TABLE OF CONTENTS

CHAPTER

1

2

.

TITLE

PAGE

	TITLE PAGE	i
	APPROVAL PAGE	ii
	PROCESS VERBAUX	iii
	PLAGIARISM FREE STATEMENT	iv
	STATEMENT ORIGINALITY	V
	мотто	vi
	DEDICATION	vii
	ACKNOWLEDGEMENT	viii
	TABLE OF CONTENT	xii
	LIST OF TABLE	xvi
	LIST OF FIGURE	xvii
	ABSTRACT	XX
	ABBREVIATIONS	xxii
1	INTRODUCTION	
	1.1. Background	1
	1.2. Problem Statement and Problem Limitations	4
	1.3. Objectives of the Final Assignment	4
	1.4. Scope of the Study	5
2	LITERATURE REVIEW	
	2.1. Introduction	6
	2.2. Differences between Flexible and Rigid Pavement	6
	2.2.1. AllAboutEng explained difference between	6
	Flexible Pavement and Rigid Pavement	
	2.2.2. Lance Bradshaw explain the advantages and	8
	disadvantages of flexible pavement anad rigid	

pavement

•

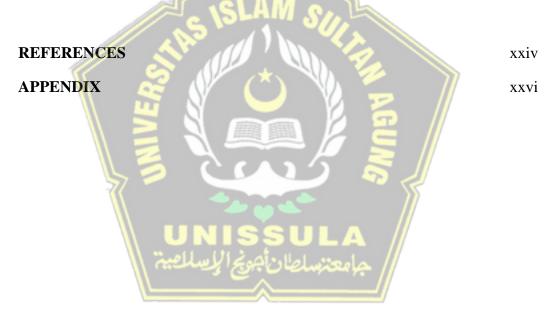
3

4

2.2.3.	V. Sutharsan make comparisson between	10
	Flexible and Rigid pavement	
2.2.4.	Gopal Mishra difference between Flexible and	12
	Rigid Pavement	
2.3.	Design Life Flexible Pavement and Rigid	12
	Pavement	
2.4.	Subgrade on Flexible Pavement and Rigid	13
	Pavement	
2.5	Loading System in Flexible Pavement and Rigid	18
	Pavement	
2.6	Summary of The Literature Review	19
	ISLAM SU	
METI	HODOLOGY	
3.1	Introduction	20
3.2	Design Calculations	20
3.3	Provisions Pavement Design from Bina Marga's	22
	Pavement Design Manual 2017/	
3.3.1	Design Life	22
<mark>3</mark> .3.2	Traffic	22
3. <mark>3</mark> .3	Determination of Subgrade Strength	26
3.4	AASTHO 1993 Design Method	30
3.4.1	Flexible Pavement	30
3.4.2	Rigid Pavement	35
FLEX	IBLE PAVEMENT THICKNESS DESIGN	
4.1.	Introduction	47
4.2.	Time Constrains	47
4.3.	Traffic	48
4.4.	Reliability	51
4.5.	Determined the Serviceability Loss ΔPSI	53

4.6. Determined The Modulus of Resilient 53

	4.7.	Determine of Determined the Pavement Layer	53
		Materials Characterization and Layers Coefficients	
	4.7.1.	Asphalt Concrete Surface Course	53
	4.7.2.	Granular Base layers	54
	4.7.3.	Granular Subbase Layers	55
	4.8.	Determined Coefficient of Drainage (m)	56
	4.9.	Determination of Structural Layer Thickness for	57
		Initial Structure	
5	RIGI	D PAVEMENT THICKNESS DESIGN	
	5.1.	Introduction	64
	5.2.	Time Constrains	64
	5.3.	Traffic CLAM	65
	5.4.	Reliability	67
	5.5.	Determined the Serviceability Loss ΔPSI	69
	5.6.	Determined The Modulus of Subgrade Reaction	69
		Based on CBR Value	
	5.7.	Determined the Modulus of Elasticity of Concrete	70
	5.8.	Determined the Drainage Coefficient (Cd)	71
	5.9.	Determined the coefficient Load Transfer (J)	71
	5.10.	Calculation of The Concrete Slab Thickness	72
		مامعة سلطان أجونج الإسلامية	
6	DISC	USSION	
	6.1.	Introduction	75
	6.2.	Subgrade Strength	75
	6.2.1.	Flexible Pavement	75
	6.2.2.	Rigid Pavement	75
	6.3.	Base and Subbase Course Layer	76
	6.3.1.	Flexible Pavement	76
	6.3.2.	Rigid Pavement	76
	6.4.	Pavement Design	77
	6.4.1.	Design Life	77


`

6.4.2.	Determination of Pavement Thickness in Flexible	77
	Pavement	
6.4.3.	Determination of Slab Thickness in Rigid	77
	Pavement	
6.5.	Damage and Rehabilitation of Pavement	78
6.5.1.	Damages in Flexible Pavements	78
6.5.2.	Damages in Rigid Pavements	85
6.6.	Skid Resistance	101

7 CONCLUSION

•

7.1	Conclusion	104
7.2	Recomendation	104

LIST OF TABLES

TABLE NO

.

