi$

- 3. Menghitung nilai rata-rata dari In Xi, deviasi standar (S), Koefisien Skewness Cs, dan nilai logaritma yi.
- 4. Menghitung nilai rencana sesuai rumus selanjutnya dengan

ketentuan:

$$XT = arc In y atau XT = arc log y$$

2.2 Hujan Rencana

Menurut data nilai parameter yang ada dan telah dipilih jenis distribusi probabilitas hujan yang sesuai dengan hasil uji statistik, hujan rancangan kemudiandihitung dengan rumus sebagai berikut :

$$RT = X + G.S \tag{2.12}$$

Keterangan:

RT = tinggi hujan dengan kala ulang T tahun

X = tinggi hujan rencana

G = faktor frekuensi, yaitu fungsi jenis distribusi dan kalaulang

S = deviasi standar

2.2.1 Analisis Intensitas Hujan

Intensitas hujan adalah curah hujan per satuan waktu. Intensitas Hujan dilambangkan dengan I dan satuannya berupa mm/jam, mm/menit, mm/hari. Besarny aintensitas hujan ini sangatlah diperlukan untuk menghitung debit banjir rencana berdasarkan metode rasional (Suroso, 2006).

Durasi adalah seberapa lama turunnya hujan atau kejadian hujan. Apabila Intensitas hujannya tinggi biasanya huajn akan berlangsung dengan durasi pendek dan meliputi daerah yang tidak begitu luas. Sedangkan apabila durasi hujannya lama maka intensitas hujan tinggi akan sangat jarang terjadi dengan kata lain hujan akan memiliki intensitas yang rendang apabila durasinya cukup panjang dan di daerah yang luas. Kombinasi antara intensitas hujan tinggi dengan durasi yang lamaberarti sejumlah besar volume air ditumpahkan dari langit (Sudjarwadi dalam Maryanti, 2017).

Loebis (1980) mengemukakan bahwa analisis hubungan antara dua parameter hujan yang penting berupa intensitas dan durasi, dapat dihubungkan secara statistik dengan suatu frekuensi kejadian. Penyajian secara grafik hubungan antara intensitas dan durasi ini berupa kurva *Intensuty-Duration-Frequency* (IDF).

Macam-macam metode yang digunakan dalam perhitungan intensitas hujan, yaitu:

1. Rumus Talbot

Banyak yang menggunakan rumus ini karena mudah diterapkan dan tetapan-tetapan a dan b ditentukan dengan harga-harga terukur.

Rumus:

$$I = \frac{a}{b+t} \tag{2.13}$$

$$a = \frac{\sum \{I.t\} \sum [I]^2 - \sum [I^2t] \sum [I]}{N \sum [I^2] \sum [I][I]}$$
 (2.14)

$$b = \frac{\sum [I] \sum [I.t] - N \sum [I^2.t]}{N \sum [I^2] \sum [I][I]}$$
 (2.15)

Keterangan:

I = intensitas hujan (mm/jam)

t = durasi hujan (jam)

a dan b = konstanta

N = jumlah data

2. Rumus Sherman

Pada tahun 1905 Prof. Sherman mengemukakan rumus ini bisa saja cocok untuk jangka waktu hujan yang durasinya minimal 2 jam.

Rumus:

$$I = \frac{a}{t^{5}} \tag{2.16}$$

$$Log \ a = \frac{\sum_{i=1}^{N} (\log 1) \sum_{i=1}^{N} (\log t)^{2} - \sum_{i=1}^{N} (\log t \log 1) \sum_{i=1}^{N} (\log t)}{n \cdot \sum_{i=1}^{N} (\log t)^{2} - \sum_{i=1}^{N} (\log t) \sum_{i=1}^{N} (\log t)}$$
(2.17)

$$b = \frac{\sum_{i=1}^{N} (\log 1) \sum_{i=1}^{N} (\log t)^{2} - n. \sum_{i=1}^{N} (\log t \log 1)}{n.\sum_{i=1}^{N} (\log t)^{2} - \sum_{i=1}^{N} (\log t) \sum_{i=1}^{N} (\log t)}$$
(2.18)

Keterangan:

I = Intensitas Hujan (mm/jam)

t = durasi hujan (jam)

n = konstanta

N = jumlah data

3. Rumus Ishiguro

Dr. ishiguro mengemukakan rumus ini pada tahun 1953.

Rumus:

$$I = \frac{a}{\sqrt{t+b}} \tag{2.19}$$

$$\alpha = \frac{\sum_{i=1}^{N} (i.\sqrt{t}) \sum_{i=1}^{N} (I^2) - \sum_{i=1}^{N} (I^2.\sqrt{t}) \sum_{i=1}^{N} (I)}{n.\sum_{i=1}^{N} (I^2) - \sum_{i=1}^{N} (I) \sum_{i=1}^{N} (I)}$$
(2.20)

$$b = \frac{\sum_{i=1}^{N} (l) \sum_{i=1}^{N} (l\sqrt{t}) - n \cdot \sum_{i=1}^{N} (l^2 \cdot \sqrt{t})}{n \cdot \sum_{i=1}^{N} (l^2) - \sum_{i=1}^{N} (l) \sum_{i=1}^{N} (l)}$$
(2.21)

Keterangan:

I = intensitas hujan (mm/jam)

t = durasi hujan (jam)a dan

b = konstanta

N = jumlah data

4. Rumus Mononobe

Rumus ini dikemukakan oleh Mononobe (Suyono dan Takeda, 1983) untuk menurunkan kurva IDF. Dalam rumus ini data hujan yang digunakan adalah data hujan harian.

Rumus:

$$I = R_{24}/24 x \left[\frac{24}{t_c} \right]^{2/3} \tag{2.22}$$

Keterangan:

I = intensitas hujan (mm/jam)

t_c = waktu konsentrasi (jam)

R₂₄ = curah hujan selama 24 jam (mm)

5. Rumus SDR-IDF (Shirt Duration Rainfall Intensity DurationFrequency)

Rumus ini merupakan hasil penelitian dari MM Rashid, S.B Farque, dan J.B Alam (2012). Dalam penelitian ini data yang dipakai adalah data hujan harian yang direduksi dalam rumus $I = P_{24}(t/24)^{1/3}$ untuk memperoleh peramaan kurva IDF.

$$I = x \cdot t^{-y} \tag{2.23}$$

X dan y merupakan konstanta atau x = y

Dari persamaan diatas didapatkan konstanta x dan y untuk intensitas hujan dengan kala ulang 2, 5, 10, 25, dan 50 tahun. Konstanta x dan y rumus SDR-IDF dapat dilihat pada tabel dibawah ini:

Tabel 2.6 konstanta x dan y Rumus SDR-IDF

Kala Ulang	X	Y
2	1079.30	0.667
5	1381.40	0.664
10	1621.90	0.667
25	1910.0	0.667
50	2127.0	0.667

(Sumber: ARPN Journal Of Science and Technology, 2012)

Dengan menggunakan rumus persamaan Mononobe, akan menghasilkan rumus yang dapat digunakan dalam perhitungan intensitas hujan. Rumus intesitas hujan dapat dilihat pada tabel dibawah ini.

Tabel 2.7 Rumus Intensitas Hujan

Jam Ke-	$I = (R24/24) \times (24/T)^{2/3}$	I (mm/jam)
0.083 (5 menit)	$I = (R24/24) \times (24/0.083)^{2/3}$	1.822 R ₂ 4
0.167 (10 menit)	$I = (R24/24) \times (24/0.167)^{2/3}$	1.143 R24
0.25 (15 menit)	$I = (R_24/24) \times (24/0.25)^{2/3}$	0.874 R ₂₄
0.50 (30 menit)	$I = (R24/24) \times (24/0.50)^{2/3}$	0.550 R24
0.75 (45 menit)	$I = (R24/24) \times (24/0.75)^{2/3}$	0.420 R24
	$I = (R_24/24) \times (24/1)^{2/3}$	0.347 R24
2	$I = (R_{24}/24) \times (24/2)^{2/3}$	0.218 R ₂ 4
3	$I = (R24/24) \times (24/3)^{2/3}$	0.167 R24
للسية 6	$I = (R_24/24) \times (24/6)^{2/3}$	0.105 R ₂ 4
12	$I = (R24/24) \times (24/12)^{2/3}$	0.066 R ₂ 4

6. Kurva Intensitas Durasi dan Frekuensi (IDF)

Kurva IDF adalah hubungan antara durasi hujan dan intensitas hujan. Kurva ini bisa digunakan untuk menghitung limpasan (run-off) dan untuk menghitung debit puncak apabila menggunakan metode rasionaldengan memilih intensitas hujan yang sebanding dengan durasi atau waktu pengaliran curah hujan dari titik paling tinggi yang tertinjau di bagian hilir daerah aliran tersebut (*arrival time*). Hubungan intensitas hujan dan durasi hujan dinyatakan dengan berbentuk lengkung intensitas hujan dalam kala ulang tertentu.

7. Metode Rasional

Untuk menentukan laju aliran permukaan puncak menggunakan metode rasional. Metode rasional ini digunakan untuk DAS yang berukuran kurang dari 300 hektar, sedangkan menurut PU digunakan untuk DAS yang berukuran kurang dari 5000 hektar (Lily Montarcih, 2010). Rumus metode Rasional adalah sebagai berikut :

$$Q = 0.002778 \text{ C.I.A}$$
 (2.24)

Keterangan:

Q = intensitas hujan (mm/jam)

I = waktu konsentrasi

A =Luas DAS (hektar)

C = koefisien aliran permukaan

Nilai koefisien permukaan bidang dilihat pada tabel di bawah ini.

Tabel 2.8 Koefisien Limpasan Untuk Metode Rasional

Diskripsi Lahan/Karakter Permukaan	Koefisien Aliran, C
Bussines	
Perkotaan	0,70 - 0,95
Pinggiran	0,50 - 0,70
Perumahan	
Rumah tunggal	0,30 - 0,50
Multiunit, terpisah	0,40 - 0,60
Multiunit, tergabung	0,60 - 0,75
Perkampungan	0,25 - 0,40
Apartemen	0,50 - 0,70
Industri	
Ringan	0,50 - 0,80
Berat	0,60 - 0,90
Perkerasan	
Aspal dan Beton	0,70 - 0,95
Batu bata dan paving	0,50 - 0,70
Atap	0,75 - 0,95
Halaman, tanah berpasir	
Datar 2%	0,05 - 0,10
Rata-rata 2-7%	0,10 - 0,15
Curam 7%	0,15 - 0,20
Hal <mark>am</mark> an, t <mark>anah</mark> berat	
Datar 2%	0,13 - 0,17
Rata-rata 2-7%	0,18 - 0,22
Curam 7%	0,25 - 0,35
Halaman, Kereta Api	0,10 - 0,35
Taman tempat bermain	0,20 - 0,35
Taman, perkuburan	0,10 - <mark>0,</mark> 25
Hutan \\ معتساطان الجوج الإسلاميم	e //
Datar 0-5%	<mark>0,10 -</mark> 0,40
Bergelombang 5-10%	0,25 - 0,50
Berbukit 10-30%	0,30 - 0,60

(Sumber: Mc Guen, 19

Dari Tabel 2.8 terlihat bahwa nilai C digunakan untuk penggunaan lahan yang sejenis, dimana kondisi tersebut sangat jarang ditemui untuk lahan yang relative luas. Apabila DAS tersusun dari berbagai jenis penggunaan lahan dengan koefisien aliran permukaan yang berbeda, maka C yang dipakai adalah koefisien DAS yang dapat dihitung dengan rumus berikut:

$$C_{DAS} = \frac{\sum_{i=1}^{n} Ci \ Ai}{\sum_{i=1}^{n} Ai}$$
 (2.25)

Keterangan:

Ai = luas lahan dengan jenis penutup tanah i

Ci = koefisien aliran permukaan jenis penutup tanah i

N = jumlah jenis penutup tanah

2.3 Penurunan Muka Tanah (Land Subsidence)

Semarang adalah salah satu kota yang mengalami penurunan muka tanah. Penurunan tanah (*Land subsidence*) adalah fenomena alam yang sering terjadi di wilayah-wilayah tertentu, yang keberadaannya di atas lapisan sedimen. Terjadinya penurunan muka tanah biasanya tidak dapat langsung disadari, awal mula disadarinya yaitu dengan adanya tanda perubahan fisik pada bangunan yang berada diatas lahan yang mengalami penurunan permukaan tanah tersebut. Penurunan muka tanah ini terjadi karena adanya beban fisik yang berada diatas bangunan tersebut yang akan berlangsung terus menerus tanpa batas waktu tertentu. Untuk mengatasi penurunan tanah dapat dilakukan dengan pemantauan yang memiliki tujuan untuk menentukan parameter penurunan muka tanah yang memiliki keterkaitan denganwaktu, antara lain berupa kecepatan dan percepatan penurunan muka tanah.(Maryanti, 2017)

Dataran Semarang bawah merupakan endapan alluvial yang memiliki tebal 40 – 45 meter dengan permeabilitas tanah yang rendah. Adanya penyedotan air bawah tanah yang berlebihan membuat tanah menjadi ambles dan proses penurunantanah masih terus berlangsung, selain itu terjadi juga proses konsolidasi alluvial. Ada beberapa studi yang menunjukan bahwa pengambilan air bawah tanah yang berlebih akan mengakibatkan penurunan tanah di Kota Semarang. Laju penurunan tanah pada tahun 1985 sampai 2002 menurut hasil studi ITB (1995) melaluisimulasi komputer yaitu berkisar antara 0,5 sampai 1,6 cm/tahun dengan sebaran 1,0 cm/tahun. (Maryanti, 2017)

Informasi tentang karakteristik penurunan tanah ini perlu diketahui dengan sebaik-baiknya dan dengan pemantauan yang berkesinambungan karena data data dan informasi tentang penurunan tanah ini akan sangat bermanfaat bagi aspek-

aspek pembangunan. Misalnya perencanaan tata ruang baik diatas ataupun dibawah permukaan tanah, perencanaan pembangunan sarana/prasarana, pelestarian lingkungan, mengendalikan air tanah, pengambilan air tanah, mengendalikan intuisi air laut dan melindungi masyarakat (linmas) dari dampak yang diakibatkan oleh penurunan tanah misalnya terjadinya banjir.(Maryanti, 2016)

2.4 Sistem Polder

Drainase sistem polder adalah suatu sistem untuk menangani drainase perkotaan dengan melakukan isolasi terhadap daerah cathcment (*cathchment area*)dari masuknya air yang berasal dari luar sistem baik air yang berupa limpasan (*over flow*) dan juga aliran aliran bawah permukaan tanah (gorong-gorong dan rembesan), juga mengendalikan elevasi muka air banjir didalam sistem tersebut sesuai denganrencana (Al Falah, 2000).

Polder adalah suatu kawasan yang tertutup, yang dibatasi oleh tanggul.Batas daerah Polder tidak hanya berbentuk tanggul, tetapi bisa juga berbentuk jalan, yaitu jalan raya, jalan kereta api dan lain sebagainya. Air yang masuk ke dalam polder hanya berupa air hujan dan rembesan. Tidak ada air yang masuk ke dalam polder dari luar kawasan. Jika air sudah melebihi batas, air tersebut akan dialirkan ke luar kawasan polder. Oleh karena itu Polder memiliki Outlet Structure (struktur keluar), bisa berbentuk Pompa atau pintu air (Sawarendro, 2010).

