TUGAS AKHIR

PERBANDINGAN SLOPE PROTECTION DARURAT DENGAN METODE CERUCUK BAMBU & BRONJONG (STUDI KASUS JALAN TOL SEMARANG ABC)

Diajukan Untuk Memenuhi Persyaratan Dalam Menyelesaikan Pendidikan Program Studi Program Sarjana (S1) Fakultas Teknik Program Studi Teknik Sipil Universitas Islam Sultan Agung

Disusun Oleh :

Bayu Surya Agung Widodo

<u>Dian Eko Saputro</u>

30.2019.00.225

30.2019.00.228

FAKULTAS TEKNIK PROGRAM STUDI TEKNIK SIPIL UNIVERSITAS ISLAM SULTAN AGUNG

SEMARANG

$2\ 0\ 2\ 1$

YAYASAN BADAN WAKAF SULTAN AGUNG UNIVERSITAS ISLAM SULTAN AGUNG (UNISSULA) FAKULTAS TEKNIK Jalan Raya Kaligawe KM. 4 Po. BOX 1054Telp.(024)6583584Ext.507 Semarang 50112

HALAMAN PENGESAHAN

PERBANDINGAN SLOPE PROTECTION DARURAT DENGAN METODE CERUCUK BAMBU & BRONJONG (STUDI KASUS JALAN TOL SEMARANG ABC)

Oleh :

BERITA ACARA BIMBINGAN TUGAS AKHIR

Nomor :

Pada hari ini, Senin tanggal Februari 2021 berdasarkan Surat Keputusan Rektor Universitas Islam Sultan Agung (UNISSULA) Semarang perihal penunjukan Dosen Pembimbing I dan Dosen Pembimbing II :

1.	Nama	: Dr. Abdul Rochim ST, MT
	Jabatan Akademik	: Lektor Kepala
	Jabatan	: Dosen Pembimbing I
2.	Nama	: Lisa Fitriyana ST, M.Eng
	Jabatan Akademik	: Asisten Ahli
	Jabatan	: Dosen Pembimbing II

Dengan ini menyatakan bahwa mahasiswa yang tersebut di bawah ini telah menyelesaikan bimbingan Tugas Akhir / Skripsi :

Nama: Bayu Surya Agung WidodoNama: Dian Eko SaputroNIM: 30.2019.00.225NIM: 30.2019.00.228

Judul : Perbandingan *Slope Protection Darurat* Dengan Metode Cerucuk Bambu & Bronjong. Dengan tahapan sebagai berikut :

No.	Tahapan	Tanggal	Keterangan
1	Penunjukan dosen pembimbing	30 November 2020	// -
2	Proposal 🤁 📃 🖉	15 Maret 2021	ACC
3	Pengumpulan data	18 Maret 2021	// -
4	Analisis data	28 April 2021	-
5	Penyusunan laporan	23 Juni 2021	5 -
6	Selesai laporan	08 Juli 2021	ACC

Demikian Berita Acara Bimbingan Tugas Akhir ini dibuat untuk diketahui dan dipergunakan seperlunya oleh pihak – pihak yang berkepentingan.

Dosen Pembimbing I

Dr. Abdul Rochim ST, MT

Dosen Pembimbing II

Lisa Fitriyana ST, M.Eng

Ketua Frigram Studi Teknik Sipil

PERNYATAAN BEBAS PLAGIASI

Saya yang bertanda tangan di bawah ini :

- NAMA : 1. Bayu Surya Agung Widodo 2. Dian Eko Saputro
- NIM : 30201900225 30201900228

Dengan ini menyatakan bahwa Tugas Akhir yang berjudul :

PERBANDINGAN *SLOPE PROTECTION* DARURAT DENGAN METODE CERUCUK BAMBU & BRONJONG (STUDI KASUS JALAN TOL SEMARANG ABC)

Benar bebas dari plagiat, dan apabila pernyataan ini tidak terbukti benar maka kami bersedia menerima sanksi sesuai ketentuan yang berlaku.

Demikian surat pernyataan ini kami buat untuk dipergunakan sebagaimana mestinya.

Semarang, Juli 2021

Yang membuat pernyataan,

Bayu Surya Agung Widodo

Dian Eko Saputro

PERNYATAAN KEASLIAN

Saya yang bertanda - tangan di bawah ini :

NAMA : 1. Bayu Surya Agung Widodo 2. Dian Eko Saputro

NIM : 30201900225 30201900228

JUDUL SKRIPSI: Perbandingan Slope Protection Darurat Dengan MetodeCerucuk Bambu & Bronjong (Studi Kasus Jalan Tol Semarang ABC).

Menyatakan dengan sesungguhnya bahwa Tugas Akhir ini merupakan hasil penelitian, pemikiran dan pemaparan asli kami sendiri. Kami tidak mencantumkan tanpa pengakuan bahan – bahan yang telah dipublikasikan sebelumnya atau ditulis oleh orang lain, atau sebagai bahan yang pemah diajukan untuk gelar atau ijazah pada Universitas Islam Sultan Agung Semarang atau perguruan tinggi lainnya.

Apabila dikemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka kami bersedia menerima sanksi akademik sesuai dengan peraturan yang berlaku di Universitas Islam Sultan Agung Semarang.

Demikian pernyataan ini kami buat.

Semarang, Juli 2021

Yang membuat pernyataan,

Bayu Surya Agung Widodo

D2AJX126442652

Dian Eko Saputro

ΜΟΤΤΟ

• Bayu Surya Agung Widodo

خَيْرُ النَّاسِ أَنْفَعُهُمْ لِلنَّاسِ

إِنَّ مَعَ ٱلْعُسْرِ يُسْرًا

"Khairunnas anfau`hum linnas"

"Sebaik-baik manusia adalah yang paling bermanfaat bagi manusia". (HR. Ahmad).

Dian Eko Saputro

" inna ma'al-'usri yusrā"

"Sesungguhnya sesudah kesulitan itu ada kemudahan". (QS. Al-Insyirah : 6)

PERSEMBAHAN

• Bayu Surya Agung Widodo

Persembahan khusus untuk :

- 1. Dr. Abdul Rochim, ST., MT. dosen pembimbing I yang senantiasa memberikan ilmunya serta membimbing penulis sampai akhir terselesaikan tugas akhir ini.
- Lisa Fitriyana, ST., M.Eng., dosen pembimbing II yang senantiasa memberikan ilmunya serta membimbing penulis sampai akhir terselesaikan tugas akhir ini.
- Bapak Ibu Dosen Teknik Sipil Fakultas Teknik Universitas Islam Sultan Agung Semarang yang senantiasa memberikan ilmu selama menuntut ilmu di Fakultas Teknik Program Studi Teknik Sipil Universitas Islam Sultan Agung Semarang.
- Terima kasih kepada orang tua yang tercinta, yang telah memberi dukungan dan doa untuk jiwa, raga, yang tidak bisa terbalaskan. Tugas Akhir ini untuk kalian. Semoga selalu dalam lindungan Allah SWT.
- 5. Terima kasih kepada keluarga yang tersayang, yang selalu memberikan dukungan dan doa, dan selalu ada untuk mendampingi. Semoga segala kebaikan akan menjadi berkah untuk keluarga.
- Terima kasih kepada partner tugas akhir, yaitu Dian Eko Saputro. Yang selalu mau sabar dan tidak patah semangat untuk menyelesaikan tugas akhir ini sampai tuntas. Semoga lelah dan sabarmu menjadi berkah untukmu.
- Terima kasih kepada teman teman Sipil kelas sore angkatan 2019, yang selalu membantu dalam menyelesaikan tugas dan pekerjaan yang harus di selesaikan di Teknik Sipil Unissula. Semoga perjuangan akan selalu terbayarkan.
- 8. Terima kasih kepada diri saya sendiri, karena sudah mau berjuang dan bertahan untuk menyelesaikan tugas akhir ini.

PERSEMBAHAN

• Dian Eko Saputro

Persembahan khusus untuk :

- 1. Dr. Abdul Rochim, ST., MT. dosen pembimbing I yang senantiasa memberikan ilmunya serta membimbing penulis sampai akhir terselesaikan tugas akhir ini.
- Lisa Fitriyana, ST., M.Eng., dosen pembimbing II yang senantiasa memberikan ilmunya serta membimbing penulis sampai akhir terselesaikan tugas akhir ini.
- Bapak Ibu Dosen Teknik Sipil Fakultas Teknik Universitas Islam Sultan Agung Semarang yang senantiasa memberikan ilmu selama menuntut ilmu di Fakultas Teknik Program Studi Teknik Sipil Universitas Islam Sultan Agung Semarang.
- 4. Terima kasih kepada orang tua yang tercinta, yang tidak pernah lelah telah memberi segala bentuk dukungan dan doa. Tugas Akhir ini saya persembahkan untuk Bapak Mamak. Semoga selalu diberikan kesehatan dan perlindungan dari Allah SWT.
- 5. Terima kasih kepada adik dan keluarga yang tersayang, yang selalu memberikan dukungan dan doa, dan selalu ada untuk mendampingi. Semoga segala kebaikan akan menjadi berkah untuk keluarga.
- 6. Terima kasih kepada partner tugas akhir, yaitu Bayu Surya Agung Widodo. Yang selalu semangat dan sabar dalam berpatner dengan saya untuk menyelesaikan tugas akhir ini sampai tuntas. Semoga lelah dan sabarmu menjadi keberkahan untukmu.
- Terima kasih kepada teman teman Sipil kelas sore angkatan 2019, yang selalu membantu dalam hal apapun selama bersama di Teknik Sipil Unissula. Apapun langkah kita kedepannya, semoga kita semua sukses dengan cara kita masingmasing.

KATA PENGANTAR

Assalamu'alaikum Wr. Wb.

Puji syukur senantiasa tercurah kehadirat Allah SWT, yang telah memberikan rahmat dan hidayah-Nya sehingga laporan Tugas Akhir ini dapat terselesaikan dengan baik tentang "Perbandingan *Slope Protection* Darurat Dengan Metode Cerucuk Bambu & Bronjong. (Studi Kasus Jalan Tol Semarang ABC)".

Penyelesaian laporan ini dimaksudkan untuk menyelesaikan Program studi Strata 1 (S1) di Fakultas Teknik Program Studi Teknik Sipil Universitas Islam Sultan Agung Semarang.

Laporan Tugas Akhir ini semata-mata tidak terlepas dari bantuan berbagai pihak yang sangat membantu. Untuk itu tiada kata-kata yang lebih tepat selain ucapan terima kasih kepada:

- 1. Bapak Dr. Abdul Rochim, ST., MT, selaku Dosen Pembimbing I Tugas Akhir, yang telah meluangkan waktu dan tenaga untuk memberikan bimbingan kepada kami serta memberikan kritik dan saran mengenai laporan tugas akhir.
- 2. Ibu Lisa Fitriyana, ST., M.Eng, selaku Dosen Pembimbing II Tugas Akhir, yang telah meluangkan waktu dan tenaga untuk memberikan bimbingan kepada kami dan memberikan dorongan semangat untuk kami serta memberikan kritik dan saran mengenai laporan tugas akhir.
- 3. Semua pihak yang telah membantu dalam penyelesaian Tugas Akhir ini yang tidak dapat kami sebutkan satu persatu.

Disadari, karena keterbatasan ilmu pengetahuan, kemampuan, dan pengalaman yang kami miliki, dalam Tugas Akhir ini masih terdapat banyak kekurangan. Oleh karena itu, segala saran dari pembaca sangat kami harapkan demi hasil yang lebih baik dan semoga Tugas Akhir ini memenuhi syarat untuk menyelesaikan program Strata 1 (S1) Fakultas Teknik Program Studi Teknik Sipil Universitas Islam Sultan Agung Semarang.

Wassalamu'alaikum Wr. Wb.

Semarang, Juli 2021

Penyusun I

Bayu Surya Agung Widodo

NIM. 30.2019.00.225

Penyusun II

<u>Dian Eko Saputro</u> NIM. 30.2019.00.228

DAFTAR ISI

HALA	MAN J	IUDUL	i
HALA	MAN I	PENGESAHAN	ii
BERI	TA ACA	ARA BIMBINGAN TUGAS AKHIR	iii
PERN	YATAA	AN BEBAS PLAGIASI	iv
PERN	YATAA	AN KEASLIAN	V
MOT	ГО		vi
PERS	EMBAI	HAN	vii
KATA	A PENG	ANTAR	ix
DAFT	CAR ISI		X
DAFT	CAR GA	MBAR	xiii
DAFT	CAR TA	BEL	xvi
DAFT	AR NO	TASI	xvii
DAFT	AR LA	MPIRAN	xviii
ABST	'RAK		xix
ABST	RA <mark>CT</mark>		XX
BAB 1	I PENDA	AHULUAN 🦳 🌽 📛 🎢	
1.1	Latar	Belakang	1
1.2	Rum	Isan Masalah	3
1.3	Batas	an Masalah	3
1.4	Tujua	n Kajian	3
1.5	Sister	natika Penulisan	4
BAB 1	II TINJA	AUAN PUSTAKA	
2.1	Tanal	n	5
2.2	Paran	neter Tanah	6
	2.2.1	Kadar air (<i>w</i>)	7
	2.2.2	Angka pori (<i>e</i>)	7
	2.2.3	Porositas (n)	7
	2.2.4	Berat volume tanah basah (γ_b)	7
	2.2.5	Berat volume tanah kering (γ _d)	8
	2.2.6	Derajat kejenuhan (S)	8
	2.2.7	Kohesi (c)	8

	2.2.8 Sudut geser dalam (Ø)	8
	2.2.9 Nilai Standart Penetration Test (N-SPT)	9
	2.2.10 Modulus Elastisitas Young	11
2.3	Klasifikasi Tanah	12
	2.3.1 The United States Department of Agriculture (USDA)	13
	2.3.2 Unified Soil Classification System (USCS)	15
	2.3.3 Sistem Klasifikasi AASHTO	17
2.4	Tanah Longsor	18
	2.4.1 Jenis-Jenis Tanah Longsor	19
	2.4.2 Faktor Penyebab Longsor	21
2.5	Perkuatan Lereng	27
	2.5.2 Mengendalikan air permukaan	28
	2.5.3 Mengendalikan air rembesan (drainase bawah permukaan)	30
	2.5.4 Penambatan	34
2.6	Geo-Studio (Slope /W)	39
	2.6.2 Langkah penyelesaian	40
2.7	PLAXIS	47
	2.7.1 Contoh Parameter	48
	2.7.2 Langkah Penyelesaian	48
2.8	Metode Stabilisasi Lereng	58
	2.8.1 Cerucuk Bambu	58
	2.8.2 Bronjong	59
BAB 1	بهامعتساطان METODE PENELITIAN بهامعتساطان	
3.1	Pengertian Umum	61
3.2	Tipe Penelitian	61
3.3	Teknik Pengumpulan Data	61
3.4	Tahap Persiapan	64
3.5	Metode Analisa Data	64
BAB 1	IV ANALISA DAN PEMBAHASAN	
4.1	Parameter Tanah	66
4.2	Analisis Stabilitas Lereng Eksisting dengan Geo-Studio (Slope/W).	67
4.3	Analisis Stabilitas Lereng Eksisting dengan Plaxis	75
4.4	Analisis Stabilitas Lereng Perkuatan Cerucuk Bambu dengan Plaxis	84
4.5	Analisis Stabilitas Lereng Perkuatan Bronjong dengan Plaxis	93

4.6	Perbandingan Rencana Anggaran Biaya Perkuatan Darurat10)5
BAB V	PENUTUP	
5.1	Kesimpulan10)7
5.2	Saran)8
DAFTAR PUSTAKAxxi		

LAMPIRAN

DAFTAR GAMBAR

Gambar 1. 1 Peta Ruas Jalan Tol Semarang ABC	1
Gambar 2. 1 Tiga Fase Elemen Tanah	6
Gambar 2. 2 Tabung split-spoon sampler	9
Gambar 2.3 Segitiga Tekstur Tanah	.14
Gambar 2.4 Contoh Aplikasi USDA	.15
Gambar 2. 5 Jenis Longsoran	.20
Gambar 2. 6 Lereng Terjal	.22
Gambar 2. 7 Tanah Kurang Padat dan Tebal	.22
Gambar 2. 8 Batuan yang Kurang Kuat	.23
Gambar 2. 9 Jenis Tata Lahan	.24
Gambar 2. 10 Longsor Akibat Gempa Bumi	.24
Gambar 2. 11 Tipikal Pengubahan Geometri Lereng	.28
Gambar 2. 12 Tipikal Penanggulangan Pengendalian Air Permukaan	.30
Gambar 2. 13 Tipikal Penanggulangan Pengendalian Air Rembesan	.34
Gambar 2. 14 Macam - Macam Metode Stabilisasi Lereng Tanah	.35
Gambar 2. 15 Macam - Macam Metode Stabilisasi Lereng Batuan	.37
Gambar 2. 16 Tampilan utama Geo Studio 2012	.40
Gambar 2. 17 Kotak Dialog Page	.40
Gambar 2. 18 Kotak Dialog Units & Scale	.41
Gambar 2. 19 Kotak Dialog Grid	.41
Gambar 2. 20 Kotak Dialog Keyin Analyses - Settings	.42
Gambar 2. 21 Kotak Dialog Keyin Analyses – Slip Surface	.42
Gambar 2. 22 Kotak Dialog Keyin Analyses – F of S Distribution	.43
Gambar 2. 23 Kotak Dialog Keyin Analyses – Advanced	.43
Gambar 2. 24 Kotak Dialog Keyin Materials	.44
Gambar 2. 25 Kotak Dialog Keyin Points	.44
Gambar 2. 26 Tampilan Region	.45
Gambar 2. 27 Kotak Dialog Draw Materials	.45
Gambar 2. 28 Kotak Dialog Draw Slip Surface Entry and Exit Range	.46
Gambar 2. 29 Kotak Dialog Solve Manager	.46
Gambar 2. 30 Tampilan Hasil Analisa Safety Factor	.47
Gambar 2. 31 Kotak Dialog Buat/Buka Proyek	.48
Gambar 2. 32 Kotak Dialog Pengaturan Global – Proyek	.49
Gambar 2. 33 Kotak Dialog Pengaturan Global – Dimensi	.49
Gambar 2. 34 Kotak Dialog Tabel Koordinat Titik Geometri	.50
Gambar 2. 35 Kotak Dialog Tanah Sampel Tab Umum	.50
Gambar 2. 36 Kotak Dialog Tanah Sampel Tab Parameter	.51
Gambar 2. 37 Kotak Dialog Tanah Sampel Tab Antarmuka	.51
Gambar 2. 38 Tampilan Geometri dengan Jepit Standar	.51
Gambar 2. 39 Tampilan Geometri dengan Jaring Elemen	.52
Gambar 2. 40 Tampilan Kondisi Awal	.52
Gambar 2. 41 Toolbar Pengaturan tekanan air pori awal	.52