TITLE

PAGE

2.1.	The difference between Flexible and Rigid Pavement	7
2.2.	Comparison of rigid and Flexible Pavement	11
2.3.	Difference between Flexible and Rigid Pavement	12
2.4.	Design Life for New Pavement	13
3.1.	Design Life for New Pavement	22
3.2.	Vehicle Clasification based on Type	23
3.3.	Traffic Growth Rate Factor (i) (%)	24
3.4.	Lane Distribution Factor (D _L)	25
3.5.	Design Chart 1- Indication of the CBR Value Estimate	29
3.6.	Minimum Thickness (inches)	34
3.7.	Table for Estimating Effective Modulus of Subgrade	37
	Reaction / = /	
4.1.	Axle Load Equivalency Factor for Flexible Pavement	49
	with $pt = 2.0$. and estimate $SN = 4$	
4.2.	Load Configuration for 8.16 Ton ESAL	50
4.3.	Worksheet for Calculating 8,16 ton (ESAL) Applications	50
4.4.	Process to Predict The Performance Period of An Initial	58
	Pavement Structure Considering Swelling	
5.1.	Axle Load Equivalency Factor for Flexible Pavement	65
	with $pt = 2.0$. and estimate $SN = 4$	
5.2.	Worksheet for Calculating 8,16 ton (ESAL) Applications	66
5.3.	Recommended values of drainage coeficient, Cd for rigid	71
	pavement design	
5.4.	Recommended Load Transfer Coeficient for various	72
	pavement types and design conditions	

LIST OF FIGURE

FIGURE NO

•

TITLE

PAGE

1.1a.	Flexible Pavement Structure	2
1.1b.	Rigid Pavement Structure	2
1.2a	Photograph of Flexible Pavement	3
1.2b.	Photograph of Rigid Pavement	3
2.1	Solid Concrete Pavement Foundation Model	16
2.2	Load Distributions on Flexible Pavement	18
2.3	Load Distributions on Rigid Pavement	19
3.1	Flowchart of Methodology	21
3.2	Design Chart for Flexible Pavements Based on Using Mean	31
1	Values for Each Input	
3.3	Chart for Estimating Composite Modulus of Subgrade	38
	Reaction, k	
3.4	Chart to Modify Modulus of Subgrade Reaction to Consider	40
	Effects of Rigid Foundation Near Surface	
3.5	Chart for Estimating Relative Damage to Rigid Pavement	41
	Based on Slab Thickness and Underlying Support	
3.6	Correction of Effective Modulus od Subgrade Reaction for	42
	Potential Loss of Subbase Support	
3.7	Design Chart for Rigid Pavement Based on Using Mean	45
	Values for Each Input Variable (Segment 1)	
3.8	Continued- Design Chart for Rigid Pavements Based on	46
	Using Mean Values for Each Input Variable (Segment 2)	
4.1	Plot of Cumulative 8.16 ton – ESAL Traffic vs Time	52
4.2	Chart for Estimating Structural Layer Coefficient of Dense-	54
	Graded Asphalt Concrete Based on the Elastic (Resilient)	
	Modulus (a1)	
4.3	Variation in Granular Base Layer Coefficient (a2) with	55

	Various Base Strength Parameters	
4.4	Variation in Granular Subbase Layer Coefficient (a3) with	56
	Various Subbase Strength Parameters	
4.5	Graph of Environmental Serviceability Loss versus Time for	58
	Swelling Conditions	
4.6	Structure of Flexible Pavement	59
4.7	Chart Calculating Intial Structural Number SN for all	60
	pavement layers	
4.8	Chart to Determine Traffic in Iteration Process	61
4.9	Chart to Determine Structural Number SN1 for Surface	62
	Layers	
4.10	Chart to Determine Structural Number SN2 for Base Layers	63
5.1	Plot of Cumulative 8.16 ton – ESAL Traffic vs Time	68
5.2	Chart to make correction the effective of modulus of	70
	subgrade reaction	
5.3	Structure of Rigid Pavement	72
5.4	Chart for determine slab thickness Rigid Pavement	73
	(Segment 1)	
5.5	Continued- Chart for determine slab thickness Rigid	74
	Pavements (Segment 2)	
6.1.	Crocodile Crack Occur in Flexible Pavement Surface Layer	79
6.2.	Depression Distress	80
6.3.	Shoving	80
6.4.	Potholes	81
6.5.	Real-Time Formation of Ruts	82
6.6.	Rutting Formation under Vehicular Load	82
6.7.	Swelling in Flexible Pavement	83
6.8.	Reveling or Freeting in the Surface of Flexible Pavement	83
6.9.	Illustration of Surface Dressing	84
6.10.	Photograph of Activity of Surface Dressing	84
6.11.	The Process of Repairing Cracks or Potholes on the	85
	Surface Pavement	

•

6.12.	Examples of Longitudinal and Diagonal Cracks on the Left	86
	and on the Right Transverse and Diagonal Cracks	
6.13.	Examples of Durability Crack in a Slab	87
6.14.	Examples of Corner Breaks at a High Volume Traffic Road	88
6.15.	Example of Shrinkage Cracking on New Slabs on the Left	89
	and Severe Shrinkage Cracking on the Right	
6.16.	Example of Low Severity Joint on the Left and on the	90
	Right a Moderate Severity Joint	
6.17.	Example of a Dowel Bar Corrosion on the Left and on the	91
	Right a Patch Over an Area of Dowel Bar Failure	
6.18.	Example of Scaling	92
6.19.	Examples of Map Cracking Resulting from Alkali-	93
	aggregate Reaction	
6.20.	Examples of Spalling Along a Linear Crack on the Left	95
	and a Joint and Corner Spalling on the Right	
6.21.	Examples of Blowup Distress	96
6.22.	Examples of a Shattered Slab Distress	97
6.23.	Examples of Punchout Distress	97
6.24.	Examples of Popouts Distress	98
6.25.	Examples of Slab Patching	99
6.26.	On the Left it's an Example of Pumping in Action and on	100
	the Right is an Example of Pumping Distress	
6.27.	Example of Faulting Distress at the Left and a Close-up on the Right	101

× .