Sistem polder dibangun di kawasan yang rawan oleh banjir dan air rob. Kawasan tersebut diberi batas keliling yang disebut batas hidrologi. Air yang berasal dari daerah lain akan ditahan dan tidak bisa masuk ke dalam polder karena ada iar yang berasal dari rembesan dan air yang berasal dari hujan yang turun di daerah tersebut. Air tersebut akan dikelola agar tidak menyebabkan banjir di daerahkawasan tersebut (Sawarendro, 2010)

Air Rob adalah banjir yag disebabkan oleh pasang-surut air laut. Pasang surut air laut disebabkan oleh gaya tarik-menarik benda tata surya, terutama matahari dan bulan terhadap massa air laut bumi.pengaruh gaya tarik bulan terhadap bumi lebih besar daripada gaya tarik matahari, meskipun massa bulan

jauh lebih kecil dibandingkan massa matahari dan juga karena jarak bulan ke bumi lebih dekat. Gaya tarik bulan yang mengakibatkan pasang surut air laut yaitu sebesar 2,2 kali lebih besar daripada gaya tarik matahari (Triatmojo dalam Maryanti, 2017)

Sistem polder terdiri dari beberapa bagian, yaitu :

a. Tanggul

Tanggul adalah sebuah pembatas untuk membatasi catchment area sistem polder tersebut dari masuknya air banjir dari luar ataupun air laut pasang baik diatas permukaan tanah ataupun berada dibawah permukaan tanah.

b. Kolam retensi

Kolam retensi adalah tempat penampungan air ketika debit maksimum telah datang dari banjir rob lalu kemudian mengalirkannya ketika debit banjir rob sudah normal.

c. Saluran drainase

Saluran drainase adalah sebuah saluran yang dibuat untuk mengalirkan airke sungai tidak terjadi genangan-genangan di jalan raya dan di pemukiman penduduk.

d. Pompa

Pompa dalam sistem polder ini berfungsi untuk mengendalikan aliran air yang keluar

e. Pintu air

Pintu air ini berfungsi untuk jalan keluar masuknya air ke catchment area, selain itu juga melindungi catchment area sistem polder dari masuknya banjir dari luar catchment area tersebut.

f. Saluran kolektor

Saluran kolektor adalah saluran yang fungsinya untuk mengumpulkan air dari saluran-saluran yang lebih kecil.

Fungsi dari pintu air dan tanggul yaitu untuk melindungi daerah tangkapan (catchment area) sistem polder dari masuknya air banjir dari luar ataupun air laut pasang baik melalui permukaan tanah ataupun di bawah permukaan tanah.

Fungsi dari sistem pompa, kolam retensi, jaringan saluran drainase dan saluran kolektor adalah untuk pengendalian muka air di dalam catchment area padasaat terjadi banjir.

Fasilitas yang harus ada di dalam stasiun pompa antara lain adalah pintu air, saringan sampah, saluran/pipa outlet, bak penampungan air (berada di bawah rumah pompa), ruang untuk genser dan kontrol panel, rumah jaga dan bak penampungan sampah. Letak bangunan untuk pompa ini tidak boleh dibangun pada saluran utama, tetapi harus dibangun disampingnya agar letak pompa air dan saringan tidakmenghambat aliran air di drainase utama (Al Falah, 2000).

Jika menggunakan pintu air, disarankan agar pintu air jangan sampai bocor dan mudah untuk dioperasikan. Pintu air ini akan dibuka ketika mua air ynag berada dibagian hilir pintu air levasinya lebih rendag dibandingkan dengan muka air yang berada di bagian hulu. Pintu air ini akan ditutup ketika muka air di hilir lebih tinggi elevasinya dibandingkan muka air yang berada di hulu (Al Falah, 2000).

Ketika penggunaan sistem gravitasi sudah tidak memungkinkan untuk digunakan lagi, disini lah sistem polder akan di gunakan sebagai pengganti sistem gravitasi meskipun biaya investasi dan operasinya yang cukup mahal. Konisikondisi yang membuat sistem polder digunakan adalah :

- 1. Elevasi muka tanah yang lebih rendah dibandingkan dengan elevasi muka air sungai yang merupakan outlet saluran drainase yang ada di perkotaan.
- 2. Sering terjadi genangan di daerah pesisir disebabkan oleh lebih tingginya elevasi muka air pasang dibandingkan dengan elevasi mukaair tanah.

Daerah yang telah terjadi penurunan tanah (land subsidence), sehingga daerah yang tadinya elevasinya lebih tinggi dari muka air laut pasang ataupun muka air banjir menjadi daerah yang patutdiwaspadai terkena banjir rob.

Tujuan utama pembuatan sistem polder adalah untuk pengendalian banjir. Tetapi ada hal lain yang ingin dicapai selain pengendalian banjir. Hal-hal yang ingin dicapai dengan dibuatnya sistem polder yaitu sebagai berikut (Sawarendro, 2010):

- 1. Terjaminnya sistem pengelolaan tata air berkelanjutan dengan adanya peran dan patisipasi dari masyarakat.
- 2. Untuk meningkatkan kualitas air dan menciptakan kualitas lingkungan yang lebih baik.
- 3. Menciptakan suatau daerah yang memiliki elevasi rendah yang rawan banjir menjadi daerah yang dapat dikontrol dari banjir dan genangan.

Sifat-sifat yang dimiliki Polder menurut Suripin (2004):

- 1. Polder merupakan daerah yang dibatasi dengna baik, bertujuan agar air yang ada diluar kawasan tidak dapat masuk, yang ditampung di kawasan ini adalah air kawasan sendiri dan juga air hujan (kadang-kadang air rembesan.
- 2. Tidak seperti daerah tangkapan alamiah, didalam polder tidak ada aliran permukaan bebas, akan tetapi dilengkapi dengan bangunan pengendali pada bangunannya untuk mengendalikan aliran yang keluar. Bangunan pengendali ini berupa penguras atau pompa.
- 3. Air permukaan maupun air bawah permukaan yang ada di dalam polder tidak bergantung pada permukaan air di daerah sekitarnya dan dinilai berdasarkan ketinggian atau elevasi lahan, sifat-sifat tanah, iklim, dan juga tanaman.

2.4.1 Efektivitas Pompa

Efektivitas adalah pengukuran untuk keberhasilan dari tujuan-tujuan tertentu yang telah dicapai dengan usaha tertentu. Tujuan dari dibangunnya sistem polder adalah untuk mengurangi terjadinya genangan yang ada di daerah rawan banjir yang ditentukan dengan membandingkan debit masuk dan debit keluar.

Qoutflow ini didapatkan dari perencanaan pompa sedangkan Qinflow dari besarnya debit banjir dan debit rob.

2.5 Sudetan

Sudetan adalah saluran yang digunakan untuk mengalihkan sebagia atau seluruh aliran air banjir dalam rangka mengurangi debit banjir pada daerah yang dilindungi dengan mempertimbangkan alur sungai stabil. Berikut adalah pertimbangan yang dilakukan ketika akan membuat sudetan (Laksamana, 2018) :

1. *Meander* Kritis

Sebelum dilakukannya sudetan, harus melakukan analisis mengenai *meander* sungai. *Meander* adalah bentuk sungai yang berkelok-kelok yang terjadi akibat adanya pengikisan dan pengendapan. *Meander* sebuah sungai akan selalu berpindah-pindah tempat karena proses pengendapan dan penggerusan yang selalu terjadi oleh bekerjanya arus spiral di sungai tersebut. (Mulyanto, 2007).

Parameter *meander* yang kritis mempunyai hubungan proposional, namun untuk menentukan kondisi *meander* (kritis atau tidak), maka perlu dicari parameter setiap *meander* di sungai yang meliputi : R (jarijari *meander*), B(lebar sungai). Dimana apabila R/B < 10 adalah dalam kondisi kritis.(Laksamana, 2018)

2. Perbaikan Arah Alur Sungai di Daerah Sudetan

Pada suatu *meander* sungai, gerusan biasanya terjadi pada tikungan luar, sehingga mengakibatkan pergerakan alur sungai tersebut ke arah tikungan luar. Untuk mengantisipasi laju gerusan pada tikungan luar tersebut, perlu adanya perencanaan tikungan/*meander* sungai yang baik.

3. Normalisasi Penampang Sudetan

Normaliasi penampang sudetan meliputi penampang melintang dan penampang memanjang alur sudetan, berikut penjelasannya:

Penampang memanjang dasar sungai

Pada dasarnya sungai harus stabil terhadap erosi dan sedimentasi, sehingga perlu diketahui kondisi tanah do daerah sudetan untuk analisis kemiringan dasar sungai yang stabil. Biasanya pada alur sungai sudetan memiliki kemiringan yang lebih curam dibanding sungai *existing*. Maka kadang-kadang diperlukan bangunan pengatur dasar sungai berupa *groundsill*.

Penampang Melintang Sungai

Bentuk penampang melintang sungai dapat direncanakan dengan penampang tunggal ataupun ganda yang stabil, dengan mempertimbangkan bentuk hidrolik ynag baik dan dapat mengalirkan debit desain. Penampang melintang yang stabil

maksudnya tidak mudah berubah dalam waktu yang cukup lama, maka perlu adanya analisis penampang terhadap erosi dan longsoran tebing.

4. Bangunan Perkuatan/Pengatur

Bangunan perkuatan atau pengatur yang diperlukan disepanjang alur sudetan pada dasarnya untuk menstabilkan penampang melintang maupun mengatur dasar sungai (penampang memanjang). Macammacam bangunanperkuatan sungai (Laksamana, 2018):

a. Bangunan perkuatan tebing sungai

Bangunan perkuatan tebing sungai diperuntukkan pada tebing sungai yang tidak stabil terutama pada tikungan luar pada sungai yang berkelok, pada lereng yang labil. Hal ini dimaksudkan untukmenghindari adanya lonsor di tebing sungai.

b. Bangunan perkuatan dasar sungai

Pada bagian alur sungai sudetan akan terjadi kemiringan dasar sungai lebih curam dari kemiringan dasar sungai sebelumnya. Maka perlu analisis dasar sungai stabil di daerah sudetan, berdasarkan kondisi tanah di daerah tersebut. Apabila kemiringan dasar sungai stabil (dari analisis) lebih kecil dari kemiringan dasar sungai sudetanmaka diperlukan *groundsill*.

• Rumus untuk mencari Qakhir

Q_{akhir} adalah jumlah debit hasil akhir yang didapat dengan cara mengurangan debit Kali Tenggang yang dikurangi dengan debit alir sudetan, persamaannya adalah sebagai berikut.

Qakhir = Qsebelum adanya sudetan - Qsaluran sudetan (2.26)

Keterangan:

 Q_{akhir} = Debit hasil (m³/dt)

Q_{sebelum adanya sudetan} = Debit Sungai Kali Tenggang sebelum

adanya sudetan (m³/dt)

 $Q_{\text{saluran sudetan}}$ = Debit saluran sudetan (m³/dt)

• Rumus mencari waktu konsentrasi

Rumus yang menetukan waktu konsentrasi ini adalah rumus Kirpich, persamaannya adalah sebagai berikut.

$$tc = L^{1,15}/7700H^{0,385} (2.27)$$

keterangan:

L = Panjang saluran sudetan (m)

H = Hasil pengurangan dari ketinggian hulu dan hilir sungai

(m)

tc = waktu konsentrasi (jam) review terhadap penelitian

sebelumnya

Penelitian tentang sistem polder telah banyak dilakukan oleh penelitipeneliti sebelumnnya, antara lain dapat dilihat pada Tabel 2.14 dibawah ini:

2.6 Review Terhadap Penelitian Sebelumnya

Penelitian tentang sistem polder dan sudetan telah banyak dilakukan oleh peneliti-peneliti sebelumnya, antara lain dapat dilihat pada Tabel 2.9 dibawah ini:

Tabel 2.9 Review terhadap penelitian sebelumnya

Judul	Nama Peneliti (Tahun)	Tujuan	Metode	Hasil
Kajian Kinerja Polder dengan	Mega Asiska Ninda P. (2016)	Tujuan penelitian ini	Metode balance	Hasil presentase pembobotan
Balance Scorecard		untuk mengetahui	scorecard, analisa	didapat menggunakan metode
	100	keefektivitasan kinerja	deskriptif, kuantitatif	AHP dengan urutan yaitu Polder
		polder yang dapat	dan pembobotan	Tanah Mas (370/500), Polder
	\\	mereduksi banjir yang	dengan AHP	Banger (348/500), Polder Kali
		berlokasi di Semarang	(Analytical Hierarki	Semarang 9296/500) dan Polder
		menggunakan penilaian	Proces)	Tawang (287/500). Didapat
		dari masyarakat daerah	3 //	kemampuan Polder dalam
	77	tersebut.		mereduksi banjir yaitu Polder
	\\	- 4		Banger sebesar 56% dan Polder
		IISSULA	- //	Kali Semarang 59%.
Perencanaan Sistem Polder	Royna Kristian Yudi (2017)	Tujuan dari penelitian	Perencanaan kolam	Kolam retensi 126 hektar dengan
Wilayah Semarang Timur	\ <u></u>	ini adalah	retensi, stasiun	kedalaman 3,4 m, debit banjir
		merencanakan sistem	pompa, perbaikan	rencana 10 tahun untuk kolam
		Polder Wilayah	sungai dan tanggul	adalah 126,6 m3/s. Jumlah popa

		Semarang Timur dan	laut. Perhitungan	ada 4 buah dengan kapasitas 15
		merencanakan	debit banjir	m ³ /s. Debit untuk masing-masing
		perbaikan sungai dan	menggunakan	sungai sebesar 82,3 m ³ /s untuk
		tangggul.	permodelan HEC-	sungai Tenggang dan 49,6 m ³ /s
			HMS 4.0, perbaikan	untuk Sungai Sringin. Tinggai
			sungai menggunakan	tanggul pada elevasi +2,7 m diatas
		-1 0.88	model HEC-RAS	permukaan laut dan dibangun dari
		ISLAM SIL	5.0.1	Banjir Kanal Timur hingga Sungai
	100			Babon sepanjang 1,73 km.
Kajian Kinerja Sistem Polder	Hari Nugroho (2016)	Tujuan penelitian ini	Metode Balance	Hasil dari penelitian ini
sebagai Model Pengembangan		adalah untuk	Scorecard	menunjukkan kinerja polder di
Drainase Kota Semarang Bagian		mengetahui kinerja		kota Semarang yang ideal berturut-
Bawah dengan Balance scorecard		sistem Polder di kota		turut adalah : Polder Tanah Mas
		Semarang yang ideal		(73,81/100), Polder Banger
	3	dengan melakukan		(67,21/100), Polder Kali Semarang
		survey kepada		(58,70/100) dan Polder Tawang
	"	masyarakat secara	· //	(58,65/100).
	يبلغين	langsung.	- //	
Perencanaan Sistem Drainase Kali	Martin Artunas Agung (2014)	Tujuan dari penelitian	Perencanaan kolam	Perbaikan dilakukan pada 9
Tenggang Semarang		ini adalah untuk	retensi dan redesign	section,antara lain : Majapahit,

		merencanakan	penampang	Bugen, Tlogosari, Rel area,
		pembangunana kolam	menggunakan	Muktiharjo, Dempellor, Terboyo,
		retensi dan redesign	program HEC-RAS	Pacar dan Tambakrejo. Estimasi
		penampang,	dengan debit banjir	biyaa yang diperlukan dalam
		mengetahui jumlah	hasil HEC-HMS dan	pekerjaan redign saluran
		estimasi biaya	cross section Kali	penampang dan pembangunan
		perencanaan tersebut	Tenggang menjadi	kolam retensi adalah Rp.
		dan juga mengetahui	input datanya.	122.269.035.885,00 dengan watu
	100	waktu pelaksanaan		pelaksaan 156 hari.
		proyeknya.		
Daerah Rawan Genangan Rob di	Aprliliawan Setiya	Penelitian ini bertujuan	Tahapan yang	Kawasan Semarang Utara
Wilayah Semarang	Ramadhany (2012)	untuk mengetahui luas	digunakan tahapan	merupakan kawasan paling luas
		genangan rob pada saat	pengolahan	terkena dampak genangan rob,
		penelitian dan	parameter yang	yaitu seluas 508,28 Ha. Kawasan
	·***	kerawanan terhadap	terbagi menjadi 2,	yang terkena genangan rob terluas
		genangan rob yang	antara lain parameter	kedua yaitu Kecamatan Genuk
	1100:	terjadi di Semarang.	kerawanan dan	dengan luas 377,68 Ha. Yang
	يبلخين	بامعتنسك ناجبوني ترك	parameter rob.	ketiga Kecamatan Tugu sebesar
				257,20 Ha, dan yang terakhir
				Kecamatan Semarang Barat

	dengan luas sebesar 237,19 Ha.
	Selebihnya tersebar di Kecamatan
	Semarang Tengah, Semarang
	Selatan dan Gayamsari.