Gambar 2. 42 Toolbar tegangan awal dan konfigurasi geometri	53
Gambar 2. 43 Kotak Dialog Prosedur-K05	53
Gambar 2. 44 Tampilan Tegangan Efektif5	53
Gambar 2. 45 Tampilan Kotak Dialog Perhitungan5	54
Gambar 2. 46 Tampilan Kotak Dialog Perhitungan Tab Umum5	54
Gambar 2. 47 Pengaturan Identifikasi Tahap 1 (Konstruksi) Tab Parameter 5	55
Gambar 2. 48 Pengaturan Identifikasi Tahap 1 (Konstruksi) Tab Umum	55
Gambar 2. 49 Pengaturan Identifikasi Tahap 2 (Identifikasi SF) Tab Umum 5	56
Gambar 2. 50 Pengaturan Identifikasi Tahap 2 (Identifikasi SF) Tab Parameter . 5	56
Gambar 2. 51 Pengaturan Identifikasi Tahap 2 (Identifikasi SF) Tab Pengali 5	56
Gambar 2. 52 Proses Analisa Perhitungan5	57
Gambar 2. 53 Kotak Dialog Informasi Perhitungan5	57
Gambar 2. 54 Aplikasi cerucuk bambu pada lereng pada5	59
Gambar 2. 55 Aplikasi bronjong pada lereng6	50
Gambar 3. 1 Bagan Alir Metode Penelitian	53
Gambar 4. 1 Tampilan utama Geo Studio 2012	57
Gambar 4. 2 Kotak Dialog Page	57
Gambar 4. 3 Kotak Dialog Units & Scale	58
Gambar 4. 4 Kotak Dialog Grid	58
Gambar 4. 5 Kotak Dialog Keyln Analyses – Settings	59
Gambar 4. 6 Kotak Dialog Keyln Analyses – Slip Surface	59
Gambar 4. 7 Kotak Dialog Keyln Analyses – F of S Distribution	70
Gambar 4. 8 Kotak Dialog Keyln Analyses – Advanced	70
Gambar 4. 9 Kotak Dialog Keyln Materials	71
Gambar 4. 10 Kotak Dialog Keyln Points	71
Gambar 4. 11 Tampilan Region	72
Gambar 4. 12 Kotak Dialog Draw Materials	72
Gambar 4. 13 Kotak Dialog Draw Surface Entry and Exit Range	73
Gambar 4. 14 Kotak Dialog Pore Water Pressure	73
Gambar 4. 15 Kotak Dialog Solve Manager7	74
Gambar 4. 16 Tampilan Hasil Analisa Safety Factor	74
Gambar 4. 17 Kotak Dialog Create / Open Project	75
Gambar 4. 18 Kotak Dialog General Setting – Project	76
Gambar 4. 19 Kotak Dialog General Setting – Dimensions	76
Gambar 4. 20 Kotak Dialog Coordinate Table7	76
Gambar 4. 21 Kotak Dialog Material Sets7	77
Gambar 4. 22 Kotak Dialog Tanah Tab General	78
Gambar 4. 23 Kotak Dialog Tanah Tab Parameters	78
Gambar 4. 24 Kotak Dialog Tanah Tab Interfaces	78
Gambar 4. 25 Tampilan Geometri dengan Standard Fixities	79
Gambar 4. 26 Tampilan Geometri dengan Generate Mesh	79
Gambar 4. 27 Tampilan Pemodelan Muka Air Tanah	30
Gambar 4. 28 Tampilan Pore pressures	30
Gambar 4. 29 Kotak Dialog K0-procedure	31
Gambar 4. 30 Tampilan Initial soil stresses	31

Gambar 4. 31 Tampilan Kotak Dialog Calculations tahap 1	82
Gambar 4. 32 Tampilan Kotak Dialog Calculations tahap 2	82
Gambar 4. 33 Kotak Dialog Hasil Calculation	83
Gambar 4. 34 Kotak Dialog Create / Open Project	84
Gambar 4. 35 Kotak Dialog General Setting – Project	84
Gambar 4. 36 Kotak Dialog General Setting – Dimensions	85
Gambar 4. 37 Kotak Dialog Coordinate Table	85
Gambar 4. 38 Kotak Dialog Material Sets	86
Gambar 4. 39 Kotak Dialog Tanah Eksisting Tab General	86
Gambar 4. 40 Kotak Dialog Tanah Eksisting Tab Parameters	87
Gambar 4. 41 Kotak Dialog Tanah Eksisting Tab Interfaces	87
Gambar 4. 42 Kotak Dialog Material Sets	88
Gambar 4. 43 Kotak Dialog Plate Properties	88
Gambar 4. 44 Tampilan Geometri dengan Perkuatan Cerucuk	89
Gambar 4. 45 Tampilan Geometri dengan Generate Mesh	89
Gambar 4. 46 Tampilan Pemodelan Muka Air Tanah	90
Gambar 4. 47 Tampilan Pore Pressures	90
Gambar 4. 48 Kotak Dialog K0-procedure	91
Gambar 4. 49 Tampilan Initial soil stresses	91
Gambar 4. 50 Tampilan Kotak Dialog Calculations Tahap 1	91
Gambar 4. 51 Tampilan Kotak Dialog Calculations Tahap 2	92
Gambar 4. 52 Tampilan Kotak Dialog Hasil Calculation	92
Gambar 4. 53 Kotak Dialog Create / Open Project	93
Gambar 4. 54 Kotak Dialog General Settings – Project	94
Gambar 4. 55 Kotak Dialog General Settings – Dimensions	94
Gambar 4. 56 Kotak Dialog Coordinate Table	95
Gambar 4. 57 Kotak Dialog Coordinate Table	95
Gambar 4. 58 Kotak Dialog Tanah Eksisting Tab General	96
Gambar 4. 59 Kotak Dialog Tanah Eksisting Tab Parameters	96
Gambar 4. 60 Kotak Dialog Tanah Eksisting Tab Interfaces	97
Gambar 4. 61 Kotak Dialog Material Sets	97
Gambar 4. 62 Kotak Dialog Batuan Bronjong Tab General	98
Gambar 4. 63 Kotak Dialog Batuan Bronjong Tab Parameters	98
Gambar 4. 64 Kotak Dialog Batuan Bronjong Tab Interfaces	99
Gambar 4. 65 Kotak Dialog Material Sets	99
Gambar 4. 66 Kotak Dialog Geogrid properties	100
Gambar 4. 67 Tampilan Geometri dengan Generate Mesh	100
Gambar 4. 68 Tampilan Pemodelan Muka Air Tanah	101
Gambar 4. 69 Tampilan Pore Pressures	101
Gambar 4. 70 Kotak Dialog K0-procedure	102
Gambar 4. 71 Tampilan Initial soil stresses	102
Gambar 4. 72 Tampilan Kotak Dialog Calculations Tahap 1	103
Gambar 4. 73 Tampilan Kotak Dialog Calculations Tahap 2	103
Gambar 4. 74 Kotak Dialog Hasil Calculation	104

DAFTAR TABEL

Tabel 2. 1 Besaran Sudut Geser dalam Tanah	8
Tabel 2. 2 Hubungan Antara Sudut Geser Dalam dan Jenis Tanah	9
Tabel 2. 3 Hubungan nilai N-SPT	10
Tabel 2. 4 Hubungan nilai N-SPT dengan berat volume tanah jenuh	10
Tabel 2. 5 Hubungan nilai N-SPT dengan nilai kohesi	11
Tabel 2. 6 Nilai Perkiraan Modulus Elastisitas Tanah	11
Tabel 2. 7 Cakupan Golongan Tanah Berdasarkan Ukuran	13
Tabel 2. 8 Klasifikasi Tanah Berbutir Kasar Menurut USCS	16
Tabel 2. 9 Klasifikasi Tanah Berbutir Halus Menurut USCS	17
Tabel 2. 10 Klasifikasi Tanah Menurut AASHTO	18
Tabel 2. 11 Jenis Tanah Longsor Menurut Varnes	19
Tabel 2. 12 Tindakan Stabilisasi Lereng Batuan	38
Tabel 2. 13 Contoh Koordinat Lereng Slope/W	39
Tabel 2. 14 Contoh Data Tanah pada Slope/W	40
Tabel 2. 15 Klasifikasi Nilai Safety Factor pada Slope/W	47
Tabel 2. 16 Contoh Koordinat Lereng Plaxis	48
Tabel 2. 17 Contoh Data Tanah pada Plaxis	48
Tabel 2. 18 Klasifikasi Nilai Safety Factor pada Plaxis	58
Tabel 2. 19 Perbandingan Klasifikasi Nilai Safety Factor	58
Tabel 3. 1 Hasil Uji <i>Bore Log</i> pada titik BH. 2 pada Jalan Tol Semarang	65
Tabel 4. 1 Parameter Tanah pada Eksisting Geo-Studio (Slope/W)	66
Tabel 4. 2 Klasifikasi Nilai Safety Factor Eksisting Geo-Studio (Slope/W)	75
Tabel 4. 3 Parameter Tanah pada Eksisting <i>Plaxis</i>	77
Tabel 4. 4 Klasifikasi Nilai Safety Factor Eksisting Plaxis	83
Tabel 4. 5 Perbandingan Nilai Safety Factor Plaxis & Geo-Studio (Slope/W)	83
Tabel 4. 6 Data Koordinat Lereng pada Metode Cerucuk Bambu	85
Tabel 4. 7 Parameter Tanah pada Metode Cerucuk Bambu	86
Tabel 4. 8 Data Plate Properties	88
Tabel 4. 9 Klasifikasi Nilai Safety Factor pada Metode Cerucuk Bambu	93
Tabel 4. 10 Data Koordinat Lereng pada Metode Bronjong	94
Tabel 4. 11 Parameter Tanah pada Metode Bronjong	96
Tabel 4. 12 Parameter Batu Bengisi Bronjong	98
Tabel 4. 13 Parameter pendekatan kawat Bron Box	100
Tabel 4. 14 Klasifikasi Nilai Safety Factor pada Metode Bronjong	104
Tabel 4. 15 Perbandingan Nilai Safety Factor Cerucuk & Bronjong	. 104
Tabel 4. 16 RAB Perkuatan Lereng Darurat Metode Cerucuk Bambu	105
Tabel 4. 17 RAB Perkuatan Lereng Darurat Metode Bronjong	106
Tabel 4. 18 Perbandingan Nilai RAB Cerucuk & Bronjong	106

DAFTAR NOTASI

PI	= Indeks Plastisitas	
LL	= Batas Cair	
PL	= Batas Plastis	
V	= Volume	(m ³)
Vs	= Volume Tanah	(m ³)
Vv	= Volume Rongga Tanah	(m ³)
Vw	= Volume Air	(m ³)
Va	= Volume Udara	(m ³)
W	= Berat	(kN)
Ws	= Berat Tanah	(kN)
Ww	= Berat Air	(kN)
W	= Kadar Air	(%)
е	= Angka Pori	1
n	= Porositas	(%)
γ_b	= Berat Volume Tanah Basah	(kN/m ³)
γd	= Berat Volume Tanah Kering	(kN/m ³)
S	= Derajat Kejenuhan	(%)
С	= Kohesi	(kN/m^2)
Ø	= Sudut Geser	(°)
qc	= Perlawanan Konus	(kg/cm ²)
γ_{sat}	= Berat Volume Tanah Jenuh Air	(kN/m^3)
Yunsat	= Berat Volume Tanah Tak Jenuh Air	(kN/m^3)
N-SPT	= Nilai Standart Penetration Test	
Ε	= Modulus Elastisitas	(MPa)
SF	= Faktor Keamanan	
v	= Angka Poisson	
k	= Koefisien Permeabilitas	(m/hari)

ABSTRAK

Jalan tol merupakan fasilitas sarana transportasi yang membutuhkan pemeliharaan rutin agar performanya selalu terjaga sesuai dengan aturan Standar Pelayanan Minimum (SPM) yang dikeluarkan oleh BPJT PUPR. Namun timbul masalah saat musim penghujan tiba, efek yang ditimbulkan dapat berdampak pada sarana dan prasarana yang terdapat pada jalan tol. Salah satu dampak buruk yang dapat terjadi ketika hujan yaitu tanah longsor. Saat longsor terjadi, lokasi kejadian harus segera ditangani tetapi disisi lain anggaran yang tersedia tidak mencukupi apabila dilakukan perbaikan secara permanen. Oleh karena itu perlu dilakukan perkuatan darurat atau perkuatan sementara yang menggunakan anggaran seminimal mungkin.

Pada Tugas Akhir ini, dilakukan analisa perbandingan tingkat kelayakan dari segi nilai *Safety Factor* antara metode perbaikan cerucuk bambu dan bronjong. Untuk menganalisa angka keamanan (*safety factor*) lereng eksisting digunakan aplikasi *Plaxis V.8.2 & Geo-Studio (Slope/w) 2012*, sedangkan analisa lereng setelah diperkuat menggunakan aplikasi *Plaxis* harus memenuhi SF > 1,5. Selanjutnya yang dilakukan perhitungan RAB dan membandingkan anggaran yang paling ekonomis dari kedua opsi tersebut.

Berdasarkan hasil analisa stabilitas lereng eksisting didapat nilai SF 1,223 (*Geo-Studio (Slope/W)*) dan 1,249 (*Plaxis*). Sedangkan hasil analisa stabilitas lereng dianalisa menggunakan aplikasi *Plaxis*, didapatkan nilai *safety factor* dengan perkuatan cerucuk bambu yaitu 1,531 sedangkan dengan perkuatan bronjong sebesar 1,563. Untuk perbandingan Rencana Anggaran Biaya (RAB) dari konstruksi perkuatan darurat dengan metode cerucuk bambu sebesar Rp.112.629.440,- dan bronjong sebesar Rp.134.859.340,-.

Kata Kunci : Cerucuk Bambu, Bronjong, Safety Factor, Plaxis V.8.2, Geo-Studio (Slope /W) 2012.

ABSTRACT

Highway Tollroads are transportation facilities that required routine maintenance, so that their performance is always maintained in according to regulations of the Minimum Service Standards (SPM) by BPJT PUPR. However, the problems came up when the rainy season, the effects can have an impact on Tollroad's facilities and infrastructure. One of the bad effects that can occur when it rains is landslides. When a landslide occurs, the location of the incident need an reinforcement immediately but on the other hand the available budget is not sufficient if make a permanent reinforcement. Therefore, it is necessary to carry out emergency reinforcement using the minimum budget.

In this script, a comparative analysis of the safety factor value between the repair method of bamboo piles and gabion. To analyze the safety factor value of the existing slope we used Plaxis V.8.2 & Geo-Studio (Slope/w) 2012, while to analyze the safety factor value of slope after being reinforced we used Plaxis and it had to meet SF > 1,5. The next step is to calculate the Budget Plan and compare the most economical budget of the two options.

Based on the analysis of the existing slope stability, the SF values are 1,223 (Geo-Studio (Slope/W)) and 1,249 (Plaxis). While the results of the slope stability analysis were analyzed using the Plaxis application, the safety factor value with bamboo pile reinforcement was 1,531, while the cerucuk reinforcement was 1,563. For comparison of the Budget Plan of emergency reinforcement construction with the bamboo pile method is Rp.112.629.440,- and gabion is Rp.134.859.340,-.

Keywords

: Bamboo Pile, Gabion, Safety Factor, Plaxis V.8.2, Geo-Studio (Slope /W) 2012

BAB I PENDAHULUAN

1.1 Latar Belakang

Jalan Tol merupakan jalan umum dimana termasuk bagian sistem jaringan jalan dan sebagai jalan nasional yang penggunaannya diharuskan membayar tol (Peraturan Menteri PUPR No. 06/PRT/M/2018). Dalam pengaturan, penyelenggaraan dan pengusahaan jalan tol, pemerintah memberi wewenang kepada suatu instansi yang bernama Badan Pengatur Jalan Tol (BPJT), sehingga jalan dapat bermanfaat bagi masyarakat.

Terdapat badan usaha yang saat ini bergerak di bidang penyedia layanan jalan tol dan bisnis terkait lainnya salah satunya yaitu PT. Jasa Marga (Persero). Jalan tol merupakan fasilitas sarana transportasi yang membutuhkan pemeliharaan rutin agar performanya selalu terjaga sesuai aturan Standar Pelayanan Minimum (SPM) yang dikeluarkan BPJT PUPR, oleh karena itu untuk pemeliharaan seluruh ruas jalan tol Semarang ABC seperti pada Gambar 1.1, dikelola oleh PT Jasamarga *Tollroad Maintenance*.