Dibandingkan dengan penelitian-penelitian yang telah dilakukan oleh peneliti-peneliti sebelumnya, penelitian ini lebih mengacu pada analisis efektivitas Polder Kali Tenggang Semarang dalam penanggulangan banjir setelah dilakukannya Sudetan pada Kali Tenggang menuju aliran sungai BKT. Metode yang digunakan dalam penelitian ini yaitu dengan menghitung debit dengan data curah hujan Wilayah Semarang Timur dan juga menganalisis keadaan banjir yang terjadi sebelum dan sesudah adanya sudetan tersebut.

BAB III

METODE PENELITIAN

3.1 Lokasi Penelitian

Lokasi yang digunakan untuk penelitian adalah lokasi rencana sudetan kali pada hulu Tenggang yang terletak di Jalan Gemah, Pedurungan dan Polder Kali Tenggang yang berlokasi Jalan Nasional 1, Tambak rejo, Kecamatan Gayamsari, Kota Semarang. Kali Tenggang berbatasan langsung dengan pantai di sebelah utara, Banjir Kanal Timur di sebelah barat dan selatan dan Kali Babon di sebelah timur. Daerah tangkapan Kali Tenggang yang luas termasuk daerah Kaligawe, Tlogosari, Palebon.

Gambar 3.1.Peta Lokasi Penelitian Sumber: *Google Maps* (2021)

3.2 Tahapan Penelitian

Tahapan penelitian adalah rencana sitstematis peneliti bisa memperoleh hasil dari tujuan penelitian. Penelitian akan dilakukan dengan beberapa tahapan yaitu :

- Melakukan survey lokasi pada rencana sudetan kali dan Polder Kali Tenggang.
- 2. Melakukan pengumpulan data primer dan sekunder yang mendukung sebagai dasar penyelelesaian masalah.

- Melakukan pengolahan data meliputi analisis hidrologi, perhitungan debit dan analisis efektivitas sudetan Kali Tenggang dalam mengurangi beban kapasitas dan beban kerja pompa Polder Kali Tenggang.
- 4. Melakukan penulisan laporan Tugas Akhir.

3.3 Metode Pengumpulan Data

Pengumpulan data merupakan proses sistematis dan berstandar yang bertujuan untuk mendapatkan data dan informasi yang dibutuhkan untuk tujuan penelitian. Metode pengumpulan data digunakan oleh peneliti berkaitan dengan variabel – variabel obyek yang sedang dikaji. Data yang diperoleh akan disusun dan diolah, Data yang diperoleh dari observasi lapangan secara langsung oleh peneliti disebut data primer, sedangkan data yang diperoleh dari suatu instansi atau lembaga dalam bentuk sudah jadi disebut data sekunder.

a. Data Primer

Data primer yang diperoleh secara langsung merupakan survey lapangan, observasi kondisi rencana lokasi sudetan kali dan kondisi eksiting sistem Polder Kali Tenggang Semarang. Data primer meliputi foto lokasi Polder Kali Tenggang Semarang dan rencana lokasi sudetan kali pada hulu Tenggang.

b. Data Sekuder

Data sekunder didapatkan dari data jadi instansi atau lembaga Sumber terkait, studi pustaka dan penelitian penelitian sebelumnya yang berkaitan dengan penelian ini. Data pembantu dalam penelitian ini adalah:

- 1. Data curah hujan dalam kurun waktu 10 tahun terakhir (2010 2020).
- 2. Peta lokasi dan fisik Polder Kali Tenggang.
- 3. Sistem dan desain Polder Kali Tenggang.
- 4. Data spesifikasi Polder Kali Tenggang
- 5. Data rencana sudetan kali Tenggang.

3.4 Metode Pengolahan Data

Hasil data yang diperolah akan diolah berdasarkan metode yang telah dipilih. Metode pengolahan data meliputi :

- Deskripsi rencana sudetan kali dan spesifikasi sistem Polder Kali Tenggang.
- 2. Pengolahan data hidrologi.

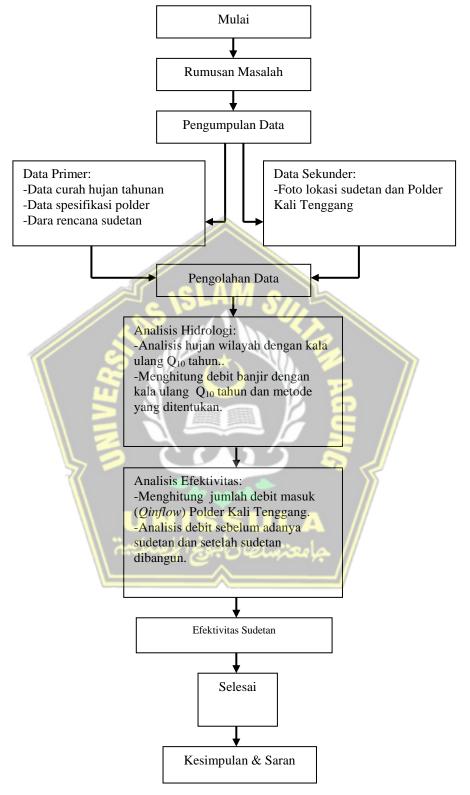
Data curah hujan dengankala ulang 10 tahun yang diperoleh dari BMKG Klas II akan diolah untuk mengetahui nilai intensitas hujan dengan kala ulang 2, 5, 10 tahun. Perhitungan intensitas hujan menggunakan beberapa metode meliputi :

- Metode Mononabe
- Metode Talbot
- Metode Sherman
- Metode Ishiguro
- Metode SDR-IDF
- 3. Perhitungan debit rencana.

Pendekatan hidrologi dengan menggunakan beberapa metode akan menunjukan metode yang memiliki nilai deviasi terkecil. Nilai intensitas yang didapatkan digunakan menghitung debit banjir rencana menggunakan metode rasional.

4. Perhitungan nilai efektivitas debit sudetan dalam mengurangi beban kapasitas dan beban kerja Polder Kali Tenggang.

Nilai debit yang diperoleh digunkan untuk menvati waktu optimal sebagai perbandingan dalam menentukan kurva hidograf. Analisis efektifitas dilakaukan dengan membandingkan besar debit sebelum adanya sudetan dan setelah sudetan dibangun.


3.5 Metode Analisis Data

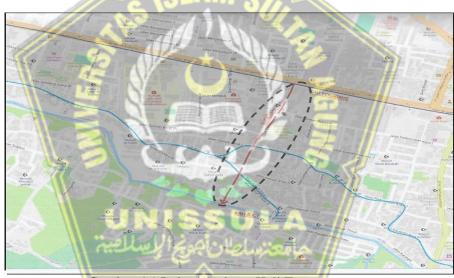
Analisis data yang akan dilakukan meliputi:

- 1. Analisis hidrologi.
- 2. Analisis debit banjir.
- 3. Analisis efektivitas rencana sudetan kali untuk mengurangi beban kapasitas debit banjir dan beban kerja pompa Polder Kali Tenggang.

3.6 Bagan Alir Penelitian

Data dan informasi primer dan sekunder yang telah dikumpulkan akan diolah, dianalisis dan disusun untuk mendapatkan hasil tentang penelitian analisis efektivitas rencana Sudetan Kali Tenggang untuk mengurangi debit Polder Kali Tenggang . Bagan alir penelitian pada Gambar 3.2.

Gambar 3.2 Bagan alir penelitian

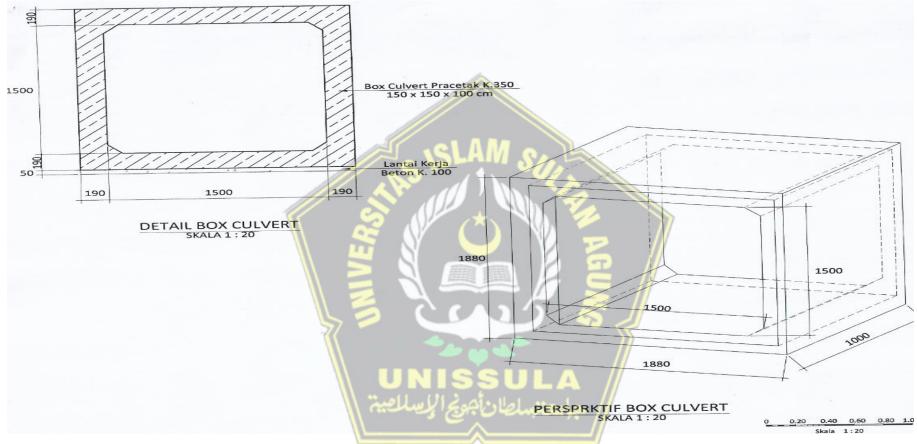

BAB IV ANALISIS DAN PEMBAHASAN

4.1 Sudetan Kali Tenggang

Sistem drainase Kali Tenggang direncanakan untuk pengendalian banjir dan rob di Kota Semarang. Salah satu program pemerintah Kota Semarang adalah rencan sudetan pada hulu Kali Tenggang. Rencana sudetan diperkirakan mampu mengurangi jumlah kapasitas debit Kali Tenggang pada bagian hilir dan beban kerja Polder Kali Tenggang.

4.1.1 Lokasi Sudetan Kali Tenggang

Rencana lokasi sudetan hulu Kali Tenggang berada pada Jalan Gemah Raya Kecamatan Pedurungan, Kota Semarang. Untuk lebih jelasnya dapat dilihat pada gambara 4.1



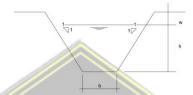
Gambar 4.1 Lokasi Sudetan Kali Tenggang

Sumber: PT. Studi Teknik, 2021

4.1.2 Perencanaan Tata Letak Saluran Sudetan Kali Tenggang

Sudetan hulu Tenggang direncanakan pada as sudetan di tengah Jalan Gemah Raya dengan konstruksi *box culvert* dengan lebar 1,5 meter dan tinggi 1,5 meter. Panjang rencana sudetan adalah 628 meter. Gambar box calvert dapat dilihat pada gambar 4.2

Gambar 4.2 Lokasi Box Culvert


Sumber: PT. Studi Teknik, 2021

4.1.3 Perencanaan Hidrolis Saluran Sudetan

Perencanaan hidrolis saluran didasarkan pada Kriteria Perencana (KP) 03 untuk saluran dari Standart Perencanaan Direktorat Jenderal Pengairan, Departemen Pekerjaan Umum Tahun 1968. Perhitungan berdasarkan input data eksiting lapangan meliputi ruas, jarak dan elevasi saluran yang selanjutnya dianalisis untuk mendapatkan rencana dimensi saluran.

Perencanaan hidrolis untuk pekerjaan ini meliputi:

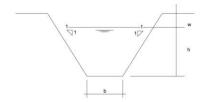
1. Perencanaan dimensi saluran : Drain Tenggang 1

Gambar 4.3 Perencanaan Dimensi Saluran Tipe Drain Tenggang 1

Sumber: PT. Studi Teknik, 2021

Desain Drain Tenggang I direncanakan mampu menampung debit $(Q) = 7,782 \text{ m}^3/\text{dt}$ dengan kecepatan aliran $(v) = 1,180 \text{ m}^3/\text{dt}$, lebar dasar saluran (b) = 3,30 m, kedalaman air (b) = 1,45 m.

2. Perencanaan dimensi saluran : Drain Sudetan (Box Culvert)



Gambar 4.4 Perencanaan dimensi saluran Tipe Drain (Box Culvert)

Sumber: PT. Studi Teknik, 2021

Desain Drain sudetan direncanakan mampu menampung debit (Q) = $2,70 \text{ m}^3/\text{dt}$ dengan kecepatan aliran (v) = $1,241 \text{ m}^3/\text{dt}$, lebar dasar saluran (b) = 1,50 m, kedalaman air (h) = 1,45 m

3. Perencanaan dimensi saluran : Drain Tenggang 1B

Gambar 4.5 Perencanaan Dimensi Saluran Tipe Drain Tenggang 1B Sumber : PT. Studi Teknik, 2021

Desain Drain Tenggang 1B direncanakan mampu menampung debit (Q) = 4,58 m³/dt dengan kecepatan aliran (v) =1,040 m³/dt, lebar dasar saluran (b) = 1,15 m, kedalaman air (h) = 3,6 m.

4.2 Spesifikasi Sistem Kerja Polder Kali Tenggang

Sistem Polder Kali Tenggang yang terletak di Semarang Timur adalah salah satu contoh drainase sistem polder tipe empat dengan kolam retensi yang tidak berada satu tempat dengan stasiun pompa.Stasiun Pompa berada di Jalan Nasional 1, Tambak rejo, Kecamatan Gayamsari. Sedangkan kolam retensi berada di Muktiharjo dan di saluran alam. Sistem Polder Kali Tenggang ini memiliki catchment area ±1.348,82 hektar. Sistem Polder Kali Tenggang ini dikelola oleh pemerintah melalui Balai Besar Wilayah Sungai Pamali Juwana (BBWS Pamali Juwana).

Komponen-komponen Polder Kali Tenggang terdiri dari:

1. Stasiun Pompa

Stasiun pompa yang berada di Polder Kali Tenggang terdiri dari 6 unit dengankapasitas daya @12 lt/dt disetiap pompanya dengan mendapatkan sumber energi dari 1 genset berbahan bakar solar, dan dilengkapi dengan 2 unit pintu air dengan lebar @1,5 m, saringan sampah, tangki solar yang memiliki kapasitas 2000 lt, dan juga rumah jaga. Rumah pompa Kali Tenggang memiliki 1 saringan pompa manual (biasa).

2. Kolam Retensi

Kolam retensi dari Polder Kali Tenggang berada di Muktiharjo dan di saluran alam. Kolam retensi yang berada di Muktiharjo ini berfungsi untuk tempat penampungan air ketika terjadi banjir. Kolam retensi yang berada di

Muktiharjo memiliki luas area $\pm 1348,82$ hektar dengan luas kolam retensi sebesar 3% dari luas area dan kapasitas long Storage Kali Tenggang yaitu sebesar 44,472 hektar yang memiliki kedalaman 2 m dengan volume kolam 889.492 m^3 .

3. Saluran Primer

Saluran Primer dari Polder Kali Tenggang terdiri dari saluran-saluran yang berada di sepanjang Semarang Timur, yaitu saluran Pedurungan, saluran Tlogosari, dan saluran Sendang Indah.

4. Tanggul

Tanggul berada di sepanjang jalan arteri yaitu Jalan Yos Sudarso.

Gambar 4.6 Catcment area Sudetan Kali Tenggang

Sumber: PT. StudiTeknik, 2021

4.3 Perhitungan Debit Banjir Polder Kali Tenggang

Analisis debit yang masuk dalam sistem Polder Kali Tenggang dimulai dengan analisis hujan wilayah dan besarnya intensitas hujan dengan kala ulang 2, 5, 10 tahun.

4.3.1 Analisis Hujan Wilayah

Data hujan yang digunakan dalam analsiis ini adalah data hujan selama 10 tahun terakhir dari tahun 2011-2020. Data curah hujan rata-rata ini didapatkan dari BMKG Maritim Klas II Semarang. Data curah hjan dapat dilihat pada Tabel 4.1 dibawah ini.

Tabel 4.1 Data Hujan Tahunan Rata-rata Kota Semarang

Tahun	Hujan Wilayah (mm)
2011	148,1
2012	173,8
2013	203,6
2014	199,4
2015	129,4
2016	183,4
2017	175,5
2018	159,5
2019	137,4
2020	186,2

(Sumber : BMKG Meteorologi Maritim Klas II Semarang)

4.3.2 Analisis Frekuensi

Analisis frekuensi didasarkan pada karakteristik statistik kejadian pada masa lalu untuk mendapatkan probalititas curah hujan yang akan datang, dan mengasumsikan bahwa karkteristik kejadian hujan yang akan datang masih sama dengan karakteristik statistik kejadian hujan di masa lalu. Oleh karena itu, perhitungan analisis frekuensi dengan menggunakan data curah hujan wilayah pada data curah hujan maksimum harian sehingga diperoleh nilai waktu kembali yang lebih aman dalam analisis perencanaan banjir.

4.3.3 Analisis Statistik

Faktanya adalah tidak semua nilai variabel hidrologi sama dengan nilai ratarata, tetapi mungkin adanilai yang lebih besar atau lebih kecil dari nilai rata-rata. Besarnya nilai dispersi dapat diselesaikan dengan mengukur dispersi, yaitu dengan perhitungan parameter statistik (xi-X), (xi-X)², (xi-X)³, (xi-X)⁴ dahulu. Pengukuran dispersi ini digunakan untuk analisis distribusi normal dan distribusi Gumbel.

Contoh perhitungan statistik tahun 2011 sebagai berikut :

$$\mathbf{X} = \frac{\sum R24 \, max}{n} = \frac{1696,3}{10} = 169,63 \, \text{mm}$$
 (4.1)

$$(xi - X)$$
 = 148,1 – 169,63 = -21,53 mm (4.2)

$$(xi - X)^2$$
 = $(-21,53)^2$ = 463,541 mm (4.3)

$$(xi - X)^3 = (-21,53)^3 = -9980,036 \text{ mm}$$
 (4.5)

$$(xi - X)^4$$
 = $(-21,53)^4$ = $214870,166 \text{ mm}$ (4.6)

Perhitungan dispersi curah hujan dapat dilihat pada Tabel 4.2

Tabel 4.2 Perhitungan Dispersi Curah Hujan

	Perhitungan Dispersi Hujan						
No	Tahun	xi (mm)	(xi-X)	(xi-X) ²	(xi-X³)	$(xi-X)^4$	
1	2011	148,1	-21,53	463,541	-9980	214870	
2	2012	173,8	4,17	17,389	72,5117	302,374	
3	2013	203,6	33,97	1153,961	39200,1	1331626	
4	2014	199,4	29,77	886,253	26383,7	785444	
5	2015	129,4	-40,23	1618,453	-65110	2619390	
6	2016	183,4	13,77	189,613	2610,97	35953,1	
7	2017	175,5	5,87	34,457	202,262	1187,28	
8	2018	159,5	-10,13	102,617	-1039,5	10530,2	
9	2019	137,4	-32,23	1038,773	-33480	1079049	
10	2020	186,2	16,57	274,565	4549,54	75385,9	
Ju	ımlah	1696,3		5779,621	-36590	6153738	

Dengan digunakannya tabel disperse hujan, maka diperoleh parameter statistik panjang data 10 ahun terakhir adalah sebagai berikut :

$$Xrt = \frac{\sum_{i=1}^{n} Xi}{n}$$
 (4.7)

$$Xrt = \frac{1969,3}{10}$$

$$Xrt = 166,93$$

2. Standar Deviasi (S)

$$S = \frac{\sqrt{(\sum_{i=1}^{n} (Xi - X)^2)}}{n - 1}$$
 (4.8)

$$S = \frac{\sqrt{(5779,621)}}{9}$$

$$S = 25,34$$

3. Koefisien Skewness (Cs)

$$a = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} (Xi - X)^3$$
 (4.9)

$$a = \frac{10}{(9)(8)} \ x \ (-36950)$$

$$a = -5,131,94$$

$$Cs = \frac{a}{S^3}$$

$$Cs = \frac{-5131,94}{(25,34)^3}$$

$$Cs = -0.312$$

4. Koefisien Kurtosis (Ck)

$$Ck = \frac{n^2 \sum_{i=1}^{n} (Xi - X)^4}{(n-1)x(n-2)x(n-3)S^4}$$
(4.10)

$$Ck = \frac{10^2 \, x \, 6153738}{(9)x(8)x(7)25,34^4}$$

$$Ck = 2,961$$

5. Koefisien variasi (Cv)

$$Cv = \frac{S}{Xrt}$$

$$Cv = \frac{25,34}{166,93}$$

$$Cv = 0.419$$
(4.11)

Untuk pengukuran besarnya dispersi logaritma dilakukan melalui perhitungan parametrik untuk (y_i-y) , $(y_i-y)^2$, $(y_i-y)^3$, $(y_i-y)^4$, terlebih dahulu. Pengukuran dispersi ini digunakan untuk analisa distribusi Log Normal dan Log Pearson III. Perhitungan parametrik satistik dapat dilihat pada Tabel 4.3 dibawah ini.

Tabel 4.3 Perhitungan Dispersi Curah Hujan dalam Logaritma

	Dispersi hujan dalam nilai Logaritma							
No	Tahun	Rmax	Yi	(yi-y)	$(yi-y)^2$	(yi-y) ³	(yi-y) ⁴	
1	2011	148,1	2,171	-0,0544	0,00296	-0,0002	0,000009	
2	2012	173,8	2,240	0,0151	0,00023	0,0000	0,000000	
3	2013	203,6	2,309	0,0838	0,00703	0,0006	0,000049	
4	2014	199,4	2,300	0,0748	0,00559	0,0004	0,000031	
5	2015	129,4	2,112	-0,1130	0,01277	-0,0014	0,000163	
6	2016	183,4	2,263	0,0385	0,00148	0,0001	0,000002	
7	2017	175,5	2,244	0,0193	0,00037	0,0000	0,000000	
8	2018	159,5	2,203	-0,0222	0,00049	0,0000	0,000000	
9	2019	137,4	2,138	-0,0870	0,00756	-0,0007	0,000057	
10	2020	186,2	2,270	0,0450	0,00203	0,0001	0,000004	
Jı	umlah	1696,3	22,249446	0,0000	0,04051	-0,0011	0,000316	

Dengan digunakannya Tabel 4.3 maka diperoleh parameter statistik panjang data 10 ahun terakhir adalah sebagai berikut :

1. Harga rata - rata (y)

$$y = \frac{\sum_{i=1}^{n} y_{i}}{n}$$

$$y = \frac{22,249}{10}$$

$$y = 2,225$$
(4.12)

2. Standar Deviasi (S)

$$Sy = \frac{\sqrt{(\sum_{i=1}^{n} (yi - y)^{2})}}{n - 1}$$

$$Sy = \frac{\sqrt{(0.04051)}}{9}$$

$$Sy = 0.067$$
(4.13)

3. Koefisien Skewness (Cs)

$$a = \frac{n}{(n-1)(n-2)} \sum_{i=1}^{n} (yi - y)^{3}$$

$$a = \frac{10}{(9)(8)} x (-0.0011)$$

$$a = -0.0001527$$

$$Cs = \frac{a}{s^{3}}$$

$$Cs = \frac{-0.0001527}{(0.067)^{3}}$$

$$Cs = -0.507$$
(4.14)

4. Koefisien *Kurtosis* (Ck)

$$Ck = \frac{n^2 \sum_{i=1}^{n} (yi-y)^4}{(n-1)x(n-2)x(n-3)S^4}$$

$$Ck = \frac{10^2 x \, 0,000316}{(9)x(8)x(7)0,067^4}$$

$$Ck = 3,111$$
(4.15)

5. Koefisien variasi (Cv)

$$Cv = \frac{S}{y}$$

$$Cv = \frac{0.067}{2,225}$$

$$Cv = 0.0301$$
(4.16)

Setelah dilakukannya pengukuran dispersi, berikutnya menentukan jenis sebaran yang mendekati (tepat) untuk perhitungan curah hujan rencana dengan menggunakan syarat-syarat tertentu. Dibawah ini merupakan syarat-syarat yang digunakan untuk menentukan jenis sebaran yang dapat dilihat pada Tabel 4.4 berikut

Tabel 4.4 Syarat dan Batas tertentu distribusi

	Syarat dan Batas tertentu distribusi					
Distribusi	Syarat	Hasil Perhitungan	Keterangan			
	Cs = 0 Ck = 3	CS =0.312	Tidak			
Normal		Ck = 2.961	memenuhi			
	$Cs = (Ln x) = Cv^3 + 3Cv = 0.24$	Cs = 0.507				
Log Normal	$Ck = Cv^8 + 6Cv^6 + 15Cv^4 + 16Cv^2 + 3$		Tidak			
Log Normai	= 3.10		memenuhi			
	- 5.10	Ck = 3.111				
Pearson Type III	Cs < 0	Cs = 0.312	Tidak			
rearson Type III	$Ck = 1.5 Cs^2 + 3 = 3.21$	Ck = 2.961	memenuhi			
Log Pearson	Jika semua syarat tidak	Cs = 0.507				
Type III	terpenuhi	Ck = 3.111	Memenuhi			
Gumbel	Cs = 1.14	Cs = 0.312	Tudak			
Guilloei	Ck = 5.4	Ck = 2.961	Memenuhi			

Dari perhitungan yang telah dihitung dengan syarat-syarat yang ada pada Tabel 4.4, maka dipilih distribusi Log Pearson III.

4.3.4 Perhitungan dengan Distribusi Log Pearson III

Analisis data hujan maksimum dengan periode ulang tertentudengan menggunakan persamaan dibawah ini.

$$y_T = y + K_T S_T$$
 (4.17) keterangan :

 y_T = Nilai logaritmikdari x dengan periode ulang T

y = nilai rata-rata dari y_i

 S_y = deviasi standar y_i

 K_T = faktor frekuensi

Perhitungan analisis statistik Log Pearson III dapat dilihat pada Tabel 4.5 dibawah ini.

Tabel 4.5 Analisis Distribusi metode Log Pearson III

	// // //					
	Analisis Distribusi Log Pearson Type III					
No	No Periode Ulang (Tahun) Y Sy KT YT XT					
1	2	2,225	0,067	-0,0507	2 <mark>,2</mark> 22	165,96
2	5	2,225	0,067	0,84793	<mark>2,</mark> 282	191,32
3	10	2,225	0,067	1,34059	2 ,315	206,43

Tabel 4.6 Nilai K_T untuk distribusi Log Pearson III

		Interval ke	jadian (<i>Recu</i>	rrence interv	al), tahun (p	eriode ulang)		
	1,0101	1,2500	2	5	10	25	50	100
Koef, G		Persen	ase peluang	terlampaui (Percent chai	ice of being e.	xceeded)	
	99	80	50	20	10	4	2	1
3,0	-0,667	-0,636	-0,396	0,420	1,180	2,278	3,152	4,051
2,8	-0,714	-0,666	-0,384	0,460	1,210	2,275	3,114	3,973
2,6	-0,769	-0,696	-0,368	0,499	1,238	2,267	3,071	2,889
2,4	-0,832	-0,725	-0.351	0,537	1,262	2,256	3,023	3,800
2,2	-0,905	-0,752	-0,330	0,574	1,284	2,240	2,970	3,705
2,0	-0,990	-0,777	-0,307	0,609	1,302	2,219	2,192	3,605
1,8	-1,087	-0,799	-0.282	0,643	1,318	2,193	2,848	3,499
1,6	-1,197	-0,817	-0,254	0,675	1,329	2,163	2,780	3,388
1,4	-1,318	-0,832	-0,225	0,705	1,337	2,128	2,706	3,271
1,2	-1,449	-0,844	-0,195	0,732	1,340	2,087	2,626	3,149
1,0	-1,588	-0,852	-0,164	0,758	1,340	2,043	2,542	3,022
0,8	-1,733	-0,856	-0,132	0,780	1,336	1,993	2,453	2,891
0,6	-1,880	-0,857	-0,099	0,800	1,328	1,939	2,359	2,755
0,4	-2,029	-0,855	-0.066	0,816	1,317	1,880	2,261	2,615
0,2	-2,178	-0,850	-0,033	0,830	1,301	1,818	2,159	2,472
0,0	-2,326	-0,842	0,000	0,842	1,282	1,751	2,051	2,326
-0,2	-2,472	-0,830	0,033	0,850	1,258	1,680	1,945	2,178
-0,4	-2,615	-0,816	0,066	0,855	1,231	1,606	1,834	2,029
-0,6	-2,755	-0,800	0,099	0,857	1,200	1,528	1,720	1,880
-0,8	-2,891	-0,780	0,132	0.856	1,166	1,448	1,606	1,733
-1,0	-3,022	-0,758	0,164	0,852	1,128	1,366	1,492	1,588
-1,2	-2,149	-0,732	0,195	0,844	1,086	1,282	1,379	1,449
-1,4	-2,271	-0,705	0,225	0.832	1,041	1,198	1,270	1,318
-1,6	-2,388	-0,675	0,254	0,817	0,994	1,116	1,166	1,197
-1,8	-3,499	-0,643	0,282	0,799	0,945	1,035	1,069	1,087
-2,0	-3,605	-0,609	0,307	0,777	0,895	0,959	0,980	0,990
-2,2	-3,705	-0,574	0,330	0,752	0,844	0,888	0,900	0,905
-2,4	-3,800	-0,537	0,351	0,725	0,795	0,823	0,830	0,832
-2,6	-3,889	-0,490	0,368	0,696	0,747	0,764	0,768	0.769
-2,8	-3,973	-0,469	0,384	0,666	0,702	0,712	0,714	0,714
-3,0	-7,051	-0,420	0,396	0,636	0,660	0,666	0,666	0,667

Nilai K dapat dihitung di tiap kala ulang dengan menggunakan Tabel 4.6. contoh perhitungan nila K adalah sebagai berikut.

perhitungan nila K adalah sebagai berikut.

$$K_2 = 0.066 + (\frac{128-0.2}{0.2}) x(0.099-0.066)$$

= -0.0507

Hasil dari interpolasi nilai K disetiap kala ulang dapat pada Tabel 4.7 berikut.

Tabel 4.7 Curah Hujan Rencana

	Curah Hujan Rencana					
No	Periode Ulang (Tahun)	Curah Hujan Rencana (mm)				
1	2	165,96				
2	5	191,32				
3	10	206,43				

4.3.5 Intensitas Hujan Rencana

Memperhitungkan intensitas hujan dengankala ulang dan durasi tertentu harus diketahui terlebih dahulu intensitas hujan jam-jamannya.

4.3.6 Intensitas Hujan Jam-Jaman

Analisa intensitas hujan jam-jaman dihitung dengan menggunakan rumus yang metode Manonabe, untuk perhitungan intensitas hujan jam-jaman dapat dilihat pada Tabel $4.8~\mathrm{s/d}~4.10$ berikut.

Tabel 4.8 Intensitas Hujan Jam-jaman Kala Ulang 2 Tahun

_ wo or the interesting region to the jumber region of the grant for the contract of the contr							
Intensitas Hujan Jam-jaman Kala Ulang 2 Tahun							
Jam Ke-	I rumus	I (mm/jam)					
0,083 (5 menit)	1,822 x 165,96	302,379					
0.167 (10 menit)	1,143 x 165,96	189,692					
0.25 (15 menit)	0,874 x 165,96	145,049					
0.50 (30 menit)	0,55 x 165,96	91,278					
0,75 (45 menit)	0,42 x 165,96	69,703					
1	0,347 x 165,96	57,588					
2	0,218 x 165,96	36,179					
3	0,167 x 165,96	27,715					
6	0,105 x 165,96	17,426					
12	0,066 x 165,96	10,953					

Tabel 4.9 Intensitas Hujan Jam-jaman Kala Ulang 5 Tahun.

Intensitas Hujan Jam-jaman Kala Ulang 5 Tahun						
Jam Ke-	I rumus	I (mm/jam)				
0,083 (5 menit)	1,822 x 191,32	348,58504				
0.167 (10 menit)	1,143 x 191,32	218,67876				
0.25 (15 menit)	0,874 x 191,32	167,21368				
0.50 (30 menit)	0,55 x 191,32	105,226				
0 <mark>,7</mark> 5 (45 menit)	0,42 x 191,32	80,3544				
57 1	0,347 x 191,32	66,38804				
2	0,218 x 191,32	41,70776				
3	0,167 x 191,32	31,95044				
6	0,105 x 191,32	20,0886				
12	0,066 x 191,32	12,62712				

Tabel 4.10 Intensitas Hujan Jam-jaman Kala Ulang 10 Tahun

Intensitas Hujan Jam-jaman Kala Ulang 10 Tahun							
Jam Ke-	I rumus	I (mm/jam)					
0,083 (5 menit)	1,822 x 206,43	376,11546					
0.167 (10 menit)	1,143 x 206,43	235,94949					
0.25 (15 menit)	0,874 x 206,43	180,41982					
0.50 (30 menit)	0,55 x 206,43	113,5365					
0,75 (45 menit)	0,42 x 206,43	86,7006					
1	0,347 x 206,43	71,63121					
2	0,218 x 206,43	45,00174					
3	0,167 x 206,43	34,47381					
6	0,105 x 206,43	21,67515					
12	0,066 x 206,43	13,62438					

hasil perhitungan intensitas hujan rencana dengan menggunakan persamaan Mononobe diatas dapat dilihat pada Tabel 4.11 dibawah ini.