Gambar 1. 1 Peta Ruas Jalan Tol Semarang ABC (*PT Jasamarga Tollroad Maintenance, 2021*)

Belakangan ini Indonesia sedang memasuki musim penghujan yang cukup ekstrim, begitu juga dengan Kota Semarang yang saat ini sedang mengalami musim hujan. Bahkan seringkali hujan datang pada intensitas yang tinggi dan waktu yang tidak sebentar. Saat hujan datang terlebih dengan intensitas tinggi dapat berdampak kepada sarana dan prasarana yang terdapat di jalan tol. Salah satu dampak negatif yang dapat terjadi yaitu longsor pada lereng. Tentu saja longsor ini menyebabkan kerugian, seperti lajur pada jalan tol yang tertutup dan rusaknya konstruksi jalan, sehingga mengganggu lalu kendaraan dan bedampak pada terganggunya kegiatan perekonomian masyarakat.

Salah satu usaha yang dapat dilakukan agar tidak terjadinya longsor pada lereng yaitu perkuatan lereng. Cara yang dapat digunakan dengan membuat konstruksi untuk meningkatkan stabilitas lereng tersebut. Tentunya untuk melakukan perbaikan pada lereng membutuhkan perencanaan dan perhitungan yang matang.

Longsor merupakan sebuah bencana alam yang tidak dapat diprediksi kedatangannya. Namun ketika longsor terjadi, maka harus dilakukan tindakan penanganan darurat dengan secepat mungkin. Disisi lain anggaran yang tersedia tidak cukup untuk menangani seluruh kejadian longsor yang terjadi. Terlebih longsor dapat saja terjadi pada beberapa tempat sekaligus namun dengan anggaran yang sedikit ini tetap memerlukan penanganan secepatnya agar kejadian longsor tidak berkembang menjadi lebih parah, oleh karena itu perlu dilakukan perkuatan darurat atau perbaikan sementara. Beberapa pilihan perkuatan darurat yang biasa dilakukan oleh PT. Jasamarga *Tollroad Maintenance* dapat dilakukan yaitu dengan menggunakan cerucuk bambu dan bronjong.

Berdasarkan uraian tersebut, maka diadakan analisa dengan judul "Perbandingan *Slope Protection Darurat* Dengan Metode Cerucuk Bambu & Bronjong. (Studi Kasus Jalan Tol Semarang ABC)".

1.2 Rumusan Masalah

Dari latar belakang di atas, maka dapat dibuat rumusan permasalahan dalam tugas akhir ini antara lain:

- Perbandingan analisa lereng eksisting dengan *Plaxis* dan *Geo-Studio* (*Slope/W*).
- 2. Diantara metode cerucuk bambu dan bronjong, manakah yang paling aman digunakan.
- 3. Diantara metode cerucuk bambu dan bronjong, manakah yang paling ekonomis digunakan.

1.3 Batasan Masalah

Batasan masalah mengenai kedudukan masalah untuk diteliti/ dianalisis, yaitu:

1. Perbandingan angka keamanan kondisi lereng eksisting menggunakan aplikasi *Plaxis* dan *Geo-Studio* (*Slope/W*).

- 2. Perbandingan angka keamanan dari metode cerucuk bambu dan bronjong menggunakan aplikasi *Plaxis*.
- 3. Perbandingan anggaran dari metode cerucuk bambu, bronjong.
- 4. Usia ketahanan struktur tidak dijadikan pokok bahasan.

1.4 Tujuan Kajian

Hasil yang diharapkan saat melakukan analisa kestabilan lereng ini sebagai berikut:

- 1. Membandingkan angka keamanan lereng eksisting dengan menggunakan *Plaxis* dan *Geo-Studio (Slope/W)*.
- 2. Membandingkan tingkat kelayakan dari segi nilai keamanan (*safety factor*) antara metode cerucuk bambu dan bronjong.
- 3. Membandingkan anggaran yang paling ekonomis antara metode cerucuk bambu dan bronjong.

1.5 Sistematika Penulisan

Terdapat 5 (lima) bab dalam penyusunan Laporan Tugas Akhir ini, masing-masing terdiri dari:

BAB I PENDAHULUAN

Pada bab ini berisi tentang latar belakang, perumusan masalah, batasan masalah, tujuan, peta lokasi, serta sistematik penulisan penelitian Tugas Akhir.

BAB II TINJAUAN PUSTAKA

Bab ini menguraikan tentang teori-teori yang mendasari pembahasan secara rinci yang digunakan dalam menganalisis pada permasalahan terkait

BAB III METODE PENELITIAN

Pada bab ini menjelaskan tentang bahan atau materi penelitian, alat yang digunakan dalam penelitian, langkah-langkah dalam melakukan penelitian, variabel yang akan dipelajari dan metode dalam menganalisis hasil.

BAB IV ANALISA DAN PEMBAHASAN

Pada bab ini membahas tentang proses pengolahan data, merencanakan pemodelan dengan aplikasi *Plaxis* dan *Geo-Studio (Slope/W)*, mengetahui faktor keamanan *(safety factor)*, membandingkan tingkat kelayakan dan nilai ekonomis secara harga dari metode cerucuk bambu dan bronjong, untuk mengetahui diantara metode perkuatan tersebut manakah yang dapat dianggap paling layak dari segi keamanan dan ekonomis, sehingga dapat digunakan sebagai perkuatan darurat yang ekonomis dan tentunya juga aman.

BAB V PENUTUP

Pada bab ini akan dijelaskan mengenai kesimpulan dari analisa metode yang paling ekonomis layak digunakan dan saran yang berhubungan dengan analisa yang sudah dilakukan.

BAB II

TINJAUAN PUSTAKA

Pada Bab ini, diterangkan perihal acuan dan teori dalam melakukan analisa dan penelitian Metode Perlindungan Lereng (*Slope Protection*) Darurat pada Jalan Tol Semarang ABC. Adapun acuan & teori yang digunakan adalah sebagai berikut:

2.1 Tanah

Tanah ialah benda alami yang terdapat di permukaan bumi yang tersusun dari bahan-bahan mineral sebagai hasil pelapukan batuan dan bahan organik "pelapukan sisa tumbuhan dan hewan" yang merupakan medium pertumbuhan tanaman dengan sifat-sifat tertentu yang terjadi akibat gabungan dari faktor-faktor alami, iklim, bahan induk, jasad hidup, bentuk wilayah dan lamanya waktu pembentukan (Sarief, 1986).

Tanah adalah lapisan paling atas dari struktur lapisan bumi yang memiliki sifat yang tebal & biasanya tidak seragam mulai dari selaput tipis sampai lebih dari 3 meter yang berbeda dari bahan di bawahnya dalam hal : sifat biologi, fisis maupun kimiawinya (Marbut, 1914).

Menurut Ensiklopedi Indonesia, tanah adalah campuran bagianbagian batuan dengan material serta bahan organik yang merupakan sisa kehidupan yang timbul pada permukaan bumi akibat erosi dan pelapukan karena proses waktu.

Permukaan planet terdiri atas bahan remah dan lepas yang disebut tanah, yang merupakan akumulasi dan campuran berbagai bahan, seperti unsur-unsur : Si, Al, Ca, Mg, Fe dan lain-lain (Thaer, 1909).

Menurut Jermana (1917) tanah sebagai bahan batuan yang sudah dirombak menjadi partiker-partikel kecil yang telah berubah secara kimiawi bersama-sama dengan sisa-sisa tumbuhan dan hewan yang hidup di dalam dan di atasnya.

Joffe (1949) berpendapat bahwa tanah merupakan benda alam yang tersusun atas horison-horison yang terdiri dari bahan-bahan kimia mineral

dan bahan organik, biasanya tidak padu dalam hal morfologi fisik, kimia dan biologinya.

Tanah ialah campuran bahan padat yang berupa partikel-partikel kecil air dan udara yang mengandung hara dan dapat menumbuhkan tumbuh-tumbuhan (Mistscherlich, 1920).

2.2 Parameter Tanah

Tanah terdiri dari dua bagian, yaitu butiran padat (*solid*) & juga pori tanah (*void*) yang kemudian dibagi kembali menjadi udara (*air*) dan air (*water*). Sehingga elemen dalam tanah terdiri dari tiga fase elemen seperti pada yang ditunjukan pada Gambar 2.1.

Dari Gambar 2.1 di atas dapat dilihat bahwa setiap elemen memiliki volume (V) dan berat (W) masing-masing, sehingga dapat dibuat hubungan seperti berikut ini:

V	= Vs + Vv	(2.1)
Vv	= Va + Vw	(2.2)

Keterangan :

V	= Volume total	(m ³)
Vs	= Volume butiran padat (<i>solid</i>)	(m ³)
Vv	= Volume pori tanah (Void)	(m ³)
Vw	= Volume air (<i>water</i>)	(m ³)
Va	= Volume udara (<i>air</i>)	(m ³)

Untuk perhitungan berat, udara (*air*) dianggap tidak memiliki berat, sehingga total berat tanah dapat dinyatakan sebagai berikut ini:

W = V	Vs + Ww	
Ketera	angan :	
W	= Berat total	(kN)
Ws	= Berat butiran padat (soil)	(kN)
Ww	= Berat air (<i>water</i>)	(kN)

Hubungan-hubungan antar parameter tanah tersebut di atas adalah sebagai berikut:

2.2.1 Kadar air (*w*)

Kadar air atau *water content* (*w*) dapat diartikan sebagai perbandingan antara berat air dengan berat butiran padat pada tanah sampel, dinyatakan dalam persentase.

$$w(\%) = \frac{Ww}{Ws} \times 100\%...(2.4)$$

2.2.2 Angka pori (*e*)

Angka pori (*e*) dapat diartikan dengan rasio seberapa besar rongga terhadap ruang padat, rongga atau pori-pori inilah yang nantinya akan berisi air atau udara. Nilai angka pori ini didapat dari rasio volume pori terhadap volume padat butiran.

2.2.3 Porositas (n)

Porositas (*n*) dapat diartikan sebagai rasio volume pori terhadap volume tanah total itu sendiri, dinyatakan dalam persentase.

$$n = \frac{v_v}{v} x \ 100\%...(2.6)$$

2.2.4 Berat volume tanah basah (γ_b)

Berat volume tanah basah dapat diartikan sebagai perbandingan antara berat tanah per satuan volume.

$$\gamma_{\rm b} = \frac{W}{V} = \frac{Ws + Ww}{V}.$$
(2.7)

2.2.5 Berat volume tanah kering (γ_d)

Berat volume tanah kering dapat diartikan sebagai perbandingan antara berat tanah kering per satuan volume.

 $\gamma_{\rm d} = \frac{Ws}{v}....(2.8)$

2.2.6 Derajat kejenuhan (*S*)

Derajat kejenuhan merupakan persentase antara volume air terhadap volume pori.

$$S = \frac{Vw}{Vv} \ x \ 100\%...(2.9)$$

2.2.7 Kohesi (*c*)

Kohesi adalah gaya tarik - menarik antara partikel serupa. Kohesi digunakan sebagai penentu daya dukung tanah terhadap deformasi yang terjadi akibat tegangan yang bekerja dalam tanah. Nilai ini didapat dengan uji *Triaxial Test* dan *Direct Shear Test*. Nilai kohesi secara empiris dapat ditentukan dari data sondir (qc) yaitu sebagai berikut :

$$c = \frac{qc}{20}$$
.....(2.10)

2.2.8

Sudut geser dalam (Ø)

Sudut geser dalam merupakan sudut pecah yang terbentuk jika tanah diberi gaya atau tegangan yang lebih daripada tegangan geser tanah tersebut.

Nilai sudut geser ini didapat dari pengujian *Triaxial test & Direct Shear Test.* Sama seperti kohesi, sudut geser dalam digunakan sebagai penentu daya dukung tanah terhadap deformasi, dapat dilihat pada Tabel 2.1 & Tabel 2.2 di bawah.

 Tabel 2. 1
 Besaran Sudut Geser dalam Tanah

Tingkat Kepadatan	Sudut Geser Dalam(Ø)
Sangat Lepas	< 30
Lepas	30 - 35
Agak Padat	35 - 40
Padat	40 - 45
Sangat Padat	> 45

⁽Sumber: Bowles, 1989)

Jenis Tanah	Sudut Geser Dalam(Ø)
Kerikil Kepasiran	35 - 40
Kerikil Kerakal	35 - 40
Pasir Padat	35 - 40
Pasir Lepas	30
Lempung Kelanauan	25 - 30
Lempung	20-25

 Tabel 2. 2 Hubungan Antara Sudut Geser Dalam dan Jenis Tanah

(Sumber : Das, 1995)

2.2.9 Nilai Standart Penetration Test (N-SPT)

N-SPT merupakan nilai kekuatan tanah yang didapat melalui tes penetrasi. N-SPT juga dapat diartikan sebagai banyaknya tumbukan yang dibutuhkan untuk alat *Split Tube Sampler* dapat masuk seperti pada Gambar 2.2.

Agar alat *Split Tube Sampler* dapat masuk, maka dilakukan dengan menumbuk alat *hammer* dengan berat sekitar 63,5 kg yang ditumbukan dari ketinggian kurang lebih 75 cm, dan kemudian dapat di peroleh dan ketahui nilai N-SPT nya.

(Whitman, 1969)

Nilai N-SPT memiliki korelasi dengan kepadatan tanah, berat volume tanah kering (γ d), tekanan konus (qc) dan sudut geser (θ) seperti pada Tabel 2.3 di bawah ini :

Tabel 2. 3 Hubungan N-SPT dengan kepadatan tanah, berat volume tanah kering (γ d), sudut geser (θ) dan tekanan konus (qc)

N-SPT	Kepadatan	Berat	Tekanan	Sudut
		Volume	Conus (qc)	Geser (θ)
		Tanah	kg/cm ²	
		Kering		
		(yd)		
< 4	Sangat lepas	< 0,2	< 20	< 30
4 -10	Lepas	0,2 - 0,4	20 - 40	30 - 35
10 - 30	Agak padat	0,4 - 0,6	40 - 120	35 - 40
30 -50	Padat	0,6-0,8	120 – 200	40 - 45
> 50	Sangat padat	0,8 - 1,00	> 200	> 45

(Sumber: Mayerhof, 1965)

Nilai N-SPT juga memiliki korelasi dengan kepadatan tanah, berat volume tanah jenuh (γsat) dan nilai kohesi seperti pada Tabel 2,4 dan Tabel 2.5 di bawah ini :

 Tabel 2. 4 Hubungan nilai N-SPT dengan berat volume tanah jenuh

N-SPT	Kepadatan	γ_{sat} (kN/m ³)
0-2	Sangat lepas	16-19
2-4	Lepas	16-19
4-8	Agak padat	17-20
8-15	Padat	19-22
15-30	Sangat padat	19-22
>30	Sangat lepas	19-22

(Sumber: Whitman, 1969)

N-SPT	Kepadatan	С
0-2	Sangat lepas	12,5
2-4	Lepas	12,5-25
4-8	Agak padat	25-50
8-15	Padat	50-100
15-30	Sangat padat	100-200
>30	Sangat lepas	> 200

Tabel 2. 5 Hubungan nilai N-SPT dengan nilai kohesi

(Sumber: Article stream stabilitation project, 2007)

2.2.10 Modulus Elastisitas Young

Nilai Modulus Elastisitas yang menampilkan besar nilai elastisitas tanah akibat rasio tegangan terhadap regangannya. Nilai Modulus Elastisitas (Es) dapat dilihat pada Tabel 2.6 di bawah ini :

Jenis Tanah	Es (MPa)
Lempung	
Sangat lunak	2-15
Lunak	5-25
Sedang	15-40
Keras	50-100
A Berpasir Server	25-250
Pasir	
Belanau	5-20
Tidak padat	10-25
Padat	20-80
Pasir dan Kerikil	
Padat	100-200
Tidak padat	50-250
Lanau	2-20
Loses	15-60
Cadas	140-1400

Tabel 2. 6 Nilai Modulus Elastisitas pada beberapa Jenis Tanah

(Sumber : Das, 1998)

2.3 Klasifikasi Tanah

Klasifikasi tanah diciptakan umumnya agar dapat memberikan system informasi dasar terkait sifat fisis tanah dan karakteristiknya. Dari sifat fisis tanah dan karakteristiknya itulah dapat dikelompokan kedalam kategori atau kelas dengan tanah yang memiliki sifat fisis dan karakteristik serupa. Sistem ini juga bermanfaat sebagai studi pengembangan yang lebih rinci terkait karakteristik tanah tersebut dan kebutuhan uji sifat teknis tanah seperti kekuatan tanah, berat volume dan lain-lain (Bowles, 1989).

Klasifikasi tanah merupakan sistem pengelompokan yang terstruktur dari beberapa jenis-jenis tanah yang mempunyai sifat yang sama menjadi beberapa kelompok & subkelompok yang didasari dengan tujuan pemakaiannya (Das,1995).

Menurut istilahnya Klasifikasi tanah bisa juga diartikan menjadi suatu ilmu yang mendalami pengelompokan tanah sesuai dengan perbedaan karakteristik masing-masing jenis tanah. Sistem klasifikasi tanah adalah sebuah subjek yang mempelajari struktur dari sistem klasifikasi tanah, pengelompokan dari kelas-kelas yang digunakan sebagai penggolongan tanah, karakteristik yang menentukan pengelompokan tanah, hingga aplikasi di lapangan. Tanah dapat pula dianggap sebagai material maupun sumber daya.