Tabel 4.11 Hujan Rencana dengan persamaan Mononobe

	Hujan Rencana dengan Persamaan Mononobe									
T	T 5 10 15 30 45 60 120 180 360 720								720	
2	302,379	189,692	145,049	91,278	69,703	57,588	36,179	27,715	17,426	10,953
5	348,585	218,679	167,214	105,23	80,3544	66,38804	41,708	31,9504	20,0886	12,62712
10	376,115	235,949	180,42	113,54	86,7006	71,63121	45,002	34,4738	21,6752	13,62438

4.3.7 Kurva Intensity Duration Frequency

Intensitas curah hujan ditentukan berdasarkan sejumlah besar data curah hujan dan lamanya curah hujan dapat dihitung dengan rumus Mononobe. Kemudian dengan menggunakan metode Talbot, Sherman, Ishiguro, dan SDR-IDF untuk menghitung intensitas curah hujan sehingga dapat ditentukan intensitas curah hujan yang paling sesuai untuk wilayah Semarang Timur. Dengan standar deviasi yang terkecil lalu akan digunakan untuk menggambar Kurva IDF.

4.3.8 Pola Intensitas Hujan Metode Talbot

Pola intensitas curah hujan metode Talbot dihitung menggunakan rumus Talbot sehingga nilai a dan b dapat dihitung berdasarkan pada Tabel 4.11. Penjabaran perhitungan intensitas hujan metode Talbot dapat dilihat pada Tabel 4.12 dan hasil dari nilai a dan b intensitas hujan metode Talbot kala ulang 2, 5, 10 tahun dapat dilihat pada Tabel 4.13 berikut.

Tabel 4.12 Perhitungan metode Talbot kala ulang 2 tahun

No	Waktu (menit)	Intensitas Hujan (mm/jam)	لطان لمجونح	I√t	I ²	I²√t
1	5	302.379	2.23606798	676.14027	91433.132	204450.699
2	10	189.692	3.16227766	599.85966	35983.161	113788.746
3	15	145.049	3.87298335	561.77252	21039.224	81484.5642
4	30	91.278	5.47722558	499.9502	8331.673	45634.454
5	45	69.703	6.70820393	467.58328	4858.536	32592.0509
6	60	57.588	7.74596669	446.07566	3316.392	25688.6586
7	120	36.179	10.9544512	396.32416	1308.940	14338.7226
8	180	27.715	13.4164079	371.84004	768.139	10305.6656
9	360	17.426	18.973666	330.63131	303.659	5761.51505
10	720	10.953	26.8328157	293.90949	119.976	3219.29646
Jumlah		947.964		4644.0866	167462.832	537264.373

1. Nilai a dalam perhitungan metode Talbot kala ulang 2 tahun

$$a = \frac{\sum [I.t] \sum [I^2] - \sum [I^2.t] \sum [I]}{N \sum [I^2] - \sum [I] \sum [I]}$$

$$a = \frac{(38404,803 \times 167462,832) - (167462,832 \times 947,964)}{(10 \times 167462,832) - (947,964 \times 947,964)}$$
(4.18)

a = 5488,978

2. Nilai B dalam perhitungan Metode Talbot kala ulang 2 tahun

$$b = \frac{\sum [I] \sum [I.\sqrt{t}] - N \sum [I^2.t]}{N \sum [I^2] - \sum [I] \sum [I]}$$

$$b = \frac{(947.946 \times 38404,803) - 10x (2291191,149)}{(10 \times 167462,832) - (947.964 \times 947.964)}$$

$$b = 17,389$$
(4.19)

Tabel 4.13 Nilai Tetapan Intensitas Hujan Metode Talbot kala ulang 2, 5, 10 Tahun.

Kala Ulang (Tahun)	a	b
2	5488,978	17,389
5	6327,737	17,389
10	6827,487	17,389

Dengan demikian diketahui bahwa persamaan pola hujan metode Talbot adalah sebagai berikut:

I
$$=\frac{a}{b+t}$$
 (4.20)
I₂ $=\frac{5488,978}{t+17,389}$ (4.21)
I₅ $=\frac{6327,737}{t+17,389}$ (4.22)

$$I_{10} = \frac{6827,487}{t+17,389} \tag{4.23}$$

Berdasarkan persamaan metode Talbot dapat dihitung intensitas hujan untuk kala ulang 2, 5, 10 tahun dengan metode Talbot. Nilai perhitungan hujan dapat dilihat di Tabel 4.13 sampai 4.15 berikut.

Tabel 4.14 Intensitas Hujan Kala Ulang 2 Tahun Metode Talbot

No.	t	I _{2manonabe}	I ₂	ā
1	5	302,379	245,154	-57,225
2	10	189,692	200,402	10,709
3	15	145,049	169,466	24,417
4	30	91,278	115,826	24,548
5	45	69,703	87,979	18,275
6	60	57,588	70,926	13,338
7	120	36,179	39,952	3,773
8	180	27,715	27,808	0,092
9	360	17,426	14,545	-2,881
10	720	10,953	7,444	-3,510
			$\Sigma I \bar{\alpha} I$	31,537

Tabel 4.15 Intensitas Hujan Kala Ulang 5 Tahun Metode Talbot

No.	T	I _{5 manonabe}	I_5	ā
1	5	348,585	282,616	-65,969
2	10	218,679	231,025	12,346
3	15	167,214	195,362	28,148
4	30	105,226	133,525	28,299
5	45	80,354	101,422	21,068
6	60	66,388	81,764	15,376
7	120	41,708	46,057	4,349
8	180	31,950	32,057	0,107
9	360	20,089	16,767	-3,321
10	720	12,627	8,581	-4,046
	~ ~/		ΣΙ <mark>αΙ</mark>	36,356

Tabel 4.16 Intensitas Hujan Kala Ulang 10 Tahun Metode Talbot

No.	T	I _{10 manomabe}	I ₁₀	$\bar{\alpha}$
1	5	376,115	304,936	- <mark>71,</mark> 179
2	10	235,949	249,270	13,321
3	15	180,420	210,791	30,371
4	30	113,537	144,071	30,534
5	45	86,701	109,433	22,732
6	60	71,631	88,222	16,591
7	120	45,002	49,694	4,693
8	180	34,474	34,589	0,115
9	360	21,675	18,091	-3,584
10	720	13,624	9,259	-4,365
		·	$\Sigma I \bar{\alpha} I$	39,228

Keterangan:

t = waktu (menit)

 $I_{5 \text{ manonabe}}$ = Intensitas hujan jam – jaman metode manonabe kala ulang 5tahun (mm / jam)

 $I_{10 \text{ manonabe}}$ = Intensitas hujan jam – jaman metode manonabe kala ulang 10 tahun (mm / jam)

 I_2 = Intensitas metode Talbot kala ulang 2 tahun (mm / jam)

 I_5 = Intensitas metode Talbot kala ulang 5 tahun (mm / jam)

 I_{10} = Intensitas metode Talbot kala ulang 10 tahun (mm / jam)

 $\bar{\alpha}$ = nilai deviasi

4.3.9 Pola Intensitas Hujan Metode Sherman

Pola intensitas curah hujan metode Sherman dihitung dengan menggunakan rumus intensitas Sherman untuk menghitung nilai a dan b. Penjabaran perhitungan intensitas hujan metode Sherman dapat dilihat pada Tabel 4.17 dan hasil perhitungan nilai a dan b metode Sherman kala ulang 2, 5, 10 tahun dapat dilihat pada Tabel 4.18 berikut.

Tabel 4.17 Perhitungan Intensitas Hujan Kala Ulang 2 Tahun Metode Sherman

No.	Waktu	Tebal Hujan (mm)	Log I	Log t	Log t²	Log t x Log I
1	5	302.379	2.481	0.699	0.489	1.73383
2	10	189.692	2.278	1.000	1.000	2.27805
3	15	145.049	2.162	1.176	1.383	2.54214
4	30	91.278	1.960	1.477	2.182	2.8957
5	45	69.703	1.843	1.653	2.733	3.04729
6	60	57.588	1.760	1.778	3.162	3.13014
7	120	36.179	1.558	2.079	4.323	3.24031
8	180	27.715	1.443	2.255	5.086	3.25372
9	360	17.426	1.241	2.556	6.535	3.17288
10	720	10.953	1.040	2.857	8.164	2.97029
		Jumlah	17.766	17.532	35.057	28.2643

1. Nilai a dalam perhitungan metode Sherman kala ulang 2 tahun

$$a = \frac{\sum_{i=1}^{n} (\log I) \sum_{i=1}^{n} (\log t^{2}) - \sum_{i=1}^{n} (\log t \log I) \sum_{i=1}^{N} (\log t)}{n \cdot \sum_{i=1}^{N} (\log t^{2}) - \sum_{i=1}^{N} (\log t) \sum_{i=1}^{N} (\log t)}$$

$$a = \frac{(17,776 \times 35,057) - (28,2643 \times 17,532)}{(10 \times 35,057) - (17,532 \times 17,532)}$$

$$a = 883,142$$
(4.24)

2. Nilai B dalam perhitungan metode Sherman kala ulang 2 tahun

$$b = \frac{\sum_{i=1}^{N} (\log l) \sum_{i=1}^{N} (\log t) - n. \sum_{i=1}^{N} (\log t \log 1)}{n \sum_{i=1}^{N} (\log t^{2}) - \sum_{i=1}^{N} (\log t) \sum_{i=1}^{N} (\log t)}$$

$$b = \frac{(17,766 \times 17,532) - (10 \times 28,2643)}{(10 \times 35,057) - (17,532 \times 17,532)}$$

$$b = 0.667$$

$$(4.25)$$

Tabel 4.18 Nilai Tetapan a dan b Metode Sherman

Kala Ulang (Tahun)	a	b
2	883,142	0,667
5	1018,02	0,667
10	1098,49	0,667

Dengan demikian dapat diketahui persamaan pola hujan metode Sherman adalah sebagai berikut :

$$I = \frac{a}{t^b} \tag{4.26}$$

$$I_2 = 883,142^{0.667} (4.27)$$

$$I_5 = 1018, 12/t^{0.667} (4.28)$$

$$I_{10} = 1098,49^{0,667}$$

Berdasarkan persamaan (4.26) sampai (4.28) dapat dihitung intensitas hujan untuk kala ulang 2, 5, 10 tahun dengan menggunakan metode Sherman. Intensitas hujan Kala Ulang 2, 5, 10 Tahun dapat dilihat pada Tabel 4.17 dampai 4.19 berikut.

Tabel 4.19 Pola Intensitas metode Sherman kala Ulang 2 Tahun

No.	7 t/	I _{2 manonabe}	I_2	$\bar{\alpha}$
1	5	302,379	301,848	-0,531
2	10	189,692	190,103	0,411
3	15	145,049	145,054	0,005
4	30	91,278	91,354	<mark>0,0</mark> 76
5	45	69,703	69,7 <mark>06</mark>	0,003
6	60	57,588	57,535	-0,053
7	120	36,179	36,235	0,056
8	180	27,715	27,648	-0,067
9	360	17,426	17,413	-0,013
10	720	10,953	10,967	0,014
		, C	ΣΙαΙ	-0,101

Tabel 4.20 PoLa Intensitas metode Sherman kala Ulang 5 Tahun

No.	t	I	I_5	$\bar{\alpha}$
1	5	348,585	347,948	-0,637
2	10	218,678	219,136	0,458
3	15	167,213	167,206	-0,007
4	30	105,226	105,306	0,080
5	45	80,354	80,351	-0,003
6	60	66,338	66,321	-0,017
7	120	41,708	41,769	0,061
8	180	31,95	31,871	-0,079
9	360	20,088	20,072	-0,016
10	720	12,627	12,641	0,014
			ΣΙαΙ	-0,146

Tabel 4.21 Pola Intensitas metode Sherman kala Ulang 10 Tahun

No.	t	I	I ₁₀	ā
1	5	376,115	375,453	-0,662
2	10	235,94949	236,460	0,510
3	15	180,41982	180,425	0,006
4	30	113,5365	113,632	0,095
5	45	86,7006	86,704	0,004
6	60	71,6312	71,565	-0,066
7	120	45,0017	45,072	0,070
8	180	34,47438	34,391	-0,083
9	360	21,6752	21,659	-0,016
10	720	13,6244	13,641	0,017
			ΣΙαΙ	-0,126

Keterangan:

t = waktu (menit)

I_{2 manonabe} = Intensitas hujan jam – jaman metode manonabe kala ulang 2 tahun (mm/jam)

I_{5 manonabe} = Intensitas hujan jam – jaman metode manonabe kala ulang 5tahun (mm / jam)

I_{10 manonabe} = Intensitas hujan jam – jaman metode manonabe kala ulang 10 tahun (mm / jam)

 I_2 = Intensitas metode Sherman kala ulang 2 tahun (mm/jam)

I₅ = Intensitas metode Sherman kala ulang 5 tahun (mm / jam)

 I_{10} = Intensitas metode Sherman kala ulang 10 tahun (mm / jam)

 $\bar{\alpha}$ = nilai deviasi

4.3.10 Pola Intensitas Hujan Metode Ishiguro

Pola intensitas hujan dengan menggunakan metode Sherman dihitung menggunakan rumus metode Ishiguro, Penjabaran perhitungan intensitas hujan metode Ishiguro dilihat pada Tabel 4.19, sehingga nilai a dan b dihitung berdasarkan pada Tabel 4.11. pada Tabel 4.19 dapat dilihat hasil nilai konstanta a dan b intensitas curah hujan metode Ishiguro.

Tabel 4.22 Perhitungan metode Ishiguro kala ulang 2 tahun

	Waktu tc	Intensitas Hujan				
No	(menit)	(mm/jam)	√t	I√t	I ²	I²√t
1	5	302.379	2.23606798	676.14027	91433.132	204450.699
2	10	189.692	3.16227766	599.85966	35983.161	113788.746
3	15	145.049	3.87298335	561.77252	21039.224	81484.5642
4	30	91.278	5.47722558	499.9502	8331.673	45634.454
5	45	69.703	6.70820393	467.58328	4858.536	32592.0509
6	60	57.588	7.74596669	446.07566	3316.392	25688.6586
7	120	36.179	10.9544512	396.32416	1308.940	14338.7226
8	180	27.715	13.4164079	371.84004	768.139	10305.6656
9	360	17.426	18.973666	330.63131	303.659	5761.51505
10	720	10.953	26.8328157	293.90949	119.976	3219.29646
Jumlah		947.964		4644.0866	167462.832	537264.373

1. Nilai a dalam perhitungan metode Ishiguro kala ulang 2 tahun

$$a = \frac{\sum_{i=1}^{n} (i.\sqrt{t}) \sum_{i=1}^{n} (l^{2}) - \sum_{i=1}^{n} (l^{2}.\sqrt{t}) \sum_{i=1}^{n} (l)}{n \cdot \sum_{i=1}^{n} (l^{2}) - \sum_{i=1}^{n} (l) \sum_{i=1}^{n} (l)}$$
(4.29)

$$a = \frac{(4644,0866 \times 167462,832) - (537264,373 \times 947,964)}{(10 \times 167462,832) - (947,964 \times 947,964)}$$

a = 345,8854

2. Nilai B dalam perhitungan metode Ishiguro kala ulang 2 tahun

$$b = \frac{\sum_{i=1}^{N} (I) \sum_{i=1}^{N} (I\sqrt{t}) - n \cdot \sum_{i=1}^{N} (I^{2} \cdot \sqrt{t})}{n \cdot \sum_{i=1}^{N} (I^{2}) - \sum_{i=1}^{N} (I) \sum_{i=1}^{N} (I)}$$
(4.30)

$$b = \frac{(947,964 \times 53726,373) - (10 \times 537264,373)}{(10 \times 167462,832) - (947,964 \times 947,964)}$$

$$b = -1.25$$

Tabel 4.23 Tetapan a dan b Metode Ishiguro

Kala Ulang	إمعتنسك	<i>ڊ </i>
(Tahun)	a	/b
2	345,885	-1,25
5	398,739	-1,25
10	430,230	-1,25

Dengan demikian dapat diketahui bahwa persamaan pola hujan metode Ishiguro adalah sebagai berikut.

$$I = \frac{a}{\sqrt{t} + b} \tag{4.31}$$

$$I_2 = \frac{345,885}{\sqrt{t} - (-1,25)} \tag{4.32}$$

$$I_5 = \frac{398,379}{\sqrt{t} - (-1,25)} \tag{4.33}$$

$$I_2 = \frac{430,230}{\sqrt{t} - 1,25} \tag{4.34}$$

Menurut persamaan (4.31) sampai (4.34) maka intensitas hujan untuk kala ulang 2, 5, 10 tahun sampai dapat dihitung dengan metode Ishiguro. Intensitas hujan kala ulang 2, 5, 10 tahun dapat dilihat pada Tabel 4.20 sampai 4.22 dibawah ini.

Tabel 4.24 Pola Intensitas Hujan Metode Ishiguro Kala Ulang 2 Tahun

No.	t	I _{2 Mononobe}	I_2	$\bar{\alpha}$
1	5	302,379	350,877	48,498
2	10	189,692	180,904	-8,788
3	15	145,049	131,882	-13,167
4	30	91,278	81,829	-9,449
5	45	69,703	63,373	-6,330
6	60	57,588	53,249	-4,340
7	120	36,179	35,643	-0,536
8	180	27,715	28,430	0,715
9	360	17,426	19,516	2,090
10	720	10,953	13,520	2,567
C		*	ΣΙᾶΙ	11,259

Tabel 4.25 Pola Intensitas Hujan Metode Ishiguro Kala Ulang 5 Tahun

No.	ī	I _{5 mononobe}	I ₅	ā
\\ 1	5	348,585	404,4 <mark>93</mark>	5 5,908
2	10	218,679	208,547	-10,131
3	15	167,214	152,035	-15,179
4	30	105,226	94,333	-10,893
5	45	80,354	73,057	-7,297
6	60	66,388	61,385	-5,003
7	120	41,708	41,090	-0,618
8	180	31,950	32,775	0,824
9	360	20,089	22,498	2,409
10	720	12,627	15,586	2,959
			ΣΙᾶΙ	12,980

Tabel 4.26 Pola Intensitas Hujan Metode Ishiguro Kala Ulang 10 Tahun

No.	t	I _{10 Mononobe}	I ₁₀	$\bar{\alpha}$
1	5	376,115	436,439	60,324
2	10	235,949	225,018	-10,931
3	15	180,420	164,042	-16,378
4	30	113,537	101,783	-11,753
5	45	86,701	78,827	-7,874
6	60	71,631	66,233	-5,398
7	120	45,002	44,335	-0,667
8	180	34,474	35,363	0,889
9	360	21,675	24,275	2,600
10	720	13,624	16,817	3,193
			ΣΙᾶΙ	14,005

Keterangan:

t = waktu (menit)

 $I_{2 \text{ mononobe}}$ = Intensitas hujan jam – jaman metode manonabe kala ulang 2 tahun (mm/jam)

I_{5 Mononobe} = Intensitas hujan jam – jaman metode manonabe kala ulang 5tahun (mm/jam)

I_{10 Mononobe} = Intensitas hujan jam – jaman metode manonabe kala ulang 10 tahun (mm / jam)

I₂ = Intensitas metode Ishiguro kala ulang 2 tahun (mm / jam)

I₅ = Intensitas metode Ishiuguro kala ulang 5 tahun (mm / jam)

 I_{10} = Intensitas metode Ishiguro kala ulang 10 tahun (mm / jam)

 $\bar{\alpha}$ = nilai deviasi

4.3.11 Pola Intensitas Hujan Metode SDR-IDF

Pola Intensitas hujan dengan menggunakan metode SDR-IDF dapat dihitung dengan menggunakan persamaan (2.22) dengan konstantanya yang berupa x dan y pada Tabel 2.7, maka didapatkan persamaan pola hujan metode SDR-IDF sebagai berikut:

$$I_2 = 1079,30 \ xt^{-(0,667)}$$
 (4.35)

$$I_5 = 1381,4 xt^{-(0,664)} (4.36)$$

$$I_{10} = 1621,9 \ xt^{-(0,664)} \tag{4.37}$$

Menurut persamaan (4.11) sampai (4.13) intensitas hujan dapat dihitung untuk kala ulang 2 sampai 10 tahun dengan menggunakan metode SDR-IDF. Intensitas hujan kala ulang 2 sampai 10 tahun dapat dilihat pada Tabel 4.23 sampai 4.25 berikut.

Tabel 4.27 Pola Intensitas Hujan Metode SDR IDF Kala Ulang 2 Tahun

No.	T	I _{2 Mononobe}	I_2	ā
1	5	302,379	368,917	66,538
2	10	189,692	232,350	42,658
3	15	145,049	177,292	32,243
4	30	91,278	111,661	20,383
5	45	69,703	85,202	15,499
6	60	57,588	70,326	12,738
7	120	36,179	44,292	8,113
8	180	27,715	33,797	6,082
9	360	17,426	21,286	3,860
10	720	10,953	13,406	2,453
	~	OI BEE	ΣΙᾶΙ	210,567

Tabel 4.28 Pola Intensitas Hujan Metode SDR IDF Kala Ulang 5 Tahun

No.	T	I _{2 Mononobe}	I_5	$\bar{\alpha}$
1	5	348,585	4 <mark>74,46</mark> 4	125,879
2	10	218,678	299,447	80,769
3	15	167,213	228,768	61,555
4	30	105,226	144,381	39,155
5	45	80,354	110,303	29,949
6	60	66,338	91,123	24,785
7 🝆	120	41,708	57,510	15,802
8 🚺	180	31,95	43,936	11,986
9	360	20,088	27,729	7,641
10	720	12,627	17,501	4,874
	"	سلامام فرالل ال	ΣΙᾱΙ	402,394

Tabel 4.29 Pola Intensitas Hujan Metode SDR IDF Kala Ulang 10Tahun

No.	T	I ₁₀ Mononobe	I ₁₀	$\bar{\alpha}$
1	5	376,115	557,068	180,953
2	10	235,94949	351,580	115,630
3	15	180,41982	268,596	88,176
4	30	113,5365	169,518	55,981
5	45	86,7006	129,506	42,806
6	60	71,6312	106,987	35,356
7	120	45,0017	67,522	22,521
8	180	34,47438	51,585	17,111
9	360	21,6752	32,557	10,881
10	720	13,6244	20,547	6,923
			ΣΙᾶΙ	576,338

Keterangan:

t = waktu (menit)

I_{2 mononobe} = Intensitas hujan jam – jaman metode manonabe kala ulang

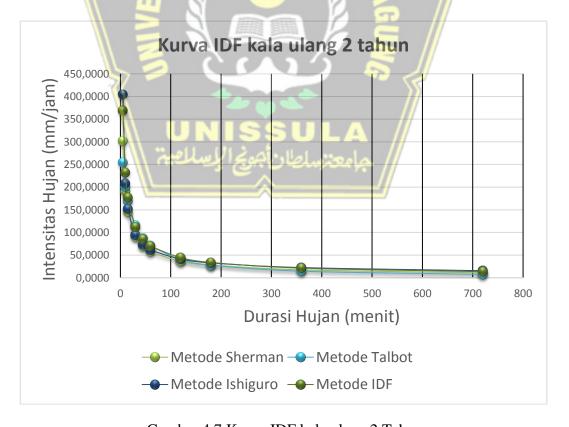
2 tahun (mm / jam)

I_{5 Mononobe} = Intensitas hujan jam – jaman metode manonabe kala ulang

5tahun (mm / jam)

 $I_{10 \text{ Mononobe}}$ = Intensitas hujan jam – jaman metode manonabe kala ulang

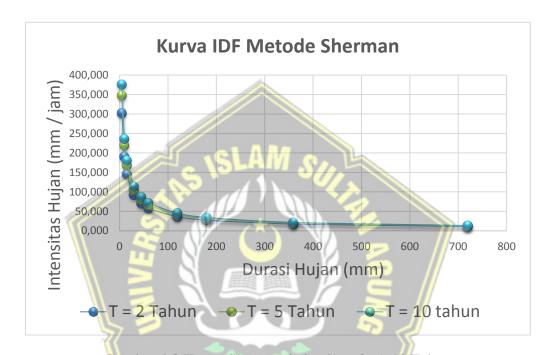
10 tahun (mm / jam)


 I_2 = Intensitas metode SDR -IDF kala ulang 2 tahun (mm / jam)

 I_5 = Intensitas metode SDR-IDF kala ulang 5 tahun (mm / jam)

 I_{10} = Intensitas metode SDR-IDF kala ulang 10 tahun (mm / jam)

 $\bar{\alpha}$ = nilai deviasi


Kurva IDF yang dibuat menggunakan beberapa metode untuk kala ulang 2 tahun menunjukan bahwa intensitas hujan dimulai dari intensitas tinggi kemudian semakin lama semakin menurun. Kurva IDF dari beberapa metode untuk kala ulang 2 tahun dapat dilihat pada Gambar 4.3

Gambar 4.7 Kurva IDF kala ulang 2 Tahun

Hasil perhitungan melalui berbagai metode pada tabel 4.12 sampai dengan 4.25 dapat diketahui nilai deviasi yang paling kecil adalah perhitungan intensitas hujan menggunakan metode Sherman, sehinga dapat disimpulkan bahwa mencari intensitas yakni $I=\frac{a}{t^b}$ memberikan hasil yang optimum.

Kurva IDF yang didapatkan dari perhitungan intensitas dengan metode Sherman dengan kala ulang 2, 5, 10 tahun dapat dilihat pada Gambar 4.9

Gambar 4.8 Kurva Sherman kala ulang 2, 5, 10 Tahun

4.3.12 Intensitas Hujan

Perhitungan intensitas hujan untuk menghitung debit rencana menggunakan metode Sherman, menurut keteranagan dari BMKG Maritim Klas II Kota Semarang memiliki asumsi hujan selama 4 jam, oleh karena itu durasi yang digunakan sebagai konstanta waktu adalah 4 jam. Contoh perhitungan intensitas hujan dengan kala ulang 2 tahun sebagai berikut :

$$I = \frac{a}{t^b} \tag{4.38}$$

$$I_2 = \frac{883,124}{240^{0,667}}$$

 $I_2 = 22,826 \text{ mm} / \text{jam}$

Hasil perhitungan intensitas hujan dengan berbagai kala ulang terdapat pada table 4.30

Tabel 4.30 Tabel intensitas hujan berbagai kala ulang

Т	A	b	I (mm / jam)
2	883.124	0.667	22.826
5	1018.02	0.667	26.312
10	1098.49	0.667	28.392

4.3.13 Debit Banjir Rencana dengan Metode Rasional

Metode rasional digunakan untuk menghitung debit banjir rencana. Berdasarkan tabel 2.9 tantang koefisien aliran dan peelitian yang telah dilakukan sebelumnya diperoleh koefisien aliran sebesar 0,75 dengan luas catchment area sebesar $\pm 133,7$ ha. Contoh perhitungan debit banjir rencana dengan kala ulang 2 tahun sebagai berikut:

$$Q_2 \tanh u = 0,002778 \text{ C.I.A}$$

$$= 0,002778 \times 0,75 \times 22,826 \times 133,7$$
(4.39)

 $= 6.359 \text{ m}^3/\text{detik}$

Tabel 4.31 Debit rencana berbagai kala ulang

No.	Ka <mark>l</mark> a ulang (t <mark>ahun</mark>)	ويم أكم	I (mm/jam)	Luas(ha)	Debit (m³/detik)
1	2	0.75	22.826	133,7	6,359
2	5	0.75	26.312	133,7	7,330
3	10	0.75	28.392	133,7	7,909

4.4 Analisis Debit Banjir Sebelum Adanya Sudetan dan Sesudah Sudetan Kali Tenggang

Saluran sudetan ini dibangun untuk mengurangi beban kapasitas debit Kali Tenggang dan sekaligus mengurangi beban kerja Pompa Tenggang Hilir dan juga untuk mengurangi genangan yang ada di daerah Tlogosari dan Palebon. Menurut Laporan akhir DED saluran sudetan Hulu Tenggan Tahun 2020, saluran sudetan dapat menampung debit sebesar 2,7 m³/dt – 3,5 m³/dt. Debit akhir minimum

saluran sudetan adalah sebesar 2,7 m³/dt, maka perhitungan debit akhir minimum yang didapat adalah sebagai berikut :

$$Q_{min} = Q_{sebelum \ adanya \ sudetan} - Q_{saluran \ sudetan}$$

$$Q_{2 \ min} = 6,359 - 2,7$$

$$= 3,659 \ m^3/dt$$

$$Q_{5 \ min} = 7,330 - 2,7$$

$$= 4,630 \ m^3/dt$$

$$Q_{10 \ min} = 7,909 - 2,7$$

$$= 5,209 \ m^3/dt$$

$$(4.40)$$

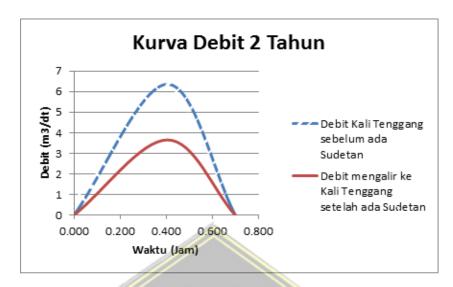
Selain debit akhir minimum ada juga debit akhir maksimum, yaitu sudetan daat menampung debit sebesar 3,5 m³/dt. Perhitungan debit akhir maksimum adalah sebagai berikut:

$$Q_{2 \text{ max}} = 6,359 - 3,5$$

$$= 2,859 \text{ m}^{3}/\text{dt}$$

$$Q_{5 \text{ max}} = 7,330 - 3,5$$

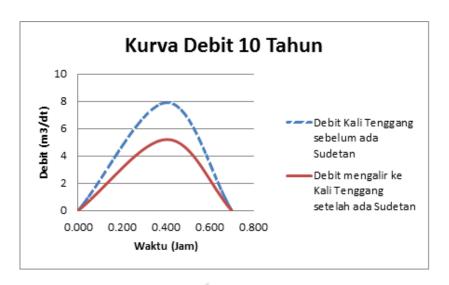
$$= 3,83 \text{ m}^{3}/\text{dt}$$


$$Q_{10 \text{ max}} = 7,909 - 3,5$$

 $= 4.409 \text{ m}^3/\text{dt}$

Rumus empiris yang biasa dipakai untuk menentukan prediksi waktu konsentrasi adalah rumus Kirpich, dengan persamaan sebagai berikut :

$$tc = L^{1,15}/7700H^{0,385}$$
 (4.41)
 $tc = 628^{1,15}/7700.5,25^{0,385}$
 $= 0,406 \text{ jam}$


Setelah didapatkannya Q_{akhir} dan tc, maka kurva debit minimum dapat dilihat pada gambar 4.9, gambar 4.10 dan gambar 4.11.