Pengelompokan tanah sangat membantu untuk menentukan jenis tanah itu sendiri sehingga paham perlakuan apa yang perlu dilakukan dengan tanah tersebut. Pengelompokan tanah yang paling umum digunakan di Indonesia adalah sistem klasifikasi tanah *The United States Department of Agriculture* (USDA), *Unified Soil Classification System* (USCS) & sistem klasifikasi tanah *The American Association of State Highway and Transportation Officials* (AASHTO).

Tanah memiliki ukuran butiran yang beragam dan variatif, keanekaragaman ukuran butiran tersebut menjadi batasan cakupan menurut beberapa sistem klasifikasi, seperti pada Tabel 2.7 berikut ini.

Sistem	Ukuran Butiran (mm)					
Klasifikasi	Kerikil	Pasir	Lanau	Lempung		
USDA	> 2	2-0,05	0,05 - 0,002 < 0,002			
USCS	762 175	4 75 0 075	Butiran Halus			
0505	10,2 4,15	4,75 0,075	(lanau & Lempung) < 0,075			
AASHTO	76, 2 - 2	2 - 0,075	0,075 –	<0,002		
			0,002			

 Tabel 2. 7 Cakupan Golongan Tanah Berdasarkan Ukuran

(Sumber : Das, 1995)

2.3.1 The United States Department of Agriculture (USDA)

Sistem *The United States Department of Agriculture* (USDA) menggunakan batas ukuran butiran dari butiran tanah, sistem ini menggunakan presentase daripada komposisi tanah itu sendiri, dimana komposisi tanah dapat dikelompokan sebagai berikut:

- Pasir (Sand) : diameter butiran 2 mm 0,05 mm
- Debu (*Silt*) : diameter butiran 0,05 mm 0,002 mm
- Liat (*Clay*) : diameter butiran < 0,002 mm

Berikut merupakan segitiga tekstur tanah menurut USDA, dapat dilihat pada Gambar 2.3

Gambar 2.3 Segitiga Tekstur Tanah (Lembaga Penelitian Tanah, 1979)

Sistem USDA menggunakan presentase komposisi tanah yang didapat dari uji ayakan, yang kemudian dari hasil presentase tersebut diaplikasikan dengan segitiga klasifikasi USDA ini dan ditarik garis berdasarkan presentase tadi sehingga menghasilkan titik temu. Daerah titik temu tersebut merupakan golongan klasifikasi daripada tanah sampel yang digunakan.

USDA sendiri menggolongkan klasifikasi tanah menjadi 12 golongan sebagai berikut ini:

- Pasir
- Pasir Berlempung
- Lempung Berpasir
- Debu
- Debu Berlempung
 - Lempung
 - Lempung Liat Berpasir
 - Liat Berpasir
 - Lempung Berliat
 - Lempung Liat Berdebu
 - Liat Berdebu
 - Liat

UNISSULA

Sebagai contoh aplikasi umpamakan sampel tanah dengan komposisi 30% pasir, 40% debu & 30% liat.

Gambar 2.4 Contoh Aplikasi USDA (Lembaga Penelitian Tanah, 1979)

Dari contoh aplikasi pada Gambar 2.4 di atas dapat disimpulkan dari titik temu tanah sampel yang dimiliki merupakan tanah Lempung Berliat.

2.3.2 Unified Soil Classification System (USCS)

Sistem klasifikasi yang pertama kali dipublikasikan oleh Casagrande tahun 1942 agar digunakan pada pekerjaan konstruksi lapangan terbang yang dilakukan oleh *The Army Corps of Engineers* pada Perang Dunia ke-II. Masa ini sistem klasifikasi ini digunakan secara umum oleh para ahli geoteknik. Secara garis besar sistem ini menggolongkan tanah menjadi dua golongan, yaitu:

a. Tanah Berbutir Kasar, untuk jenis tanah dengan 50% atau lebih tertahan saringan no.200 (0,075 mm) kemudian digolongkan kembali menjadi Kerikil apabila 50% atau lebih tertahan saringan no.4 (4,75 mm) dan Pasir apabila 50% atau lebih lolos saringan no.4 (4,75 mm). Simbol kelompok ini diawali oleh huruf G untuk Kerikil (*Gravel*) dan S untuk Pasir (*Sand*). Klasifikasi tanah jenis ini menggunakan Tabel 2.8.

Divisi		Simbol Kelompok Nama Jenis			Kriteria Klasifikasi	
Kerikil 50% a tertahan sari	Kerikil bersih (sedikit atau tak ada butiran halus)	GW	Kerikil gradasi baik dan cam- puran pasir-kerikil, sedikit atau tidak mengandung butiran halus.	Klasifikasi berc 200: GM, GP, \$ 12% lolos sarir	$C_u = \frac{D_{60}}{D_{10}} > 4$ $C_c = \frac{(D_{30})^2}{D_{10x}D_{60}}$ antara 1	dan 3
ltau lebih d ngan no. 4		GP	Kerikil gradasi buruk dan cam- puran pasir-kerikil, sedikit atau tidak mengandung butiran halus.	lasarkan pi SW, SP: Lei igan no. 20	Tidak memenuhi kedua krite	ria untuk GW
ari fraks (4,75 m	(4,75 mm) (4,76 mm) (4,76 mm)	GM	Kerikil berlanau, campuran kerikil-pasir-lanau	rosentas bih dari 10: Batas	Batas-batas Atterberg di bawah garis A atau PI < 4	Bila batas Atter- berg berada di
si kasar m)		GC	Kerikil berlempung, campuran kerikil-pasir-lempung	e butiran I 12% lolos san klasifik	Batas-batas Atterberg di atas garis A atau PI > 7	diagram plastisi- tas, maka dipa- kai dobel simbol
Pasir lebih da saringan no. 4		sw	Pasir gradasi baik, pasir ber- kerikil, sedikit atau tidak me- ngandung butiran halus.	halus; Kurang dari saringan no. 200: asi yang mempun	$C_u = \frac{D_{60}}{D_{10}} > 60$ $C_u = \frac{(D_{30})^2}{D_{10}xD_{60}}$ atau 1 da	in 3
ari 50% fraksi kasa 4 (4,75 mm)		SP	Pasir gradasi buruk, pasir ber- kerikil, sedikit atau tidak me- ngandung butiran halus.	i 50% lolo GM, GC, yai simbol	Tidak memenuhi kedua krite	eria untuk SW
	Pasir bersih kandungan bu- tiran halus	SM	Pasir berlanau, campuran pa- sir-lanau	s saring SM, SC dobel	Batas-batas Atterberg di bawah garis A atau PI < 4	Bila batas Atter- berg berada di daerah arsir dari
tr lolos		SC	Pasir berlanau, campuran pa- sir-lempung	an no. . 5% -	Batas-batas Atterberg di atas garis A atau PI > 7	diagram plastisi- tas, maka dipakai dobel simbol

Tabel 2. 8 Klasifikasi Tanah Berbutir Kasar Menurut USCS

(**Sumber :** *Das*, 1995)

b. Tanah Berbutir Halus, untuk jenis tanah dengan 50% atau lebih lolos saringan no.200 (0,075 mm). Simbol kelompok ini diawali huruf M untuk lanau (*Silt*) anorganik, C untuk lempung (*Clay*) anorganik, O untuk tanah lanau-organik maupun lempung-organik dan P untuk Gambut (*Peat*) dengan kandungan organik yang tinggi. Klasifikasi tanah jenis ini menggunakan Tabel 2.9

(Sumber : Das, 1995)

2.3.3 Sistem Klasifikasi AASHTO

Klasifikasi ini dipublikasikan pada tahun 1929 sebagai Public Road Administration Clasification System. Klasifikasi ini mengalami beberapa perbaikan dan perubahan, versi yang hingga saat ini digunakan adalah yang kembangkan oleh Committee on Classification of Materials for Subgrade and Granular Type Road of the Highway 13 Research Board pada tahun 1945 (ASTM Standart no. D-3282, AASHTO metode M145).

Pada sistem ini secara garis besar dibagi menjadi dua, yaitu Tanah Berbutir (35% atau kurang lolos ayakan no. 200 (0,075 mm) & Tanah Lanau-Lempung (Lebih dari 35 % lolos ayakan no. 200 (0,075 mm). Selanjutnya diklasifikasikan kembali menjadi kelompokkelompok, seperti : A-1, A-2, A-3, A-4, A-5, A-6 & A-7, seperti yang ditunjukkan pada Tabel 2.10.
Klasifikasi umum			(35% atau	Bahan-baha kurang mela	n alui No. 200))		B (Lei	ahan-bahar bih dari 359	n lanau-lemp 6 melalui No	oung (), 200)
	A	-1	A-3		A	-2		A-4	A-5	A-6	A-7
Klasifikasi kelompok	A-1a	A-1b		A-2-4	A-2-5	A-2-6	A-2-7				A-7-5 A-7-6
Analisis saringan: Persen melalui: No. 10 No. 40 No. 200	50 maks. 30 maks. 15 maks.	50 maks. 25 maks.	51 maks. 10 maks.	35 maks.	35 maks.	35 maks.	35 maks.	36 min.	36 min.	36 min.	36 min.
Karakteristik fraksi melalui No. 40 Batas cair: Indeks plastisitas	6 m	aks.	N.P.	40 maks. 10 maks.	41 min. 10 maks.	40 maks. 11 min.	41 maks. 10 maks.	40 maks. 10 maks.	41 min. 10 maks.	40 maks 10 min.	41 maks 11 min.
Indeks kelompok)	0		0	4 m	aks.	8 maks.	12 maks.	16 maks.	20 maks
Jenis-jenis bahan pendukung utama	Fragmen I kerikil, dar	batuan, n pasir	Pasir halus		Kerikil berlanau at	dan pasir au berlempu	ing	Tar berla	nah anau	Ta berle	nah mpung
Tingkatan umum sebagian tanah dasar		L.	Sangat	baik baik sa	mpai baik	L		se samp	dang ai buruk		

Tabel 2. 10 Klasifikasi Tanah Menurut AASHTO

(Sumber : Das, 1995)

2.4 Tanah Longsor

Menurut Direktorat Vulkanologi dan Mitigasi Bencana Geologi (2005), Tanah longsor adalah perpindahan material lereng yang dapat berupa tanah, bahan rombakan, batuan, atau material komposit, bergerak menuju arah ke bawah atau ke luar bentuk eksisting lereng. Proses tanah longsor umumnya dapat diartikan sebagai berikut ini, dimulai dari air yang meresap ke dalam tanah melalui permukaan lereng sehingga akan menambah bobot tanah. Jika air tersebut sudah menembus hingga tanah kedap air maka susunan tanah diatasnya menjadi licin sehingga tanah di atasnya akan mengalami pergerakan mengikuti bidang longsor lereng dan ke luar dari susunan lereng.

Tanah longsor adalah suatu bentuk pergerakan tanah dimana gerakan massa tanah ataupun pengangkutan material tanah terjadi pada satu waktu dalam volume yang besar (Suripin, 2002).

Tanah longsor merupakan pergerakan massa tanah pada satu waktu yang tidak membutuhkan media seperti air, udara atau es sebagai transportasi. Kejadian tanah longsor ini bukanlah hanya sebatas kata "tanah" dan "longsor". Penggunaan kata "tanah longsor" memiliki makna yang jauh lebih luas (Dikau dkk, 1996).

2.4.1 Jenis-Jenis Tanah Longsor

Faktor terjadinya tanah longsor secara umum dapat digolongkan menjadi tiga golongan yaitu : kondisi material tanah dan batuan, proses fisis, proses geomorfologi dan akibat perbuatan manusia (Popescu, 2002).

Menurut Varnes (1978) mengklasifikasi tanah longsor menjadi 6 tipe yaitu *falls* (Runtuhan), *topples* (jungkiran), *slides* (longsoran), *lateral spread* (hamparan lateral), *flows* (aliran) dan *complex/compound* (kompleks atau gabungan), seperti pada Tabel 2.11 & Gambar 2.5 berikut.

		Jei	nis Material		
Tipe Perg	gerakan	Batuan	Tanah	Teknik	
Tan	ah	(Bedrock)	Berbutir	Berbutir	
			Kasar	Halus	
Runtuhan		Runtuhan	Runtuhan	Runtuhan	
		Batuan	Lumpur	Tanah	
Jungkiran S		Jungkiran	Jungkiran	Jungkiran	
للقيبة	اجه بيح الإيسا	Batuan	Lumpur	Tanah	
Longsoran	Rotasi	Longsor	Longsor	Longsor	
	Translasi	Batuan	Lumpur	Tanah	
Hamparan	Lateral	Hamparan	Hamparan	Hamparan	
		Batuan	Lumpur	Tanah	
Alira	an	Aliran Batuan	Aliran	Aliran	
			Lumpur	Tanah	
Komp	leks	Gabungan da	ri dua (atau le	bih) jenis	
			gerakan		

 Tabel 2. 11 Jenis Tanah Longsor Menurut Varnes

(Sumber : Varnes, 1978)

Gambar 2. 5 Jenis Longsoran (Varnes, 1978)

2.4.2 Faktor Penyebab Longsor

Menurut DVMBG (Direktorat Vulkanologi dan Mitigasi Bencana Geologi (2005)), tanah longsor dapat terjadi karena faktor alam dan faktor manusia sebagai faktor penyebab tanah longsor terjadi, yaitu:

a. Hujan

Tanah longsor biasanya banyak terjadi pada saat musim penghujan tiba. Pada musim kering dengan waktu yang Panjang maka akan menyebabkan tanah menjadi mengering dan menguap bahkan menciptakan retakan pada permukaan sehingga dapat menciptakan rongga pada struktur tanah, Saat hujan tiba maka air dengan intensitas yang banyak akan masuk melalui celah-celah tersebut, sehingga mengisi kekosongan pada pori tanah yang menguap saat musim kering. Pada saat seperti inilah air yang masuk ke dalam pori tanah tesebut menyebabkan tanah menjadi jenuh sehingga menyebabkan struktur tanah menjadi lemah dan menyebabkan terjadinya pergerakan akibat struktur tanah sudah tidak kuat menahan beban lereng sehingga menimbulkan gerakan lateral. Maka sebaiknya lereng ditanam dengan berbagai tanaman dan pohon agar dapat mencegah longsor dengan menyerap air yang masuk kedalam rekahan tanah, dan akarnya dapat membantu memperkuat struktur tanah lereng.

b. Bentuk Lereng yang Terjal

Bentuk lereng yang terjal akan memperbesar gaya dorong. Bentuk lereng seperti ini biasanya terbentuk akibat erosi atau pengikisan akibat aliran sungai, air dan longsor yang terjadi sebelumnya. Berikut merupakan contoh terjadinya longsor akibat bentuk lereng eksisting yang terjal seperti yang ditunjukkan pada Gambar 2.6.

Gambar 2. 6 Lereng Terjal (DVMBG, 2005)

c. Tanah yang tebal dan kurang padat

Jenis tanah lempung ataupun liat yang memiliki sudut lereng > 22^{0} dan ketebalan > 2,5m merupakan jenis tanah yang kurang padat. Tanah dengan karakteristik ini memiliki kemungkinan besar terjadi tanah longsor karena memiliki rongga, yang dapat menyebabkan masuknya air kedalam struktur tanah yang dapat dilihat pada Gambar 2.7 berikut.

Gambar 2. 7 Tanah Kurang Padat dan Tebal (DVMBG, 2005)

d. Batuan lemah

Batuan endapan yang terbentuk akibat aktivitas vulkanis dan batuan sedimentasi berukuran seperti pasir dan campuran antara kerikil koral, pasir dan liat pada dasarnya memiliki kekuatan yang rendah, tipikal batuan dengan karakteristik seperti ini mudah mengalami pelapukan dan rentan terjadinya longsor, seperti contoh Gambar 2.8.

Gambar 2. 8 Batuan yang Kurang Kuat (DVMBG, 2005)

e. Jenis Tata Manfaat lahan

Pada lahan yang dimanfaatkan sebagai lahan persawahan maupun ladang dan tercipta genangan air pada lereng longsor akan rentan terjadi. Pada lahan yang dimanfaatkan sebagai sawah akan menjadi lemah dan lembek akibat akar kurang kuat untuk mengikat butiran tanah sehingga pergerakan bisa terjadi kapan saja. Sedangkan untuk lahan yang dimanfaatkan sebagai ladang, akar pepohonan tidak dapat menembus bidang longsor yang dalam dan umumnya dapat terjadi longsor. Berikut merupakan gambaran jenis tata lahan pada Gambar 2.9.

Gambar 2. 9 Jenis Tata Manfaat Lahan (DVMBG, 2005)

f. Getaran

Getaran biasanya dapat terjadi akibat beberapa faktor seperti gempa bumi, getaran mesin, getaran lalu lintas kendaraan bahkan getaran akibat ledakan. Dari beberapa faktor tersebut akan timbul retakan pada tanah disekitarnya Berikut longsoran akibat gempa bumi seperti Gambar 2.10.