Gambar 4.9 Kurva debit Kali Tenggang 2 Tahun dan debit akhir

Gambar 4.10 Kurva debit Kali Tenggang 5 Tahun dan debit akhir

Gambar 4.11 Kurva debit Kali Tenggang 10 Tahun dan debit akhir

Dari kurva pada gambar 4.9, 4.10 dan 4.11 dapat disimpulkan bahwa Sudetan dapat mengurangi beban kapasitas dan juga beban kerja pompa polder Kali Tenggang, yang berarti sudetan dapat mengurangi genangan yang terjadi di daerah Tlogosari dan Palebon. Debit Kali Tenggang kala ulang 2 tahun sebesar 6,359 m³/dt berkurang menjadi 3,659 m³/dt, kala ulang 5 Tahun sebesar 7,330 m³/dt berkurang menjadi 4,630 m³/dt dan kala ulang 10 Tahun sebesar 7,909 m³/dt berkurang menjadi 5,209 m³/dt karena sudetan memiliki debit alir 2,7 m³/dt.

4.5 Volume air yang mengalir di sungai Tenggang dan volume air yang bisa dialirkan ke sudetan dalam waktu satu hari serta tingkat penurunan beban kerja pompa.

4.5.1 Volume air yang mengalir pada Kali Tenggang dalam waktu satu hari

Setelah diketa<mark>huinya debit minimum dan maksimu</mark>m, dihitung juga volume air yang mengalir di sungai Tenggang per satu hari dalam fungsi waktu untuk 2 tahun. Perhitungannya adalah sebagai berikut:

$$V = Q \times t$$
= 6,359 m³/dt × 24 jam
= 22.892,4 m³/jam × 24 jam
= 549.417,6 m³

Jadi volume air yang mengalir di sungai Tenggang dalam satu hari dalam fungsi waktu 2 tahun adalah 549.417,6 m³

4.5.2 Volume air yang dialirkan ke sudetan dalam waktu satu hari

Volume air yang dialirkan ke sudetan dan akhirnya menuju Banjir Kanal Timur

Telah diketahui bahwa sudetan dapat menampung Debit sebesar 2.7 - 3.5 m³/dt. Debit minimum sudetan adalah 2.7 m³/dt dan debit maksimum adalag 3.5 m³/dt, maka perhitungan volume air yang bisa dialirkan ke sudetan adalah sebagai berikut :

- Volume minimum dalam 1 hari

$$V = Q \times t$$
= 2,7 m³/dt × 24 jam
= 9.720.m³/jam × 24 jam
= 233.280 m³

- Volume maksimum dalam 1 hari

$$V = Q \times t$$
= 3,5 m³/dt × 24 jam
= 12.600 m³/jam × 24 jam
= 302.400 m³

4.5.3 Tingkat penurunan beban kerja pompa

Sebelum sudetan dibangun arah air akan ditujukan langsung ke Polder, namun dengan adanya rencana sudetan dapat mengurangi beban kerja pompa Polder Kali Tenggang, perhitungan penurunan beban kerja pompa adalah sebagai berikut:

- Debit pada DAS Tenggang

- Penurunan beban kerja pompa

Presentase penurunan beban kerja pompa =
$$\frac{Qsesudah \ sudetan}{Q \ DAS \ Tenggang} x \ 100 \%$$
 = $\frac{3,659}{54,089} x \ 100 \%$ = 6,76 %

Volume air yang mengalir di Sungai Tenggang dalam 1 hari sebesar 549.417,6 m³ dan volume minimum dan maksimum yang bida dialirkan ke sudetan sebesar 233.280 m³ liter dan 302.400 m³. Beban debit yang semula akan mengalir menuju Polder Kali Tenggang setelah adanya sudetan debit yang semula hanya ditanggung oleh Kali Tenggang akan berbelok melalui sudetan, sehingga nilai debit yang diterima polder akan lebih kecil dan beban kinerja pompa. Sudetan pada hulu Tenggang dapat mengurangi beban pompa sebesar 6,29 %.

BAB V

KESIMPULAN DAN SARAN

5.1 Kesimpulan

Berdasarkan analisis data dan pembahasan, maka dapat ditarik kesimpulan sebagai berikut ini :

- Sudetan pada Hulu Tenggang merupakan salah satu planning awal Pemerintah Kota Semrang sebagai upaya pengendalian banjir dan rob pada sistem Tenggang. Sudetan Hulu Tenggang dibangun pada Jalan Gemah Raya dengan konstruksi *Box Culvert* sepanjang 628 meter dengan kapasitas debit 2,7 m^{3/}dt – 3,5 m^{3/}dt.
- 2 Sistem Polder Kali Tenggang terletak di Semarang Timur memiliki catchment area ±1348,82 hektar dengan menggunakan sistem drainase tipe 4, yaitu kolam retensi tidak berada di satu tempat dengan sistem pompa. Stasiun pompa terletak di Jalan Nasional, Tambak Rejo, Kecamatan Gayamsari, tediri dari 6 unit dengan kapasitas daya @12 lt/dt disetiap pompanya. Kolam retensi berada di Muktiharjo memiliki luas kolam retensi 3% dari luas area dan kapasitas long storage Kali Tenggang yaitu sebesar 44,472 hektar yang meiliki kedalaman 2 m dengan volume kolam 889.492 m³ dan kolam retensi lainnya berada di saluran alam. Saluran primer berada di sepanjang Semarang Timur, yaitu saluran Pedurungan, saluran Tlogosari, dan saluran Sendang Indah. Taanggul berada di sepanjang Jalan arteri yaitu Jalan Yos Sudarso.
- 3. Nilai debit banjir rencana yang masuk ke sudetan Kali Tenggang dengan kala ulang 2, 5, 10 tahun adalah $Q_{2tahun}=6,359~\text{m}^{3/}\text{dt}$, $Q_{5tahun}=7,330~\text{m}^{3/}\text{dt}$, dan $Q_{10tahun}=7,909~\text{m}^{3/}\text{dt}$.
- 4. Berdasarkan hasil analisis jumlah debit kala ulang 2, 5, 10 tahun sebelum adanya sudetan adalah 6,359 m³/dt, 7,330 m³/dt, 7,909 m³/dt dan jumlah debit setelah adanya sudetan adalah 3,659 m³/dt, 4,630 m³/dt, 5,209 m³/dt dengan adanya pengurangan jumlah debit.
- 5. Berdasarkan hasil analisis volume yang mengalir pada Kali Tenggang dalam waktu satu hari adalah 549.417,6 m³. Volume air maksimum dan minimum yang dialirkan ke sudetan dalam waktu satu hari adalah 302.400

 $\rm m^3$ dan 233.280 $\rm m^3,$ serta tingkat penurunan beban kerja pompa Polder Kali Tenggang senilai 6,29%

5.2 Saran

Berdasarkan hasil penelitian yang telah dlakuakan, maka dapat diberikan saran sebagai berikut :

- Dapat dilakukan program pengendalian banjir dan rob dengan menggunakan sistem drainase yang lain agar Kota Semarang benar – benar bebas dari masalah banjir dan rob.
- 2. Perlu meningkatkan partispasi masyarakat khususnya warga sekitar agar peduli terhadap banjir dan genangan air hujan dengan tidak melakukan hal-hal yang dapat mengakibatkan saluran tidak berfungsi maksimal.
- 3. Perlu adanya kegiatan pemeliharaan saluran secara rutin dan berkala.

DAFTAR PUSTAKA

Agung, Martin Artunas. (2014). *Perencanaan Sistem Drainase Kali Tenggang Semarang*. Jurnal Karya Teknik Sipil, Vol. 3, No. 1. Semarang

Alfalah. (2000). Diktat Kuliah Drainase Perkotaan. UNDIP. Semarang.

BAPPEDA. (2015). Rencana Kerja Pembangunan Daerah Kota Semarang. Semarang: BAPPEDA Kota Semarang

BR, Sri Harto. (1993). Analisis Hidrologi. Jakarta: Gramedia Pustaka Utama.

CV. Erindo Reka Bahari .(2020). *Laporan Akhir DED Saluran Sudetan Hulu Tenggang*. CV. Erindo Reka Bahari. Semarang.

Dwityanti, Esthi Miranty, Nurhasni. (2006). *Perencanaan Penanganan Drainase Kompleks Pantai Indah Kapuk Jakarta*. Semarang: Jurnal Karya Teknik Sipil.

Fernandus, Dewy Ariyani. (2013). Analisis Jneis Distribusi Curah Hujan dan Kurva Intensyty Duration Frequency (IDF) di Kota Makasar, Laporan Tugas Akhir. Unhas press. Makassar.

Hadisusanto, Nugroho. (2011). Aplikasi Hidrologi. Malang: Jogja Media Utama.

Karnanto, Ir. Joesron Loebis, M. Eng., (1980). *Perhitungan Curah Hujan Maksimum Metode Gumbel dan Probable Maximum Precipitiation*. Direktorat Penyelidikan Masalah Air. Bandung.

Lashari, dkk. (2017). *Analisa Distribusi Curah Hujan di Area Merapi Menggunakan Metode Aritmatika dan Poligon Thiessen*. Jurnal Teknik Sipil & Perencanaan, 19(10). Semarang.

Nugroho, Hari. (2016). Kajian kerja sistem polder sebagai Model Pembangunan Drainase Kota Semarang bagian bawah dengan Balanced Scorecard. Media Komunikasi Teknik Sipil, Vol. 22, No. 1. Surakarta.

Nugroho, Victor. (2012). Evaluasi Sistem Polder Kota Lama dan Bandarharjo Semarang Terhadap Pengendalian Banjir, Laporan Tesis. Solo: UNS.

Maryanti, Ninda Putri. (2017). Analisis Efektivitas Sistem Polder Kota Lama Semarang dalam upaya Pengendalian Banjir dan Rob. Laporan Tugas Akhir. Solo: UNS.

Mulyanto, H.R. (2007). Sungai dan Sifat-sifatnya. Graha Ilmu. Yogyakarta.

Mondel, H., & Budinetro, H., 2010. *The Banger Polder in Semarang*. Semarang: CRBOM Small Publication.

Persada, Laksamana Angga.(2018). *Perencanaan Sudetan Sungai Kuala Tendeki pada Jalan Tol Manado-Bitung*. Jurnal Karya Teknik Sipil, Vol. 7, No. 2. Semarang.

Rahmadany, Aprilian Setiya. (2010). *Daerah Rawan Genangan Rob di Semarang*. Journal Of Marine Research, Vol. 1, No. 2. Semarang

Santosa, W. Suprayogi, A. dan Sudarsono, B. (2015). *Kajian Pemetaan Tingkat Kerawanan Banjir dengan Menggunakan Sistem Informasi Geografis* (Studi Kasus: DAS Beringin, Kota Semarang). Media Komunikasi Teknik Sipil, Vol. 4, No. 2. Semarang.

Sarawendro. (2010). Sistem Polder & Tanggul Laut, Penanganan Banjir secara Madani di Jakarta. Indonesia Land Reclamation and Water Management Institute. Yogyakarta.

Suroso. (2006). Analisis Curah Hujan untuk Membuat Kurva Intensity Duration Frequency (IDF) di Kawasan Rawan Banjir Banyumas. Jurnal Teknik Sipil, Vol. 2, No. 1. Purwokerto.

Sri Harto. (1993). Analisis Hidrologi. Gramedia Pustaka Utama. Jakarta.

Suripin. (2004). *Pengembangan Sistem Drainase yang Berkelanjutan*. Andi Offset. Yogyakarta.

Triatmodjo, Bambang. (2008). Hidrologi Terapan. Yogyakarta: Betta Offset

Unika news. (2015, 18 Febuari). Menata Pesisir Semarang. Diakses tanggal 11 Januari 2021 dari news.unika.ac.id/menata-pesisir-semarang/.

Wahyudi, S. Imam. dan Adi, Henny Pratiwi. (2016). *Drainase Sistem Polder*. Ef Press Digimedia. Semarang.

Yudi, Royna Kristian. (2017). *Perencanaan Sistem Polder Semarang Timur*. Jurnal Karya Teknik Sipil, Vol. 6, No. 2. Semarang.

YAYASAN BADAN WAKAF SULTAN AGUNG UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA)

J. Raya Kaligawe Km.4 Semarang 50112 Telp. (024) 6583584 (8 Sal) Fax.(024) 6582455

FAKULTAS TEKNIK

Nomor: 05 / A.2 / SA - T / VII / 2021

Pada hari ini, Senin Tanggal 19 Juli 2021 telah dilaksanakan Seminar Tugas Akhir, dengan peserta sebagai berikut:

1 Nama

Vina Ajeng Ali Lesmaya

30201700179

2 Nama

Nabila Khairunisa

30201700135

Dosen Pemhanding

Ir. M Faiqun Ni'am, MT, Ph.D

Judul TA

Efektifitas Rencana Sudetan Untuk Mengurangi Beban Debit Kali Tenggang

0

0

Dengan Hasil.

Sale dengan leverly server

Demikian Berita Acara Seminar Tugas Akhir ini dibuat untuk diketahui dan pergunakan seperlunya.

Dosen Pembinhing J

Dr. Henry Prat wi Adi, ST, M

Dosen Pembimbing II

Prof.Dr.Ir. H. S Iman Wahyudi DEV

Mengetahui , Ketua Program Studi Teknik Sipil

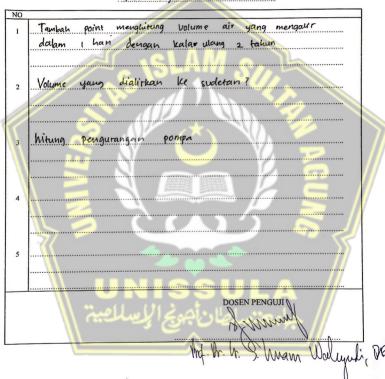
M Rusli Ahyar, ST, M. Eng

UNISSULA جامعتنسلطان أجونج الإسلامية

YAYASAN BADAN WAKAF SULTAN AGUNG UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA)

Jl. Raya Kaligawe Km.4 Semarang 50112 Telp. (024) 6583584 (8 Sal) Fax (024) 6582455 email : informasi@unissula.ac.id web . www.unissula.ac.id

FAKULTAS TEKNIK


Bismillah Membangun Generasi Khaira Ummah

SEMINAR TUGAS AKHIR

Nama Mahasiswa / NIM : Nin4 Ajeng Ali Losmay4
Hari / Tanggal : 49 70 16 2021

Hari / Tanggal Judul TA Analists Efektivitas Rincard Sudetan

Untuk mengurangi bebandebit polder Kali Tenggang.

YAYASAN BADAN WAKAF SULTAN AGUNG UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA) JI. Raya Kaligawe Km.4 Semarang 50112 Telp. (024) 6583584 (8 Sal) Fax.(024) 6582455 email: informasi@unissula.ac.id web . www.unissula.ac.id

Bismillah Membangun Generasi Khaira U

SEMINAR TUGAS AKHIR

. Natilanhainunisa 130201700135 Nama Mahasiswa / NIM

Hari / Tanggal

19 ruli 2021

Judul TA

Analisis Efeutivitus Netrana Sudetan

until Menghargi beban debit polderkali Tenggang

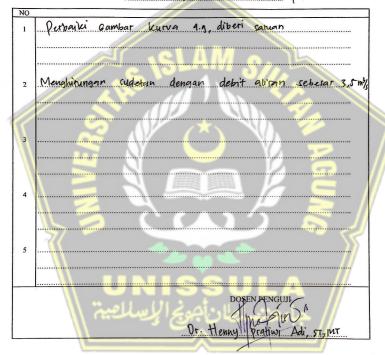
NO	
1	tambah Polin Menghitung Volume gi Yang mengalir dalam 1 hari dangan Kala Ulang 2 tahun
2	Volume yang dialirkan ke Sudetan
3	hitung Pongurangan Pompa
4	
5	
_]	DOSEN PENGUII

YAYASAN BADAN WAKAF SULTAN AGUNG UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA)

Jl. Raya Kaligawe Km.4 Semarang S0112 Telp. (024) 6583584 (8 Sal) Fax.(024) 6582455 email ; informasi@unissula.ac.id web : www.unissula.ac.id

FAKULTAS TEKNIK

Riemillah Mambangun Generasi Khaira Limmah


SEMINAR TUGAS AKHIR

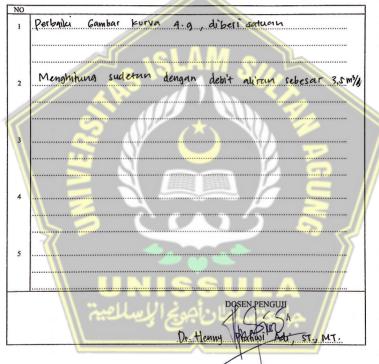
Nama Mahasiswa / NIM Nabila Phairunisa / 30361700135

Hari / Tanggal . 19 Jolf 2021

Judul TA Analysis Efektivitas Rencana Sudetan

untuk mengurangi beban debit polder kali Tenggang

YAYASAN BADAN WAKAF SULTAN AGUNG UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA)


Jl. Raya Kaligawe Km.4 Semarang 50112 Telp. (024) 6583584 (8 Sal) Fax.(024) 6582455 email: informasi@unissula.ac.id web: www.unissula.ac.id

FAKULTAS TEKNIK

Bismillah Membangun Generasi Khaira Ummah

SEMINAR TUGAS AKHIR

Nama Mahasiswa / NIM	Vina Ajeng Ali Lesmayn /30201900199
Hari / Tanggal	19 Juli 2021
Judul TA	Analisis Efektivitas Tencana Sudetan
	. Untuk mengurangi beban debit polder tali Tengsar

YAYASAN BADAN WAKAF SULTAN AGUNG

UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA)

Jl. Raya Kaligawe Km.4 Semarang 50112 Telp. (024) 6583584 (8 Sal) Fax.(024) 6582455 email : informasi@unissula.ac.id web : www.unissula.ac.id

FAKULTAS TEKNIK

Bismillah Membangun Generasi Khaira Limmah

JUDUL TUGAS AKHIR DALAM BAHASA INGGRIS

** .	
Hari	Senin
Tanggal	19 Juli 2021
Jam	13.00 WIB

Judul Tugas Akhir

Efektifitas Rencana Sudetan Untuk Mengurangi Beban Debit Kali Tenggang

0

0

JUDUL TUGAS AKHIR DALAM BAHASA INGGRIS

Analysis of the effectiveness of drainage plan to reduce the load of the Tenggang river polder discharge

r	Vina Ajeng Ali Lesmaya	30201700179	T	VANS	
2	Nabila Khairunisa	30201700135	2	(gui	

Pembimbing Tugas Akhir

NO	NAMA	TANDA TANGAN
1	Dr. Henny Pratiwi Adi,ST,MT	1 Masher
2	Prof.Dr.Ir. H. S Imam Wahyudi,DEA	2

Semarang, 19 Juli 2021 Ketua Program Studi Teknik Sipil

M Rusl Ahyar, ST, M.Eng

NIK. 210216089

YAYASAN BADAN WAKAF SULTAN AGUNG UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA)

Jl. Raya Kaligawe Km.4 Semarang 50112 Telp. (024) 6583584 (8 Sal) Fax.(024) 6582455 email : informasi@unissula.ac.id web : www.unissula.ac.id

FAKULTAS TEKNIK

Bismillah Membangun Generasi Khaira Ummah

DOSEN PENGUJI SEMINAR TUGAS AKHIR

 Hari
 Senin

 Tanggal
 19 Juli 2021

 Jam
 13.00 WIB

Judul Tugas Akhir

Efektifitas Rencana Sudetan Untuk Mengurangi Beban Debit Kali Tenggang

30201700179	1	LANG .	
30201700135	2	Mu	
			, the state of the

NO	NAMA	TANDA TANGAN		
1	Dr. Henny Pratiwi Adi,ST,MT	harias'		
2	Prof.Dr.Ir. H. S Imam Wahyudi,DEA	2 De Muni		
3	Ir. M Faiqun Ni'am,MT,Ph.D	3 frink		

Semarang, 19 Juli 2021 Ketua Program Studi Teknik Sipil

M Rusli Ahyar, ST, M. Eng NIK. 210216089 person such For LEMBAR ASISTENSI

LAPORAN TUGAS AKHIR EFEKTIVITAS POLDER KALI TENGGANG SEMARANG DALAM PENANGGULANGAN BANJIR ROB

NAMA

: Nabila Khairunisa

NIM: 30201700135

: Vina Ajeng Ali Lesmaya NIM : 30201700179

DOSEN PEMBIMBING I: Prof. Fr. S. Imam Wahyudi, DEA

NO.	TGL ASISTENSI	KETERANGAN	PARAF
	12-09-2021	- Protalus	
		- levedisi diluwanyan	
		Levidisi di luvanzan	MACT
	THE	glatan pl. Maja pálrit da sudulan he KBT	N -
			-
		I tambalan storage	
		suditan. Jabelun	
	\\ UN	Debit banzir	ud.
	سلاصية	Exhteritus sud	Wa
		3 mg. A Plu Teny	jry '
	à	m ² + /	52
ř	x-	(a.	
	sult.	Op I lunva	deposition
Ť.	. (F)Mo	1 July awrita	diluty.
	(2) Mux 9	egyelin's rediffer in the	mig.
Topological Company	- A MIN	uan sudita.	

LAPORAN TUGAS AKHIR EFEKTIVITAS RENCANA SUDETAN KALI TENGGANG UNTUK MENGURANGI DEBIT POLDER KALI TENGGANG

NAMA

: Nabila Khairunisa

NIM: 30201700135

: Vina Ajeng Ali Lesmaya NIM : 30201700179

DOSEN PEMBIMBING II: Prof. Dr. Ir. S. Imam Wahyudi, DEA

NO.	TGL ASISTENSI	KETERANGAN	PARAF
NO.	18 202 (Gamber CA m + 177 An Welleylana	PARAF
			- , 6

CA o she sudita - dilutur debrit - hitney leap os: tar du - spy gamber Inde sale 29 2021 & palonga di pur plas In jursicepte Seminar TA

LAPORAN TUGAS AKHIR EFEKTIVITAS POLDER KALI TENGGANG SEMARANG DALAM PENANGGULANGAN BANJIR ROB

NAMA

: Nabila Khairunisa

NIM: 30201700135

: Vina Ajeng Ali Lesmaya

NIM: 30201700179

DOSEN PEMBIMBING 1: Dr. Henny Pratiwi Adi, ST, MT

NO.	TGL ASISTENSI	KETERANGAN	PARAF
1.	24/2/2021	- Perbaiki format penulisan font Size, margin, jushjy	
	IAS	Spasi - Sumber pustalea hrs ditulis	\\mu
1	MVERS	- diakhir bab 2 hrs dileng- Kapi dy review thd previous research.	
	UN	- lanjuthcan	e e
9.	23/3/2021	- Perbaiki rumusan	
		m asalah · Perbaiki tinjawan pustoka	the
		- Bual tabel previous research	•
	- 22	- Perbaiki analisis data - Perbaiki bagan dir.	

LAPORAN TUGAS AKHIR ANALISIS EFEKTIVITAS POLDER KALI TENGGANG DI KOTA SEMARANG DALAM PENANGGULANGAN BANJIR ROB

NAMA

: Nabila Khairunisa

NIM: 30201700135

: Vina Ajeng Ali Lesmaya

NIM: 30201700179

DOSEN PEMBIMBING I: Dr. Henny Pratiwi Adi, ST, MT

NO.	TGL ASISTENSI	KETERANGAN	PARAF
3.	29/3/2021	- Perbaiki sumber pustaka - Penulisan tabel - Beri deskripsi perbedaan dg penelitian sebelumnya	1mg
4.	9/4 /2021	Perbaiki variabel penelitia. Buat metode pengolahan data Perbaiki kuesioner	Ama-
5.	24/5/2021	- Lanjutkan - Perbaiki metode pengo- lahan data & analisis data - Perbaiki bagan alir	1/mg
		-Buat kerangka bab 4	

LAPORAN TUGAS AKHIR EFEKTIVITAS RENCANA SUDETAN UNTUK MENGURANGI BEBAN DEBIT POLDER KALI TENGGANG

NAMA

: Nabila Khairunisa

NIM: 30201700135

: Vina Ajeng Ali Lesmaya

NIM: 30201700179

DOSEN PEMBIMBING I: Dr. Henny Pratiwi Adi, ST, MT

NO.	TGL ASISTENSI	KETERANGAN	PARAF
Ь	5/7 /21	- Perbaiki gbr 4.9 2 4.10	#Q
		-Perbaiti Kesimpulan	Imag
		- Daftar pustalea	
_	- 1	SLAM S	
7.	10/7/21	- Perbailci daftar	# a
		pustaka	Imp
\	NE S	- Bisa ceminar TA	
	NU N	ISSULA /	
	لإسلامية	مامعتنسلطان أجونجا	
	,		
	-		
		,	

Analisis Rencana Sudetan Untuk Mengurangi Beban Debit Polder Kali Tenggang

ORIGINALITY RI	EPORT			
22 SIMILARITY	70	20% INTERNET SOURCES	4% PUBLICATIONS	11% STUDENT PAPERS
PRIMARY SOUR	RCES			
	edia.ne	eliti.com		1 %
	s.scribd ernet Source		AM SU	1 %
	positor ernet Source	y.usu.ac.id	O TE	1%
	ubmitte dent Paper	d to Politeknik	Negeri Bandu	ng 1 %
	ww.ejou	urnal-s1.undip. ایخ الاسالسیة	ac.id L A	1 %
	ubmitte dent Paper	d to Sriwijaya l	Jniversity	1 %
	xt-id.12 ernet Source	23dok.com		1 %
	oil.stud ernet Source	entjournal.ub.a	ac.id	1 %
9	.scribd. ernet Source			1 %

10	eprints.undip.ac.id Internet Source	<1%
11	Submitted to Universitas Pancasila Student Paper	<1%
12	Submitted to Institut Teknologi Nasional Malang Student Paper	<1%
13	heryudhahendra.blogspot.com Internet Source	<1%
14	core.ac.uk Internet Source	<1%
15	ejurnal.untag-smd.ac.id Internet Source	<1%
16	eprints.ums.ac.id Internet Source	<1%
17	Submitted to Universitas Diponegoro Student Paper	<1%
18	Bayu Seto Waseso Utomo, Jati Iswardoyo, Ruzardi Ruzardi. "Uji Laboratorium Pengaruh Kemiringan Lereng Terhadap Kejadian Longsoran Aliran Debris Pasir Merapi", JURNAL SUMBER DAYA AIR, 2020 Publication	<1%
19	fr.scribd.com Internet Source	<1%

20	Submitted to Universitas Siliwangi Student Paper	<1%
21	www.burhanapriliansyah.com Internet Source	<1%
22	Submitted to Unika Soegijapranata Student Paper	<1%
23	123dok.com Internet Source	<1%
24	repository.unmuhjember.ac.id Internet Source	<1%
25	103.102.46.165 Internet Source	<1%
26	Submitted to UNESCO-IHE Institute for Water Education Student Paper	<1%
27	Submitted to Trisakti University Student Paper	<1%
28	www.slideshare.net Internet Source	<1%
29	garuda.ristekbrin.go.id Internet Source	<1%
30	jagoanilmu.net Internet Source	<1%

KOTA SEMARANG", Jurnal Ipteks Akuntansi Bagi Masyarakat, 2019 Publication www.journal.unrika.ac.id <1% 32 Internet Source Submitted to Universitas Brawijaya <1% 33 Student Paper Submitted to Universitas Hasanuddin <1% 34 Student Paper bukhoribk04.blogspot.com <1% 35 Internet Source research.unissula.ac.id <1% 36 Internet Source Submitted to Fakultas Ekonomi dan Bisnis <1% 37 Universitas Gadjah Mada Student Paper www.nurfaonline.com <1% 38 Internet Source docobook.com <1% 39 Internet Source kumparan.com 40 Internet Source pt.scribd.com

Aprih Santoso. "IPTEKS PERHITUNGAN

POTENSI PENDAPATAN ASLI DAERAH (PAD) DI

31

<1%

41	Internet Source	<1%
42	triplowbudgetsyahri.blogspot.com Internet Source	<1%
43	Submitted to University of Malaya Student Paper	<1%
44	dinarek.unsoed.ac.id Internet Source	<1 %
45	jurnal.untan.ac.id Internet Source	<1 %
46	n0vitasari.files.wordpress.com Internet Source	<1 %
47	de.scribd.com Internet Source	<1%
48	repository.usd.ac.id Internet Source	<1%
49	jtera.polteksmi.ac.id Internet Source	<1 %
50	siba.unisalento.it Internet Source	<1 %
51	Submitted to Hoa Sen University Student Paper	<1 %
52	repository.maranatha.edu Internet Source	<1%

53	mysunblognewaddress.blogspot.com Internet Source	<1%
54	planula.blogspot.com Internet Source	<1%
55	thesis.binus.ac.id Internet Source	<1%
56	www.kelaspintar.id Internet Source	<1%
57	Submitted to Universitas 17 Agustus 1945 Surabaya Student Paper	<1%
58	tempegarit4.wordpress.com Internet Source	<1%
59	worldwidescience.org Internet Source	<1%
60	www.pnas.org	<1%
61	Submitted to Bogazici University Student Paper	<1%
62	Submitted to Syiah Kuala University Student Paper	<1%
63	Submitted to Universitas International Batam Student Paper	<1 %
	Submitted to Universitas Lancang Kuning	

Submitted to Universitas Lancang Kuning

75 lamor	ngankab.go.id ource	<1%
76 Internet S	cui.ac.id ource	<1%
77 noviat	fujalestariwahyani.wordpress.com	<1%
78 repos Internet S	itory.telkomuniversity.ac.id	<1%
79 Summ Internet S	ner-absolutely.icu	<1%
80 Vdocu	iments.mx ource	<1%
Subm Student P	itted to Sogang University	<1%
82 ejourr	nal.unib.ac.id NISSULA ource	<1%
83 eprint Internet S	cs.itn.ac.id	<1%
84 id.wik Internet S	ipedia.org ource	<1%
85 jurnal Internet S	.uisu.ac.id ource	<1%
86 jurnal Internet S	.umj.ac.id ource	<1%

87	ppid-dinkes.sumselprov.go.id Internet Source	<1%
88	puslit2.petra.ac.id Internet Source	<1%
89	repositori.usu.ac.id Internet Source	<1%
90	repository.uma.ac.id Internet Source	<1%
91	share.its.ac.id Internet Source	<1%
92	www.neliti.com Internet Source	<1%
93	www.patikab.go.id Internet Source	<1%
94	Yohanes Sandy Setiadi, Wisnu Suharto, Diah Setiati Budiningrum. "Perhitungan Volume Kolam Retensi Muktiharjo Kidul Semarang Berdasarkan Data Curah Hujan Harian Maksimum Kawasan Kali Tenggang", Teknika, 2014 Publication	<1%
95	adoc.pub Internet Source	<1%
96	afexzs.blogspot.com Internet Source	<1%

97	e-journal.janabadra.ac.id Internet Source	<1%
98	ejournal.uniks.ac.id Internet Source	<1%
99	ejurnal.stimata.ac.id Internet Source	<1%
100	journal.unilak.ac.id Internet Source	<1%
101	look-better.icu Internet Source	<1%
102	repository.unissula.ac.id Internet Source	<1%
103	sinta.unud.ac.id Internet Source	<1 %
104	tep.fateta.unand.ac.id	<1%
105	vdocuments.site Internet Source	<1%
106	www.scribd.com Internet Source	<1%
107	Roy Martin, Muhammad Fauzi, Khairul Amri. "ANALISIS DEBIT PUNCAK SUNGAI AIR TETAP KABUPATEN KAUR DENGAN PENDEKATAN	<1%

METODE HIDROGRAF SATUAN SINTESIK (HSS)", Inersia: Jurnal Teknik Sipil, 2020

Publication

108	pasar-lamunan.blogspot.com Internet Source	<1%
109	www.casmudiberbagi.com Internet Source	<1%
110	Muhamad Arifin, Muchamad Arif Budiyanto. "ANALISIS KERUNTUHAN BENDUNGAN (DAM BREAK ANALYSIS) DALAM UPAYA MITIGASI BENCANA (STUDI KASUS DI WADUK/BENDUNGAN TEMPURAN)", Civetech, 2019 Publication	<1%
111	docs.google.com Internet Source UNISSULA	<1%
	e quotes Off Exclude matches Off e bibliography Off	