Gambar 2. 10 Longsor Akibat Gempa Bumi (DVMBG, 2005)

g. Adanya beban tambah

Adanya beban tambah seperti beban bangunan diatas lereng, beban kendaraan yang melintas diatas timbunan tanah maka akan memperbesar gaya dorong yang menjadi faktor penyebab longsoran, terutama pada jalan disekitar tikungan jalan pada daerah lembah dan mengakibatkan retakan dan penurunan susunan tanah menuju arah lembah.

h. Susutnya muka air pada bendungan atau danau

Susut muka air pada bendungan atau danau yang cepat akan mengakibatkan gaya penahan pada lereng berkurang bahkan hilang, dengan sudut miring waduk sekitar 22⁰ mudah terjadinya penurunan tanah dan longsor yang kemudian diikuti oleh terjadinya retakan.

i. Adanya material timbunan pada tebing

Untuk memperluas lahan pemukiman / jalan pada daerah lembah biasanya dilakukan timbunan tanah, dan biasanya timbunan ini belum terpadatkan secara sempurna seperti tanah eksisting yang ada dibawahnya. Maka rentan mengalami retakan bahkan longsoran.

j. Pengikisan / Erosi

Erosi banyak terjadi oleh aliran sungai ke arah tebing. Selain itu akibat pembabatan hutan didaerah sekitar tikungan sungai.

k. Bekas longsoran lama

Bekas longsoran eksisting pada dasarnya terjadi selama dan setelah pengendapan material vulkanis pada lereng yang terjal. Bekas longsoran lama memilki ciri:

- Adanya lereng terjal yang Panjang seperti bentuk tapal kuda;
- b. Umumnya terdapat mata air, pepohonan yang relative lebat karena memiliki tanah yang gembur dan subur;

- c. Lereng longsor bagian atas relatif landai;
- d. Terdapat longsoran kecil pada tebing;
- e. Terdapat tebing terjal yang merupakan bekas daripada longsor sebelumnya;
- f. Terdapat alur lembah dan retakan maupun longsor kecil pada tebing.

I. Adanya bidang tak bersambung

Bidang diskontinuitas (tidak tak bersambung) ini memiliki ciri seeperti:

a. Pelapisan batuan;

- b. Perbatasan antara batuan dasar dan tanah diatasnya;
- c. Perbatasan antara batuan kuat dan batuan retak;
- d. Perbatasan antara batuan yang kedap air dengan batuan yang dilewati oleh air;
- e. Perbatasan antara tanah padat dengan tanah lunak.

Bidang seperti diatas merupakan bidang-bidang yang lemah dan dapat digunakan sebagai bidang gelincir pada lereng.

m. Pembabatan hutan

Pembabatan hutan menyebabkan pengikatan air menjadi kurang, sehingga rentan terjadi longsor.

n. Pemotongan Lereng

Pemotongan lereng yang sengaja dilakukan untuk berbagai kepentingan, penambangan maupun penggalian yang begitu tegak lurus dapat menimbulkan longsor, karena sudut geser yang relatif kecil.

o. Daerah pembuangan sampah

Penggunaan manfaat lahan menjadi tempat pembuangan sampah dalam jumlah yang relatif banyak dapat mengakibatkan tanah menjadi longsor apalagi ditambah saat hujan deras terjadi.

2.5 Perkuatan Lereng

Perkuatan lereng merupakan upaya-upaya yang dilakukan dengan maksud & tujuan untuk memperkuat stabilitas lereng. Dalam Pedoman Konstruksi & Bangunan Departemen Pekerjaan Umum, Nomor : Pd T-09-2005-B tentang Penanganan Rekayasa Keruntuhan Lereng Pada Batuan dan Tanah Residu dijelaskan bahwa tipe-tipe perkuatan / penganggulangan longsor adalah sebagai berikut ini:

2.5.1 Perubahan bentuk geometri lereng

Perubahan bentuk geometri lereng dapat dilakukan dengan evaluasi bentuk lereng dengan timbunan maupun galian (*cut&fill*). Bagian yang digali dilakukan untuk menyesuaikan bentuk keruntuhan lereng, sedangkan dilakukan pada bagian kaki lereng sebagai perkuatan terhadap gaya dorong tanah. Galian bentuk lereng dapat dibagi menjadi galian kepala, pelandaian sudut lereng, galian seluruh lereng, pengupasan permukaan tebing dan lereng.

Perlu diketahui bahwa dampak positif dari penggalian lereng adalah untuk mengurangi tegangan yang terjadi. Hal ini dapat diraih dengan melakukan galian di bagian yang lebih banyak menyebabkan tegangan tangensial daripada tahanan geser leren. Sebagai contohnya dapat kita lakukan galian dibagian ujung kaki lereng untuk mengurangi tahanan gesernya. Cara ini dapat dilakukan hanya untuk keruntuhan lereng dengan massa material longsor yang relatif kecil baik untuk pencegahan maupun perbaikan dan juga perlu memperhitungkan kemungkinan baru yang menjadi faktor penyebab keruntuhan lereng baru.

Pengubahan bentuk lereng dengan timbunan dapat dilakukan dengan memberikan timbunan sebagai beban pada daerah kaki lereng yang dimanfaatkan sebagai penahan gaya dorong dari dalam tanah. Tipikal pengubahan bentuk lereng dapat digambarkan dengan berbagai bentuk seperti pada Gambar 2.11 dibawah ini.

g. Penimbunan pada kaki lereng

Gambar 2. 11 Tipikal Pengubahan Geometri Lereng (Departemen PU, 2005)

2.5.2 Mengendalikan air permukaan

Pengendalian air permukaan ini bertujuan untuk mengurangi gaya dorong tanah yang menyebabkan terjadinya gerakan tanah yang disebabkan oleh berat massa tanah dan sebagai perkuatan. Dua hal yang perlu diperhatikan dengan baik adalah air yang mengalir pada permukaan dan air yang masuk melalui rekahan di permukaan lereng. Setiap usaha harus dilakukan untuk mengalihkan air permukaan yang menuju daerah rawan keruntuhan lereng, sedangkan air yang masuk ke dalam lereng harus diupayakan untuk dapat keluar dari badan lereng. Maka dari itu evaluasi drainase permukaan lereng harus dilakukan dengan cara-cara seperti berikut ini:

a. Menanam tumbuhan

Hal ini dilakukan untuk mencegah pengikisan tanah pada permukaan lereng dan mengurangi peresapan air melalui pori dan rekahan permukaan lereng.

b. Evaluasi aliran

Evaluasi aliran air permukaan / tata salir sebaiknya dilakukan pada bagian luar dari keruntuhan lereng dan mengelilingi bagian tersebut, sehingga mampu mencegah terjadinya aliran limpahan yang datang dari atas. Untuk evaluasi saluran terbuka pada daerah keruntuhan lereng harus dibuat dengan kemiringan sedemikian rupa sehingga dapat mengalikan air dengan cepat agar mencegah air masuk ke dalam badan lereng yang dapat menciptakan keruntuhan lereng Kembali.

c. Menutup retakan

Hal ini dilakukan dengan upaya untuk mencegah masuknya air yang masuk dari permukaan lereng yang nantinya akan menyebabkan tanah menjadi jenuh.

d. Evaluasi permukaan lereng

Evaluasi ini dilakukan dengan maksud untuk membuat permukaan lereng menjadi rata tanpa menciptakan cekungan maupun tonjolan agar aliran mampu mengalir dengan cepat melalui permukaan lereng, Berikut pengendalian air permukaan pada Gambar 2.12.

Gambar 2. 12 Tipikal Penanggulangan Pengendalian Air Permukaan (Departemen PU, 2005)

2.5.3 Pengendalian air yang masuk ke dalam badan lereng

Pengendalian ini dimaksudkan untuk mengeringkan atau menurunkan muka air tanah dalam lereng, metode ini biasanya cukup susah dilakukan dan memerlukan penelitian secara rinci. Metode yang dapat dilakukan untuk mengendalikan air yang masuk adalah sebagai berikut ini:

a. Sumur dalam (deep well)

Metode sumur dalam (*deep well*) telah banyak dilakukan untuk memperbaiki keruntuhan lereng yang bidang gelincirnya cukup dalam. Metode ini memiliki nilai konstruksi yang cukup mahal karena perlu dilakukan pemompaan secara terus-menerus. Pada metode ini biasanya dipasang indikator yang menandakan muka air tanah sebagai acuan waktu kapan pemompaan harus dilakukan.

b. Saluran tegak (vertical drain)

Saluran tegak dilakukan untuk mengalirkan air tanah ke lapisan yang lulus air dibawahnya dan akhirnya dapat menurunkan tekanan hidrostatik yang terjadi. Efektif tidaknya metode ini tergantung dari kondisi air tanah dan lapisannya.

c. Saluran mendatar (horizontal drain)

Metode ini dibuat untuk menyalurkan air ataupun menurunkan muka air tanah pada daerah keruntuhan. Saluran mendatar ini digunakan pada daerah keruntuhan yang cukup besar dengan bidang longsor yang cukup dalam dengan membuat lubang hampir mendatar hingga mencapai titik sumber air. Selanjutnya air disalurkan dengan menggunakan pipa dengan diameter minimal 5cm yang dindingnya sudah dilubangi. Penempatan saluran pipa ini tergantung dari jenis material tanah yang akan diturunkan muka air tanahnya. Untuk material tanah dengan jenis butiran yang halus maka jarak antar pipa antara 3-8 meter & material butiran yang kasar dengan jarak 8-15 meter.

d. Sumur pelega (relief well)

Metode ini dianggap efektif untuk menanggulangi terjadinya keruntuhan lereng yang berukuran relatif kecil yang disebabkan akibat masuknya air permukaan. Metode ini dibuat dengan cara melakukan penggalian pada sisi bagian kaki lereng dan galian ini harus segera ditimbun Kembali dengan bebatuan. Hal ini dilakukan untuk menjaga agar lereng tidak kehilangan gaya penahannya yang dapat menjadi faktor penyebab terjadi kembali keruntuhan lereng yang lebih besar.

e. Pelantar (drainage gallery)

Metode ini dinilai cukup efektif dalam hal menurunkan muka air tanah pada daerah keruntuhan lereng yang cukup besar, namun dengan begitu metode pelaksanaannya cukup sulit dan membutuhkan biaya yang besar. Pelantar lebih banyak dilakukan di lapisan batu, karena pada dasarnya membutuhkan penyangga yang sedikit dibandingkan apabila dilakukan pada lapisan tanah. Hal ini bertujuan agar menjaga gaya penahan lereng.

f. Saluran liput (blanket drain)

Metode ini dilakukan dengan cara memasang saluran diantara lereng eksisting dan timbunan yang sebaiknya dilakukan pengupasan pada lereng eksisting sampai mencapai lapisan tanah kerasnya. Sebelum saluran ini dipasang, material berbutir dari saluran ini dihamparkan terlebih dulu untuk menutupi seluruh permukaan lereng eksisting yang akan ditimbun nantinya, air yang mengalir melalui saluran pemotong ini ditampung pada saluran terbuka yang berada di bawah kaki lereng timbunan.

g. Elektro-osmosis

Elektro-osmosis ini dilakukan secara kimiawi dengan menempatkan dua elektroda sampai lapisan jenuh air yang nantinya akan dikeringkan, kemudian dialiri arus listrik yang searah. Arus listrik tersebut menyebabkan air pori mengali dari anoda menuju ke katoda. Elektroda dibuat sedemikian rupa dengan fungsi mengurangi kadar air pori sehingga meningkatkan gaya penahan lereng.

h. Penyalur pemotong (interceptor drainage)

Saluran pemotong ini dibuat untuk memotong aliran air tanah yang masuk ke dalam daerah runtuh. Saluran ini digali pada bagian permukaan hingga lapisan kedap air, sehingga air tanah dialurkan melalui saluran tersebut. Saluran ini dibuat pada dasar galian dalam bentuk pipa yang sudah dilubangi bagian dindingnya.

Berikut pengendalian air rembesan pada Gambar 2.13.

2.5.4 Penambatan

Metode ini dikenal juga sebagai penempatan struktur perkuatan yang merupakan usaha dan upaya yang cara perbaikannya mengikat atau menahan material tanah maupun batuan yang bergerak, berikut ini macam-macam tipe penanganan dengan metode penambatan sesuai dengan material lerengnya: a. Penambatan lereng yang susunannya berupa tanah

Penambatan untuk jenis lereng seperti ini dapat diupayakan dengan membuat bangunan penambat sebagai berikut:

- Bronjong (gabions);
- Dinding penahan tanah (*retaining wall*);
- Geosintetis;
- Pondasi sumuran;
- Pondasi tiang / pancang ;
- Perkuatan tanah;
- Dan lain-lain.

Metode stabilisasi lereng tanah seperti pada Gambar 2.14.

Gambar 2. 14 Macam - Macam Metode Stabilisasi Lereng Tanah (Departemen PU, 2005)

b. Penambatan lereng batuan

Penambatan pada lereng batuan perlu dilakukan saat lereng mengalami ekskavasi materialnya untuk memastikan stabilitas selanjutnya. Berikut metodemetode yang dapat dilakukan antara lain :

- Penyekalaan

Boulder atau blok batuan harus segera dipindahkan dari permukaan lereng yang terekspos. Blok batuan yang berpotensi runtuh dan tidak stabil harus dipindahkan dengan hati-hati.

Dinding penopang isian batu (Buttresses)

Metode ini dibangun untuk menahan blok batuan yang berpotensi runtuh dan tidak stabil, terbuat dari pasangan batu dengan struktur gravitasi maupun dengan beton dan dapat ditambahi perkuatan dengan angkur (*soil nailing*) untuk meningkatkan gaya penahan lereng, pada daerah belakang struktur ini perlu dibuat drainase untuk mencegah tekanan air yang terjadi pada celah batuan yang merekah.

- Dentisi

Metode ini dilakukan dengan memindahkan ikatan material yang lembut pada bagian permukan batuan, selanjutnya bagian tersebut diisi dengan material *grouting* yang sesuai, dilindungi oleh beton maupun struktur pasangan batu dengan maksud mencegah erosi kembali.

Metode stabilisasi lereng batuan dapat dilihat pada Gambar 2.15 & Gambar 2.16 dibawah ini.

	G	Membuat Jaring (netting)				~
	o reruntuha In	Membuat pagar/dinding perangkap	7			7
	l terhadar batua	Membuat saluran penangkap reruntuhan batuan.	7		٢	7
	Kontro	Pindahkan struktur/jalan yang terkena pengaruh keruntuhan	٢	٨		٨
		Lubang-Iubang pengaliran jarak Lubang-Iubang drainholes/adits)		7	7	
	ainase	Lubang-lubang pengaliran jarak pendek (short drainholes)	7			٢
	ā	Screeded (paved) surface.	7	٨	٨	٨
abilisas		Saluran drainase (drainage ditch)	R	7	7	7
lakan st		Angkur (Anchor)	M	T	~	
an-tinc		Baut batuan (bolt)	્રે	17	7	~
Tindak	uktural	Dowel	D.	7,		7
ľ	ecara str	Dinding dengan angkur (anchored (Ilaw) 7			7
	ngga s	Bembuatan 'buttress'		2 - 2	É //	7
	Penyar	Struktur lokal 'dentition'	5 5			7
		njeq uebuesed			55	7
		Permukaan gunite (gunite facing)		Δ		7
		Deve Ekskavasi Lokal	بسلطاد	ر جامع	//	7
	skava	Bembuatan bench	7			7
		Pelandaian lereng	7	7	7	7
	lhan	Sketsa		(A)		
	Tipe keruntu	Nama	Keruntuhan Bidang (Plane failure)	Keruntuhan baji (Wedge failure)	Keruntuhan rebah (Toppling failure)	Reruntuhan batuan atau serpih batuan dan penurunan reruntuhan secara umum

Tabel 2. 12 Tindakan Stabilisasi Lereng Batuan

(Sumber : Departemen PU, 2005)

2.6 Geo-Slope /W

Menurut Modul yang dikeluarkan oleh Sistem Manajemen Pengetahuan (SIMANTU) Kementerian Pekerjaan Umum & Perumahan Rakyat. *Geo-Slope /W* merupakan program yang dikeluarkan oleh *GeoStudio* untuk analisa stabilitas lereng baik tanah maupun batuan, termasuk pula galian dan timbunan. *Slope/W* mampu memodelkan kondisi – kondisi seperti berikut :

- a. Lapisan tanah yang komplek;
- b. Kondisi tekanan air pori yang sangat tidak beraturan;
- c. Bebrapa model kuat geser tanah, Mohr-Coloumb, Anisotropic, dll;
- d. Parameter kuat geser pada kondisi tidak jenuh.
- e. Pendekatan bentuk bidang gelincir dengan atau tanpa tension crack;
- f. Beban merata dan beban gempa;
- g. Perkuatan dengan struktur.

Program *Geo-Slope/W* yang digunakan adalah versi *GeoStudio* 2012, Berikut ini merupakan contoh kasus dan langkah-langkah mengaplikasikan *Slope/W* untuk mendapatkan nilai *Safety Factor* (SF).

2.6.1 Contoh Parameter

Berikut merupakan koordinat titik geometri & data tanah untuk contoh kasus pengaplikasian *Slope/W* dapat dilihat pada Tabel 2 13 dan Tabel 2 14 di bawah ini

2.13 dan Tabel 2.14 di bawah ini.

 Tabel 2. 13 Contoh Koordinat Lereng pada Slope/W

Х	Y
0	0
0	12
6	12
12	2
16	2
16	0

Туре	γsat	γunsat	K	Ε	V	С	Sudut
	kN/m3	kN/m3	m/day	kN/m2		KPa	Geser (0)
Drained	18	16	1,0E-08	7170	0,35	24	30

 Tabel 2. 14 Contoh Data Tanah pada Slope/W

2.6.2 Langkah penyelesaian

2.

 Buka program *Geo-Studio*, lalu pilih *Slope/W*, seperti pada Gambar 2.16 berikut.

🌌 GeoStudio 2012			– a ×
File Edit View Window Help			
D 🐸 🖬 🕼 🍈 🐁 🗞 🔊 • 💌 •			
GeoStudio* 2012 Full lice	ense 🔽		
New Project Create a new empty project	Open Browse for projects	Examples Find sample projects online	
Create a project with this analysis:	Open a recent project:	Movies	
SLOPE/W	Lereng.gsz	Watch tutorials and workshops	
SEEP/W			
QUAKE/W		Engineering Books	
CTRAN AV	Brun .		
AIR/W		atter a marrie a maarrie taar a	
VADOSE/W			
		Stability Modeling with SLOPE/W	
		Seepage Modeling with SEEP/W	
		Dynamic Modeling with QUAKE/W	
		Optimized Modeling with TEMP/W Contaminant Modeling with CTRAN/W	
		Air Flow Modeling with AIR/W	
		Vadose Zone Modeling with VADOSE/W	
	HIRD COTTO		
X Our next webinar reviews the Modified Carn Clay m	aterial model including the calibration procedure giver	a lab data. Click here to register.	
Creates a new project with a SLOPE/W analysis			

Gambar 2. 16 Tampilan utama Geo Studio 2012

Pilih *Menu set*, kemudian *page*, satuan yang digunakan adalah mm. Isi *working area* dengan *width* 297 mm x *Height* 210 mm (ukuran Kertas A4 orientasi *landscape*) seperti pada Gambar 2.17 dibawah ini;

🌆 Set Page	?	×
Printer Page		
Adobe PDF on Ne08: Width: 215,9 Height:	279,4	
Working Area Width: 297 Height:	210	
Units O inches		
ОК	Cancel	

Gambar 2. 17 Kotak Dialog Page

 Pilih Menu set, kemudian Unit and scale, engineering units yang digunakan adalah m. Isi pengaturannya menjadi seperti pada Gambar 2.18 dibawah ini;

Engineering Units	Scale
	Horz. 1: 100 Vert. 1: 100
Length (L): meters	Problem Extents
Eorce (F): Kilonewtons ~	Mi <u>n</u> imum: <u>x</u> : -5 <u>y</u> : -5
Pressure (p): kPa	Maximum: <u>х</u> : 24,7 <u>у</u> : 16
Strength: kPa	Calculate max extents from scale and origin
Unit Wt of <u>W</u> ater: 9,807 kN/m ³	View © <u>2</u> -Dimensional O <u>A</u> xisymmetric O <u>P</u> lan
SLAM o.	<u>Q</u> K Cancel
Gambar 2. 18 Kotal	x Dialog Units & Scale

4.

Gambar 2. 19 Kotak Dialog Grid

- 5. Pilih *Analysis setting* pada *Menu Keyin –* Analyses kemudian akan muncul *toolbox* seperti ini:
 - *tab Settings* atur pengaturannya menjadi seperti pada Gambar 2.20 dibawah ini;

Gambar 2. 20 Kotak Dialog Keyin Analyses - Settings

• *tab Slip Surface* atur pengaturannya menjadi seperti pada Gambar 2.21 berikut ini;

Analyses: Add Delete	Name: SLOPE/W Analysis Description:	_
E (untitled)	Parent: (none)	
SLOPE/W Analysis	Analysis Type: Morgenstern-Price V	
	Settings Slip Surface F of S Distribution Advanced	
	Direction of movement	
	Left to right O Right to left Use passive mode	
	Slip Surface Option	
	Entry and Exit No. of gritical sip surfaces to store:	
	Specify radius tangent lines	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Do not cross block slip surface lines	
الإسلاميين	O Eully Spedfied	
	Tension Crack Option	
	Water in Tension Crack	
	Tension crady angle: 0 ° Filled with water (0 to 1): 0	
	O Tension crack line Unit weight of water: 9,807 kN/m ³	

Gambar 2. 21 Kotak Dialog Keyin Analyses – Slip Surface

• *tab FOS Distribution* atur pengaturannya menjadi seperti pada Gambar 2.22 dibawah ini;

🚮 Keyln Analyse	5			
Analyses:	<u>A</u> dd 👻	Delete	Name: SLOPE/W Analysis Description:	
e			Parent: (none)	1
	PE/W Analysis		Analysis <u>T</u> ype: Morgenstern-Price ~	
			Settings Slip Surface F of S Distribution Advanced	
			Factor of Safety (FOS) Distribution Calculation	
			● <u>C</u> onstant	
			O Probabilistic	
			Set Probabilistic Parameters	
			# of Monte-Carlo Trials: 2.000	
			Use Spatial <u>V</u> ariation	
			Sample gach Slice	
			Use Sampling Distance:	
			O Sensitivity	
			Set Sensitivity Parameters	
			6	
Undo 💌 F	Redo 💌			Close

Gambar 2. 22 Kotak Dialog Keyin Analyses – F of S Distribution

• *tab Advanced* atur pengaturannya menjadi seperti pada Gambar 2.23 berikut ini;

Gambar 2. 23 Kotak Dialog Keyin Analyses – Advanced

 Pilih Menu – Keyin – Materials dan isi parameter-parameter tanah sesuai dengan data tanah pada Tabel 2.14 dan diisi seperti pada Gambar 2.24;

📶 Keyln Materials	—		×
Materials			
Name	Color	<u>A</u> dd	$ \bullet $
Tanah Sampel		Delet	e
Name -	Colori	Assigne	d
Tanah Sampel	<u>Set</u>		
Material Model: Mohr-Coulomb			
Undo IV Redo IV		Close	2

Gambar 2. 24 Kotak Dialog Keyin Materials

 Pilih Menu – Keyin – Points dan isi koordinat titik sesuai dengan data geometri yang dimiliki pada Tabel 2.13 dan diisi seperti pada Gambar 2.25;

Gambar 2. 25 Kotak Dialog Keyin Points

 Pilih Menu – Draw – Regions dan gambar dengan cara menghubungkan titik – titik acuan geometri yang telah dibuat sebelumnya, seperti pada Gambar 2.26;

Gambar 2. 26 Tampilan Region

 Pilih Menu – Draw – Materials lalu sisipkan Material yang telah dibuat ke Regions yang sudah dibuat, seperti yang ditunjukkan pada Gambar 2.27;

Gambar 2. 27 Kotak Dialog Draw Materials

 Pilih Menu – Draw – Slip Surfaces – Entry and Exit, Menu ini digunakan untuk menentukan range bidang gelincir yang kemungkinan akan terjadi dan atur seperti pengaturan pada Gambar 2.28 dibawah ini;

a / realing a (a are a lara)		Exit Range (Right Side)	
ype: Left Point:	Right Point:	Type: Left Point:	Right Point:
Range 🗸 X: O	X: 6	Point V X: 12	X:
Y: 12	Y: 12	Y: 2	Y:
lumber of increments over ra	ange: 4	Number of increments over rar	nge: 4
Number of radius increments	: 4	_	
Use Left (Active) Projection	n Angle: 135		
_ USE LETT (ACUVE) FT0JECU0			

Gambar 2. 28 Kotak Dialog Draw Slip Surface Entry and Exit Range

Lalu pada kotak dialog Solve Manager seperti pada Gambar
 2.29, di bagian kiri bawah dan checklist box Analysis Name
 yang tersedia kemudian klik Start untuk memulai analisa;

Gambar 2. 29 Kotak Dialog Solve Manager

 Kemudian akan muncul hasil perhitungan analisa lereng yang telah dibuat sebelumnya. Secara otomatis *display* akan menampilkan nilai SF pada kondisi *Critical*, seperti pada Gambar 2.30.

Didapatkan nilai SF kondisi paling kritis sebesar 1,591 yang dapat diklasifikasikan sesuai Tabel 2.15 dengan kategori "Longsor Jarang Terjadi (kelas Stabil)" karena nilai *SF* > 1,25.

Tabel 2. 15 Klasifikasi Nilai Safety Factor pada Slope/W

Nilai Faktor Keamanan (FK)	Kejadian / Intensitas Longsor
FK < 1,07	Longsoran terjadi biasa/sering (kelas labil)
FK antara 1,07 – 1,25	Longsoran pernah terjadi (kelas kritis)
FK > 1,25	Longsoran jarang terjadi (kelas stabil)

(Sumber: Bowles, 1991)

2.7 PLAXIS

PLAXIS adalah aplikasi komputer yang membantu dalam Analisa deformasi dan stabilitas yang berkaitan dengan ilmu geoteknik dengan basis metode elemen hingga. Permodelan yang sederhana memungkinkan aplikasi ini mampu memodelkan elemen yang kompleks, sehingga dapat membantu menganalisa perhitungan yang lebih teliti, hasil perhitungan sendiri

berdasarkan metode numerik yang secara umum telah terdapat pada aplikasi ini. Program *PLAXIS* yang digunakan adalah versi *PLAXIS 8.6*, Berikut ini merupakan contoh kasus dan langkah-langkah mengaplikasikan *PLAXIS* untuk mendapatkan nilai *Safety Factor* (SF).

2.7.1 Contoh Parameter

Berikut merupakan Koordinat titik geometri & Data tanah untuk contoh kasus pengaplikasian *PLAXIS*, seperti pada Tabel 2.16 dan Tabel 2.17;

Tabel 2. 17 Contoh Data Tanah pada Plaxis

Туре	Ysat	γunsat	K	E	≥v≮	C	Sudut
	kN/m3	kN/m3	m/day	kN/m2		KPa	Geser (0)
Drained	18	16	1,0E-08	7170	0,35	24	30
		رالاسلام	2 Al Mala	110-1-0			

2.7.2 Langkah Penyelesaian

- 1. Buka program PLAXIS Input, Lalu akan muncul kotak dialog
 - Buat/Buka proyek seperti pada gambar 2.31;

🛞 Buat/Buka proyek	×
Buka Provek baru Drovek vana talah ada	
Serkas lainnya >>> Overkularan Userbai Valuan II. PI X Overkularan Userbai Valuan II. PI X	
C: \Users \ACER \Documents \gg.PLX	
1	<u>Q</u> K Ba <u>t</u> al

Gambar 2. 31 Kotak Dialog Buat/Buka Proyek

- 2. Lalu muncul kotak dialog Pengaturan global,
 - pada Tab Proyek isi kotak teks Judul dengan judul yang diinginkan dan pengaturan dibuat seperti pada Gambar 2.32 dibawah ini;

Nama berkas Bab II.PLX Model Regangan Direktori D:\Perkuliahan\Skripsi\Isi\ Elemen 15 titik noc Judul Tanah Sampel Initial Sampel Initial Sampel	oidang 💌
Direktori D:\Perkuliahan\Skripsi\Isi\ Elemen 15 titik noc Judul Tanah Sampel	al 🔻
Judul Tanah Sampel	
, .	
Komentar Percepatan	
Sudut gravitasi : - 90 °	1.0 G
Percepatan-x : 0,00) 🌩 G
Percepatan-y : 0,00) 🌩 G
Gravitasi bumi : 9,80) 🔶 m/dtk

Gambar 2. 32 Kotak Dialog Pengaturan Global – Proyek

• pada Tab Dimensi pengaturan dibuat seperti pada Gambar

Pen	gaturan glo	bal		6	-			×
P	royek Dime	ensi			5	لہ		
	Satuan			Dimensi ge	ometri			
	Panjang	m	-	Kiri :	0,000	🗢 m		
	Gaya	kN		Kanan :	50,000	🗢 m		
-	Waktu	hari		Bawah :	0,000	† m		
لمصيبة	لإيسا	أجونجا	بلطان	Atas :	25,000	\$ m		
				Grid	_//			
	Tegangan	kN/m ²		Spasi :		0,500	🜩 m	
	Berat isi	kN/m ³		Jumlah inte	erval yang ter	lewati 1	÷	
	Atur seb	agai <u>p</u> ra-pilih						
_					Berikutny	а ок	Bat	tal

Gambar 2. 33 Kotak Dialog Pengaturan Global – Dimensi

 Lalu buka Menu Tampilan – Tabel, akan muncul kotak dialog Tabel Koordinat kemudian isi Koordinat seperti pada Gambar 2.34;

Kemudian buka Menu Material – Tanah & Antarmuka, isi parameter tanah sesuai dengan Tabel 2.17, kemudian input data tanah menuju ke ruang geometri dengan cara *drag*, sepeti ditunjukkan pada Gambar 2.35, Gambar 2.36 dan Gambar 2.37;

Moh	r-Coulomb num Param Kekuatan (© Kaku	- Tanah Sampel eter Antarmuka	توساعة	مے مجامعا		
	C Manual R _{inter} : Tebal antarr δ-inter :	1,000 nuka sebenarnya 0,000		/	/	
		📋 SoilTest]	Berikutnya	<u>o</u> k	Batal

Gambar 2. 35 Kotak Dialog Tanah Sampel Tab Umum

Mohr-Coulomb - Tanah Sampel	
Umum Parameter Antarmuka	
Kekakuan	Kekuatan
v (nu) : 0,350	¢ (phi) : 30,000 °
	ψ (psi) : 0,000 °
Alternatif	Kecepatan
G ref : 2655,556 kN/m ²	V _s : 40,330 ★ m/dtk
E _{oed} : 1,151E+04 kN/m ²	V _p : 83,950 🜩 m/dtk
	Tingkat lanjut
SoilTest	Berikutnya <u>O</u> K Ba <u>t</u> al

5.

Kemudian buka Menu Beban – Jepit Standar, maka tampilan akan berubah menjadi seperti Gambar 2.38 dibawah ini;

Kemudian buka Menu Jaring Elemen – Susun, seperti Gambar 2.39;

Gambar 2. 39 Tampilan Geometri dengan Jaring Elemen

 Lalu Klik tombol Kondisi Awal, dan tampilan berubah seperti Gambar 2.40 dibawah ini;

Gambar 2. 40 Tampilan Kondisi Awal

Pada Menu Kondisi Awal ini terdapat 2 pengaturan seperti pada Gambar 2.41 dan Gambar 2.42, ada pengaturan untuk mengatur tekanan air pori awal & pengaturan tegangan awal dan konfigurasi geometri.

Gambar 2. 41 Toolbar Pengaturan tekanan air pori awal

Gambar 2. 42 Toolbar tegangan awal dan konfigurasi geometri.

Kemudian klik tombol Hitung Tegangan Awal untuk mencari tegangan awal pada bidang seperti Gambar 2.43 dan akan muncul tampilan seperti pada Gambar 2.44 di bawah ini.

Gambar 2. 44 Tampilan Tegangan Efektif
8. Kemudian Klik Tombol Hitung dan kemudian akan muncul kotak dialog Perhitungan, ditunjukkan pada Gambar 2.45;

🚱 Plaxis 8.5 Perhitun	jan - gg.PLX					—		×
Berkas Edit Tam	oilan Hitur	ng Bantuan						
۵ 🙆	e 🔒	A	+> Keluaran					
Umum Pengali Tam	ilan							
Tahap				Jenis perhitungan				
Nomor / ID.:	0	Tahap awal			•			
Mulai dari tahap	0 - Tah	ap awal	•	1	Tingkat lanjut			
Informasi perhit	ngan			Komentar				
			^					
			~					
					Parameter			
						. 1	FT	
		1		Berikutn	ya 🗳 Sisip	okan	Ha	pus
Identifikasi	No. tahap	Mulai dari	Perhitungan	Masukan pembebanan	Waktu	Air	P	Terakh
Tahap awal	0	0	N/A	N/A	0,00	0	0	0
<								>
	~ @	DE	LIVE Y					

Gambar 2. 45 Tampilan Kotak Dialog Perhitungan

- 9. Kemudian buatlah identifikasi tahap menjadi sebagai berikut ini:
 - Tahap 1 merupakan tahap dimana lereng dalam masa konstruksi galian, untuk pengaturannya dibuat seperti Gambar 2.46, Gambar 2.47 dan Gambar 2.48 untuk masing-masing tab;

DRIE AS COUL	Tampilan Hitu	ng Bantuan				
		ng bandan	•			
			Hitung			
Umum Paramete	er <u>Pengali</u> Tampi'	an				
Tahap				Jenis perhitungan		
Nomor / ID	.: 1	Galian Lereng		Analisa plastis	-	
Mulai dari t	ahap: 0 - Ta'	hap awal		-	Tingkat lanjut	
Informasi p	erhitungan			Komentar		
	-					
	-			^		
				×		
				×	Parameter	
				×	Pagameter	
				A A A A A A A A A A A A A A A A A A A	Pagameter inya Sisipkan	
Identifikasi	No. tahap	Mulai dari	Perhitungan	A A	Parameter Inya Sisipkan Waktu Air]
Identifikasi Tahap awal	No. tahap 0	Mulai dari N/A	Perhitungan N/A	Masukan pembebanan N/A	Parameter mya Sisipkan Waktu Air 0,00 0	
Identifikasi Tahap awal	No. tahap 0	Mulai dari N/A 0	Perhitungan N/A Anolisa plastis	Masukan pembebanan N/A Tahapan konstruksi	Pagameter mya Sispkan Waktu Air 0,00 0 0,00 0	

Gambar 2. 46 Tampilan Kotak Dialog Perhitungan Tab Umum

Image: Second Secon	erkas Edit Ta	mpilan Hitu	ng Bantuan							
Umum Parameter Pengali Tampilan Tampilan 	🕘 🙆 🔕	🖻 🔒	A	+ Hitung						
Tamplan Peningkatan faktor pengali [^] Milai masukan Misp: 0,0000 [^] Milai yang digapal Misadk: 0,0000 [^] Milai yang digapal Misadk: 0,0000 [^] Milai yang digapal Misadk: 0,0000 [^] Miscel: 0,0000 [^] Maccel: 0,0000 [^] Maccel: 0,0000 [^] Maccel: 0,0000 [^] Maccel: 0,0000 [^] Macle dari Peritungan Masukan pembebanan Watu Arr [^] Malai dari Peritungan Masukan pembebanan Watu Arr P 1 O N/A	Jmum Parameter	Pengali Tampil	an							
Image: Signal Mdisp: 0,0000 € 0,0000 € 0 0,0000 € Milai yang diçapai Milai Qang diçapai Milai Qang diçapai Signal 0,0000 € Milai yang diçapai Milai Qang diçapai Milai Qang diçapai Signal Signal Signal Milai yang diçapai Milai Qang diçapai Milai Qang diçapai Signal Signal Signal Milai yang diçapai Milai Qang diçapai No.0000 € Signal Signal Signal Maccel: 0,0000 € Signal Signal Extension Signal Extension Maccel: 0,0000 € Signal Signal Extension Extension Extension Identifikasi No. tahap Mulai dari Perhitungan Masukan pembebanan Waktu Air P 1 Signal 0 N/A N/A N/A 0,00 0 0 Solaton Lereng 1 0 Analia plastis Tahapan konstruksi 0,00 0 0 Identifikasi SF 2 1 Reduksi phi-c Peningkatan faktor pengal 0,00 0 <td>Tampilan</td> <td></td> <td>Peningkata</td> <td>an faktor pengali</td> <td>Faktor pengali tota</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>	Tampilan		Peningkata	an faktor pengali	Faktor pengali tota	1				
C Nilai yang digapai MioadA: 0,0000 € MioadB: 0,0000 € Σ -MioadA: 1,0000 € MioadB: 0,0000 € Σ -MioadB: 1,0000 € Mweight: 0,0000 € Σ -MioadB: 1,0000 € Maccel: 0,0000 € Σ -MioadB: 1,0000 € Msf: 0,0000 € Σ -Misf: 1,0000 € Identifikasi No. tahap Mulai dari Perhitungan Masukan pembebanan Waktu Air P 1 Tahap awal 0 N/A N/A N/A 0,00 0 0 Galan Lereng 1 0 Analias plastis Tahapan konstruksi 0,00 0 0 Identifikasi SF 2 1 Reduksi phi-c Peningkatan faktor pengali 0,00 0	Nilai masuk	an	Mdisp:	0,0000 🚖	Σ -Mdisp:	1,0000	\$			
MoadB: 0,0000 ↓ Mweight: 0,0000 ↓ Maccel: 0,0000 ↓ Maccel: 0,0000 ↓ Maccel: 0,0000 ↓ Maccel: 0,0000 ↓ X-Maccel: 0,0000 ↓ Tahap awal 0 N/A N/A Malas plastis Tahapan korstruksi 0,00 0 Calant Lereng 1 0 Analsa plastis Tahapan korstruksi 0,00 0 Identifikasi SF 2	C Nilai yang d	di <u>c</u> apai	MloadA:	0,0000	Σ -MloadA:	1,0000	÷ l			
Mweight: 0,0000 € Msccel: 0,0000 € Msccel: 0,0000 € Msf: 0,0000 € X-Mscel: 0,0000 € X-Mscel: 0,0000 € X-Mscel: 0,0000 € X-Msf: 1,0000 € X-Msf: 0,0000 € X-Msf: 0,0000 € X-Msf: 0,00000 € X-Msf: 0,00000000000000000000000000000000000			MloadB:	0.0000	Σ -MloadB:	1.0000	÷.			
Maccel: 0,0000 ↓ Marcel: 0,0000 ↓ Mefr: 0,0000 ↓ Entidition ↓ ↓ Mefr: 0,0000 ↓ Entidition ↓ ↓ Maccel: ↓ ↓ Maccel: ↓ ↓ Mefr: ↓ ↓ Mefr: ↓ ↓ Lidentifikasi No. tahap Mulai dari Perhitungan Masukan pembebanan Waktu Air P ↑ Tahap awal 0 N/A N/A O Analisa plastis Tahapan konstruksi 0,00 0 Collan Lereng 1 Reduksi phi-c Peningkatan faktor pengali 0,00 0			Mweight:	0.0000	Σ -Mweight:	1.0000	-			
Mascee: 0,0000 ▼ Msf: 0,0000 ▼ Imaccei: 0,0000 ▼ Imaccei: 0,0000 ▼ Imaccei: 0,0000 ▼ Imaccei: 0 Imaccei: 0 Masukan pembebanan Waktu Air P Tahap awal 0 N/A N/A N/A N/A Identifikasi SF 2 1 Reduksi phi-c Peningkatan faktor pengali 0,00 0 0			Measel:		Z Menali	0.0000				
Msr: 0,0000 Imsr: 1,0000 Imsr: 1,0000 Imsr: 0,0000 Imsr: Imsr: 1,0000 Imsr: <			Maccel:	0,0000	2 -Maccel:	0,0000				
Image: state of the state			Mst:	0,0000	Σ-Mst:	1,0000	-			
Image: Step in the state of the state						,				
Image: Sispkan Imag						,				
Image: Sisplan Imag						,				
dentifikasi No. tahap Mulai dari Perhitungan Masukan pembebanan Waktu Air P T Tahap awal 0 N/A N/A N/A 0,00 0 0 Galian Lereng 1 0 Analsa plastis Tahapan konstruksi 0,00 0 Identifikasi SF 2 1 Reduksi phi-c Peningkatan faktor pengali 0,00 0										
Tahap awal 0 N/A N/A 0,00 0 0 Galian Lereng 1 0 Anaksa plastis Tahapan konstruksi 0,00 0 ◆ Galian Lereng 1 0 Anaksa plastis Tahapan konstruksi 0,00 0 ◆ Identifikasi SF 2 1 Reduksi phi-c Peningkatan faktor pengali 0,00 0					Ben	kutnya	🖶 Sisipka	an	🐺 Hap	ous.
 Galian Lereng 1 0 Analisa plastis Tahapan konstruksi 0,00 0 Identifikasi SF 2 1 Reduksi phi-c Peningkatan faktor pengali 0,00 0 	dentifikasi	No. tahap	Mulai dari	Perhitungan	Ben Masukan pembebana	, ikutnya n \	💐 Sisipka Waktu 🚺	an	P	ous.
Identifikasi SF 2 1 Reduksi phi-c Peningkatan faktor pengali 0,00 0	dentifikasi Tahap awal	No. tahap	Mulai dari N/A	Perhitungan N/A	Masukan pembebana	, ikutnya n	Sisipka Naktu /	an Air	P 0	ous. Te
	dentifikasi Tahap awal ∳ Galian Lereng	No. tahap 0 1	Mulai dari N/A 0	Perhitungan N/A Analisa plastis	Masukan pembebana N/A Tahapan konstruksi	, ikutnya n <u>v</u> (Sisipka Waktu / 0,00 0,00	an Air O	P 0	ous.
	dentifikasi Tahap awal ∳ Galian Lereng ∳ Identifikasi SF	No. tahap 0 1 2	Mulai dari N/A 0 1	Perhitungan N/A Analisa plastis Reduksi phi-c	Masukan pembebana N/A Tahapan konstruksi Peningkatan faktor pu	, kutnya n \ C engali (Sisipka Waktu / 0,00 0,00	an Air O O O	P 0	ous.

Gambar 2. 47 Pengaturan Identifikasi Tahap 1 (Konstruksi)

Tab Parameter

Gambar 2. 48 Pengaturan Identifikasi Tahap 1 (Konstruksi) Tab Umum

 Tahap 2 merupakan tahap untuk identifikasi nilai SF nya, untuk pengaturannya dibuat seperti pada Gambar 2.49, Gambar 2.50 dan Gambar 2.51 dibawah ini;

	ngan - Bab II.Pl	LX			-		×
erkas Edit Tar	mpilan Hitu	ng Bantuan					
🛞 🚷 🛞	🗁 🔒	a	+ Hitung				
mum Parameter	Pengali Tampil	an					
Tahap				Jenis perhitungan			
Nomor / ID .:	2	Identifikasi SF		Reduksi phi-c	-		
				1			
Mulai dari tana	ip: 1-Ga	lian Lereng	-		gkat lanjut		
Informasi perh	itungan			Komentar			
			~				
			~		Parameter		
			v	🛱 Berikutnya	Pagameter	🗮 Hapu	us
dentifikasi	No. tahap	Mulai dari	V Perhitungan	Asukan pembebanan	Parameter	P	us Tera
dentifikasi Tahap awal	No. tahap 0	Mulai dari N/A	Perhitungan N/A	Masukan pembebanan N/A	Pagameter Sisipkan Waktu Air 0,00 0	P 0	us Tera
dentifikasi Tahap awal	No. tahap 0 1	Mulai dari N/A 0	Perhitungan N/A Analisa plastis	Masukan pembebanan N/A Tahapan konstruksi	Pagameter	P 0	us Tera 0
dentifikasi Tahap awal \$ Galian Lereng \$ Identifikasi SF	No. tahap 0 1 2	Mulai dari N/A 0 1	Perhitungan N/A Analisa plastis Reduks phi-c	Masukan pembebanan N/A Tahapan konstruksi Peningkatan faktor pengali	Pagameter Waktu Air 0,00 0 0,00 0 0,00 0	P 0	us Tera 0
dentifikasi Tahap awal Galian Lereng Identifikasi SF	No. tahap 0 1 2	Mulai dari N/A 0 1	Perhitungan N/A Analisa plastis Reduksi phi-c	Masukan pembebanan N/A Tahapan konstruksi Peningkatan faktor pengal	Paçameter Paçameter Waktu Air 0,00 0 0,00 0 0,00 0	P 0	us Tera 0
Jentifikasi Tahap awal ▶ Galian Lereng ▶ Identifikasi SF	No. tahap 0 1 2	Mulai dari N/A 0 1	Perhitungan NA Analisa plastis Reduksi phi-c	Masukan pembebanan N/A Tahapan konstruksi Peningkatan faktor pengal	Parameter Parameter Waktu Air 0,00 0 0,00 0 0,00 0	P 0	us Tera 0

Gambar 2. 49 Pengaturan Identifikasi Tahap 2 (Identifikasi SF) Tab Umum

Berkas Edit la	mpilan Hitur	Bantuan	+> Hitung			
Umum Parameter Parameter per Langkah tamb	Pengali Tampila ngatur pahan: 100	an]	 Atur perpindahan m Abaikan perlaku tak Hapus langkah sebe 	enjadi nol terdrainase lumnya		
Prosedur itera Pengatura Pengatura	si an standar an manual —	Ientukan	Masukan pembebanan C Tahapan konstruks C Faktor pengeli total C Peningkatan faktor Peningkatan waktu: Perkiraan waktu akhir:	pengali p.coco p.co	akat lanjut entukan n Ar Tanah	
	N		411111	🕮 Berikutnya	🗸 🗸 Sisipkan	-
	No. tahap	Mulai dari	Perhitungan	Masukan pembebanan	Waktu Air	P
Identifikasi		N/A	N/A	N/A	0,00 0	0
Identifikasi Tahap awal	0			Tahanan konstruksi	0.00 0	
Identifikasi Tahap awal ➡ Galian Lereng	0	0	Analisa plastis	ranapan konstruksi	0,00 0	

Gambar 2. 50 Pengaturan Identifikasi Tahap 2 (Identifikasi SF) Tab Parameter

Plaxis 8.5 Perhitur erkas Edit Tan	ngan - Bab II.PL npilan Hitur	X ng Bantuan		جامعت	/	-		>
umum Parameter	Pengali Tampila	an	n faktor nennali	Eaktor pengali total				
Nilai masuka	in	Mdisp;	0.0000	Σ -Mdisp: 1.0000	±			
C Nilai yang d	capai	MloadA:	0.0000	Σ -MloadA: 1.0000				
		MloadB:	0.0000	Σ -MloadB: 1.0000				
		Mweight:	0.0000	Σ -Mweight: 1.0000				
		Marcel	0.0000	Σ -Macrel: 0.0000				
		Msf:	0,1000	Σ -Msf: 1,5256	•			
				🛱 Berikutnya	Sisip	kan	🖧 Нар	ous
dentifikasi	No. tahap	Mulai dari	Perhitungan	Masukan pembebanan	Waktu	Air	P	Ter
Tahap awal	0	N/A	N/A	N/A	0,00	0	0	0
Galian Lereng	1	0	Analisa plastis	Tahapan konstruksi	0,00	0		
Identifikasi SF	2	1	Reduksi phi-c	Peningkatan faktor pengali	0,00	0		

Gambar 2. 51 Pengaturan Identifikasi Tahap 2 (Identifikasi SF) Tab Pengali

10. Kemudian Klik Tombol Hitung dan *PLAXIS* akan mulai menganalisa, seperti yang terlihat pada Gambar 2.52;

Gambar 2. 52 Proses Analisa Perhitungan

11. Setelah proses analisa selesai, klik tombol Keluaran kemudian pilih menu Tampilan – Informasi Perhitungan & baca nilai Msf pada tab pengali seperti pada Gambar 2.53. Nilai Msf tersebut merupakan nilai *Safety Factor*.

(1) - (1)	5. II. I				
nformasi langkah Langkah 106 dari 106	Faktor ekstrapolasi	جامعا	1,000		
Langkah Plastis	Kekakuan relatif		0,000		
engali					
-	Peningkatan fakt	or pengali	Faktor penga	ali total	
Perpindahan tertentu	Mdisp:	0,000	Σ-Mdisp:	1,000	
Sistem beban A	MloadA:	0,000	Σ-MloadA:	1,000	
Sistem beban B	MloadB:	0,000	Σ-MloadB:	1,000	
Berat tanah	Mweight:	0,000	Σ-Mweight:	1,000	
Percepatan	Maccel:	0,000	Σ-Maccel:	0,000	
Faktor reduksi kekuatan	Msf:	0,000	Σ-Msf:	1,526	
Waktu	Peningkatan:	0,000	Waktu akhir:	0,000	
Waktu dinamis	Peningkatan:	0.000	Waktu akhir:	0.000	

Gambar 2. 53 Kotak Dialog Informasi Perhitungan

Didapatkan nilai SF kondisi sebesar 1,526 yang dapat diklasifikasikan sesuai Tabel 2.18 dengan kategori "Longsor Jarang Terjadi (kelas Stabil)" karena nilai SF > 1,25.

Tabel 2. 18 Klasifikasi Nilai Safety Factor pada Plaxis

Nilai Faktor Keamanan (FK)	Kejadian / Intensitas Longsor
FK < 1,07	Longsoran terjadi biasa/sering (kelas labil)
FK antara 1,07 – 1,25	Longsoran pernah terjadi (kelas kritis)
FK > 1,25	Longsoran jarang terjadi (kelas stabil)

(Sumber : Bowles, 1991)

Dari hasil analisa menggunakan *Geo-Studio* dan *Plaxis*, didapatkan perbandingan nilai seperti pada Tabel 2.19.

Fabel 2. 19	Perbandingan	Klasifikasi I	Nilai Sa	fety Factor
--------------------	--------------	---------------	----------	-------------

Program	Geo-Studio (Slope/W)	<i>PLAXIS</i>
Nilai SF	1,591	1,526

(Sumber : Perhitungan, 2021)

2.8 Metode Stabilisasi Lereng

Metode stabilisasi lereng merupakan suatu usaha yang memiliki tujuan agar daya dukung tanah mengalami peningkatan. Pada penelitian ini, metode stabilisasi lereng yang digunakan yaitu sebagai berikut:

2.8.1 Cerucuk Bambu

Metode ini dinilai cukup efektif dalam mengatasi keruntuhan jalan dan menstabilkan lereng, metode ini menggunakan batang bambu yang dilakukan seperti cerucuk. Metode ini sudah umum dilakukan di Indonesia dengan diameter batang 8cm-12cm dipancang satu-persatu secara vertical maupun diagonal. Penggunaan metode ini sudah dilakukan sejak dahulu. Karena metode ini cukup efisien karena dapat dilakukan tanpa mengganggu stabilitas lereng (Wallays, 1970). Metode ini dinilai cukup efektif sebagai perkuatan alternatif stabililasi lereng maupun perkuatan lereng timbunan jalan, pada lereng timbunan jalan metode ini digunakan sebagai bahan yang kaku sehingga meningkatkan tingkat stabilitas tanah. Sebagai metode perkuatan stabilitas lereng, cerucuk cukup efektif dan efisien sebagai pasak/ angkur yang memotong bidang keruntuhan lereng, jadi cerucuk dapat memberikan tambahan gaya penahan yang mampu menahan gaya geser pada lereng yang menyebabkan longsor terjadi, tambahan gaya penahan ini dapat meningkatkan angka keamanan (*safety factor*) stabilitas lereng . Berikut pengaplikasian ceucuk, terlihat seperti Gambar 2.54.

Gambar 2. 54 Aplikasi cerucuk bambu pada lereng pada Jalan Tol Semarang (*PT Jasamarga Tollroad Maintenance*, 2020)

2.8.2 Bronjong

Bronjong adalah anyaman kawat baja yang dilapisi kembali dengan lapisan galvanis atau seng atau terkadang dapat menggunakan geogrid. Anyaman kawat ini dibentuk sedemikian rupa menjadi balok ataupun kubus dan selanjutya akan diisi dengan pasangan batuan kali. Kekuatan utama dari metode ini terletak pada daya tahan material anyaman terhadap gaya tarik yang disebabkan oleh gaya geser tanah. Fungsi dari bronjong dalam konstruksi perkuatan stabilitas lereng antara lain sebagai berikut:

- 1. Melindungi dan memperkuat tebing tanah untuk mencegah terjadinya longsor;
- 2. Menjaga tepi sungai terhadap aliran air dan juga erosi.
- 3. Membuat bendungan untuk meninggikan taraf muka air.

Bronjong telah banyak dimanfaatkan dalam konstruksi karena material bronjong memiliki beberapa keunggulan, antara lain:

- Bersifat fleksibel karena dapat mengikuti pergerakan tanah di bawahnya tanpa merusak konstruksi.
- Tembus air sehingga dapat mengurangi tekanan tanah aktif akibat air yang dapat mengalir melalui sela-sela bebatuan pada bronjong.
- c. Kontruksinya sederhana, sehingga bisa dikerjakan tanpa menggunakan mesin berteknologi tinggi.

d. Dapat diproduksi dengan ukuran yang disesuaikan dengan kebutuhan di lapangan.

e. Ekonomis karena pada umumnya pemasangan bronjong tidak memerlukan biaya yang mahal dibanding dengan penahan dari beton.

Berikut pengaplikasian bronjong, seperti pada Gambar 2.55.

Gambar 2. 55 Aplikasi bronjong pada lereng (BBPJN DKI Jakarta - Jawa Barat, 2020)

BAB III METODE PENELITIAN

3.1 Pengertian Umum

Metode penelitian merupakan suatu cara atau proses ilmiah dengan tujuan mencapai pemecahan masalah serta menemukan jawaban atas masalah yang ada. Metode yang digunakan tentunya sesuai dengan masalah yang diambil, sehingga mendapatkan hasil sesuai dengan yang diharapkan, memenuhi syarat efektif dan efisien yang mendukung dari penelitian dan pembuatan laporan tersebut.

Tugas akhir ini meneliti mengenai analisa stabilitas lereng untuk mengetahui faktor keamanan dan membandingkan nilai ekonomis dari beberapa metode perkuatan lereng yang digunakan pada lereng Jalan Tol Semarang ABC.

3.2 Tipe Penelitian

Dalam penelitian ini tipe yang digunakan ialah tipe deskriptif yaitu menganalisis dan menyajikan fakta secara sistematis, sehingga dapat lebih mudah untuk disimpulkan. Kesimpulan yang diberikan selalu jelas atas dasar data-data yang telah dianalisa, dengan menyelidiki suatu kondisi serta memberikan alternatif pemecahan masalah berdasarkan data-data yang diperoleh.

3.3 Teknik Pengumpulan Data

Hal yang penting dalam proses penelitian yaitu teknik pengumpulan data, karena penelitian memiliki tujuan yaitu mendapatkan data. Dalam sebuah penelitian, tahap pengumpulan data merupakan satu langkah yang dapat menentukan terhadap proses dan hasil dari penelitian yang akan dilaksanakan tersebut. Oleh karena itu harus menggunakan metode yang sesuai agar mendapatkan data yang diperlukan. Pada penelitian ini kami menggunakan teknik pengumpulan data secara observasi dan dokumentasi. Masing-masing penelitian memiliki proses pengumpulan data yang berbeda, tergantung dari jenis penelitian yang akan dibuat. Pengumpulan data penelitian tidak boleh dilakukan secara sembarangan. Diperlukan beberapa referensi yang memiliki keterkaitan dengan pembahasan pada penelitian. Tujuan dari langkah dan teknik dalam pengumpulan data adalah agar mendapatkan data yang valid, sehingga hasil dan kesimpulan penelitian dapat diuji kebenarannya.

Data yang digunakan dalam melakukan analisa ini adalah data primer dan data sekunder. Data primer merupakan data yang diperoleh langsung dari subjek penelitian, dalam hal ini peneliti memperoleh data atau informasi langsung dengan menggunakan beberapa cara, dapat berupa survey dan observasi yang digunakan untuk memperoleh data lapangan. Data sekunder atau data tidak langsung merupakan data yang diperoleh dari datadata yang terdapat pada instansi-instansi yang berhubungan dengan penelitian ini. Dalam pengejaan tugas akhir ini terkait penelitian pengelolaan data bersumber dari beberapa analisis, dengan objek penelitian Perbandingan Slope Protection Darurat dengan beberapa Metode pada jalan tol Semarang ABC, membutuhkan data-data antara lain:

- Data primer seperti dimensi lereng;
- Data sekunder, seperti:
 - Data penyelidikan tanah seperti data *properties* tanah dan N-SPT;
 - Literatur-literatur yang berhubungan dengan masalah yang akan dianalisa, seperti jurnal penelitian yang berkaitan dengan perbaikan lereng, metode perbaikan dengan cerucuk bambu dan bronjong.

Metode yang digunakan dalam penelitian ini, dapat diuraikan seperti pada Gambar 3.1 dibawah ini.

Gambar 3. 1 Bagan Alir Metode Penelitian

3.4 Tahap Persiapan

Terdapat rangkaian kegiatan ketika sebelum memulai pengumpulan data pengolahannya yang disebut dengan tahap persiapan. Dalam tahap ini perlu adanya hal-hal yang terlebih dahulu disusun agar kegiatan penelitian dapat berjalan dengan lancar dan efisien. Tahap tersebut sebagai berikut:

- Studi pustaka terkait masalah yang berhubungan dengan pembahasan tanah dan lereng;
- 2. Studi pustaka mengenai metode perkuatan sementara untuk lereng;
- 3. Studi pustaka terkait Progam Aplikasi Geo-Studio (Slope/W)& Plaxis;
- 4. Menentukan kebutuhan data yang akan diperlukan;
- 5. Mengumpulkan data dari berbagai sumber.

3.5 Metode Analisa Data

Metode analisis data merupakan kegiatan analisis pada suatu penelitian yang dikerjakan dengan memeriksa seluruh data dari instrumen penelitian, seperti catatan, dokumen, hasil tes, dan lain-lain. Proses ini diperlukan agar data menjadi lebih mudah dipahami dan berguna sebagai solusi bagi suatu pemasalahan untuk mendapatkan kesimpulan, khususnya yang berkaitan dengan penelitian.

Pada penelitian ini, yang pertama dilakukan yaitu melakukan tinjauan pustaka dan tinjauan lapangan, lalu dilanjutkan dengan perumusan masalah dan tujuan. Kemudian mempersiapkan data, baik itu data primer maupun data sekunder. Data primer yang perlu disiapkan yaitu dimensi lereng, sedangkan data sekunder meliputi data tanah borlog (N-SPT) dan data properties uji lab. Setelah data terkumpul, maka data-data tersebut dilakukan analisa data. Apabila analisa data telah selesai dilakukan, maka hal berikutnya yaitu mencari nilai *safety factor* dari kondisi lereng eksisting dengan menggunakan aplikasi *Geo-Studio (Slope/W)* dan Plaxis. Setelah itu mencari nilai *safety factor* setelah stabilitas dengan menggunakan aplikasi Plaxis untuk metode cerucuk bambu dan bronjong. Apabila dalam mencari nilai *safety factor* ternyata mendapat hasil dengan nilai di bawah 1,5 maka kembali

kepada bagian mencari nilai *safety factor* setelah stabilitas dengan menggunakan Plaxis. Setelah nilai *safety factor* yang didapatkan mencapai nilai di atas 1,5 kemudian dapat dilanjutkan dengan perhitungan RAB untuk metode cerucuk bambu dan bronjong. Langkah berikutnya yaitu membandingkan nilai *safety factor* dan biaya dari penggunaan metode cerucuk bambu dan bronjong. Saat perbandingan nilai *safety factor* dan biaya selesai dilakukan, kemudian didapatkan kesimpulan serta saran dari hasil penelitian ini. Setelah mendapatkan kesimpulan dan saran, maka penelitian ini telah selesai dilakukan dan mendapatkan hasil sesuai dengan tujuan yang diinginkan.

Berikut merupakan hasil uji *bore log*, seperti pada tabel 3.1. **Tabel 3. 1** Hasil Uji *Bore Log* pada titik BH. 2 pada Jalan Tol Semarang

Kedalaman	Tebal	Material	Ciri-ciri	N-SPT
(m)	(m)			
0,00-1,00	1,00	Lempung	Sedikit pasir, lunak,	
		kelanauan	warna cokelat	
1,00-3,00	2,00	Lanau kepasiran	Lun <mark>ak,</mark> warna	7
			cokelat	
3,00-6,50	3,50	Lanau	Sedikit pasir, teguh,	13
		kelempungan	warna cokelat	
6,50-8,00	1,50	Lanau kelempugan	Sedikit pasir, teguh	20
	الثيبية (فتنسلطان أجونج الإلع	sampai kaku, warna	
			cokelat	
8,00-10,00	2,00	Lanau kepasiran	Kaku, warna cokelat	>60
10,00-12,00	2,00	Pasir	Padat, warna cokelat	>60
12,00-15,00	3,00	Pasir	Padat, warna cokelat	>60
			abu-abu	
15,00-20,00	5,00	Pasir	Tersisipi batu pasir,	>60
			padat, warna cokelat	
			abu-abu	

(Sumber : PT Jasamarga Tollroad Maintenance, 2020)

BAB IV ANALISA DAN PEMBAHASAN

Pada bab ini membahas tentang proses pengolahan data, merencanakan pemodelan dengan aplikasi *Plaxis* dan *Geo-Studio* (*Slope /w*). Dengan analisa tersebut bertujuan untuk mengetahui factor keamanan (*safety factor*), membandingkan tingkat kelayakan dan nilai ekonomis secara harga dari metode cerucuk bambu dan bronjong, untuk mengetahui diantara metode perkuatan tersebut manakah yang dapat dianggap paling layak dari segi keamanan dan ekonomis. Sehingga diharapkan dapat digunakan sebagai perkuatan darurat untuk perbaikan jangka pendek yang ekonomis dan tentunya juga aman.

4.1 Parameter Tanah

Parameter tanah merupakan ukuran atau acuan untuk mendapatkan atau menilai hasil dari proses perubahan yang terjadi dalam tanah baik dari sifat fisik dan jenis tanah. Untuk parameter-parameter tanah, data dapat diperoleh dari uji tanah di laboratorium, sehingga selanjutnya digunakan untuk analisis maupun desain. Tujuan dari penyelidikan tanah ini antara lain untuk menentukan sifat tanah dan menentukan kapasitas daya dukung tanah.

SLAM SU

Jenis parameter sifat fisik tanah itu sendiri seperti berat volume (Gs), porositas (n), ukuran butir tanah, berat isi, derajat kejenuhan (s), kepadatan tanah, kadar air (w), nilai attenberg, permeabilitas. Sedangkan sifat mekanis tanah adalah nilai (c), kohesi nilai sudut geser tanah (ϕ) dan daya dukung tanah (q). Parameter tanah yang digunakan pada analisa ini sepeti pada Tabel 4.1.

Tabel 4. 1 Parameter Tanah pada Eksisting Geo-Studio (Slope/W)

γsat	γunsat	С	Φ
(kN/m ³)	(kN/m ³)	(kN/m ²)	(°)
16,7556	13,3498	5,8839	34

4.2 Analisis Stabilitas Lereng Eksisting dengan Geo-Studio (Slope/W)

Adapun tahapan analisa kelongsoran lereng dengan aplikasi Geo-Studio (Slope/W) adalah sebagai berikut :

1. Langkah awal membuka aplikasi *Geo-Studio* yaitu harus mengetahui program analisis yang akan digunakan, karena *Geo-Studio* terdiri dari beberapa jenis analisis. Pada kasus ini yang akan di analisis merupakan stabilitas lereng, maka langkah selanjutnya pilih *Slope/W*, seperti pada Gambar 4.1.

 Pilih Menu set, kemudian page, satuan yang digunakan adalah mm. Isi working area dengan width 297 mm x Height 210 mm (ukuran kertas A4 orientasi landscape) ditunjukkan pada Gambar 4.2 dibawah ini;

🚮 Set Pag	je			×
Printer Pa	age			
Microsoft	Print to PDF or	Ne01:		
Width:	210	Height:	297	
Working	Area			
in the		1		
Width:	297	Height:	210	
Units				
Oinch	es	🖲 mm		
		2		
	ОК]	Cancel	

Gambar 4. 2 Kotak Dialog Page

3. Pilih *Menu set*, kemudian *Unit and scale, engineering units* yang digunakan adalah m. Isi pengaturannya seperti tampilan Gambar 4.3;

🚰 Set Units and Scale	? ×
Set Units and Scale Engineering Units Metric Imperial Length (L): meters Force (F): Kilonewtons Pressure (p): kPa Strength: kPa Unit Wt of Water: 9,807 kN/m ³	? × Scale Horz. 1: 100 Vert. 1: 100 Problem Extents Minimum: x: -5 y: -5 Maximum: x: 24,7 y: 16 Calculate max extents from scale and origin View © 2-Dimensional
	O Axisymmetric
	OK Cancel

Gambar 4. 3 Kotak Dialog Units & Scale

4. Kemudian atur setting grid spacing menjadi seperti pada Gambar 4.4;

KE	Grid	V 🚡 📈
	Grid Spacing (Eng	j. Units) 🗧 🥢
5 7	X: 0,5	Y: 0,5
	Eng. Units: met	ers
. //	Umissi	ULA
<u></u>	باناجوچ ک ^ل یند ۸	جاءة:٢٠
	Display Grid	Snap to Grid
		Class
		Close

Gambar 4. 4 Kotak Dialog Grid

Pilih Analysis setting pada Menu – Keyln – Analyses kemudian akan muncul toolbox sepeti ini ;

• Tab *Settings* atur pengaturannya menjadi seperti yang ditampilkan pada Gambar 4.5 dibawah ini;

Gambar 4. 5 Kotak Dialog Keyln Analyses – Settings

 Tab Slip Surface atur pengaturannya seperti yang ditampilkan pada

 Gambar 4.6 seperti ini;

Gambar 4. 6 Kotak Dialog Keyln Analyses – Slip Surface

• Tab *F of S Distribution* atur pengaturannya menjadi seperti yang ditampilkan pada Gambar 4.7 berikut;

Gambar 4. 7 Kotak Dialog Keyln Analyses – F of S Distribution

• Tab Advanced atur pengaturannya menjadi seperti Gambar 4.8;

Gambar 4.8 Kotak Dialog Keyln Analyses – Advanced

6. Pilih *Menu – Keyln – Materials* dan isi parameter-parameter tanah sesuai dengan data tanah pada Tabel 4.1 dan tampilannya pada Gambar 4.9;

Materials										
Name							Cole	vr		Add
Data Tanah										Delet
										Dele
										Assigne
Name								Color:		rissigne
Data Tanah									<u>S</u> et	
Material Model:	Mohr-Cou	lomb		\sim						
Basic Suction	Drawdown	Liquefaction	Advanced							
Unit Weight:		Cohesion:								
16,75 kN/m³		5,8839 kPa	1							
Phi:										
34 °		11								
34 °										
34 °										
34°										
34 °										
34 °	/			и						
34 •		15	LA	М	。 。	2				

Gambar 4. 9 Kotak Dialog Keyln Materials

7. Pilih *Menu* – *Keyln* – *Points* dan isi koordinat titik sesuai dengan data geometri dan keadaan yang ada di lapangan, seperti Gambar 4.10;

ID	X (m)	Y (m)	Label	Pinned	^	Add
1	0	G-3 CC	Point+Number	Yes		
2	0	0	Point+Number	Yes		Deleti
3	ل الما الما الما الما الما الم	7,5	Point+Number	Yes		
4	16	25504	Point+Number	Yes		
5	16	0	Point+Number	Yes		
6	11		Point+Number	Yes	~	

Gambar 4. 10 Kotak Dialog Keyln Points

 Pilih Menu – Draw – Regions dan gambar dengan cara menghubungkan titik-titik acuan geometri yang telah dibuat sebelumnya, seperti yang ditampilkan pada gambar 4.11;

Gambar 4. 11 Tampilan Region

 Pilih Menu - Draw – Materials lalu sisipkan Material yang telah dibuat ke Regions yang sudah dibuat, seperti yang ditunjukkan Gambar 4.12;

Gambar 4. 12 Kotak Dialog Draw Materials

 Pilih Menu – Draw – Slip Surfaces – Entry and Exit, menu ini digunakan untuk menentukan range bidang gelincir yang kemungkinan akan terjadi dan atur seperti Gambar 4.13 di bawah ini;

try Range (L	eft Side) ———		Exit Range (Righ	nt Side)		_
ſype: Point ∨	Left Point: X: 5 Y: 7,5	Right Point: X: 5,8 Y: 6,5	Type: Range ~	Left Point: X: 9,06478 Y: 2,419024	Right Point: X: 10 Y: 1,25	
Number of in	crements over ran	ige: 4	Number of inc	crements over range	: 4	_
Number of r	adius increments:	4				
Number of r	adius increments: ojection Angle	4				
Number of r ip Surface Pr Use Left (adius increments: ojection Angle Active) Projection	4 Angle: 135]			

Gambar 4. 13 Kotak Dialog Draw Surface Entry and Exit Range

11. Pilih *Menu – Draw – Pore Water Pressure*, seperti pada Gambar 4.14, Menu ini digunakan untuk menentukan letak muka air tanah;

12. Lalu pada kotak dialog *Solve Manager* di bagian kiri bawah dan checklist box *Analysis Name*, seperti Gambar 4.15 yang tersedia kemudian klik *Start* untuk memulai analisa;

Solve Manager	д 🔀
🛐 Start 🔻 🔳 Stop	
Analysis Name Status	
2-Dimensional Done	

Gambar 4. 15 Kotak Dialog Solve Manager

13. Kemudian akan muncul hasil perhitungan analisa lereng yang telah dibuat sebelumnya. Secara otomatis *display* akan menampilkan nilai SF pada kondisi *Critical* sepeti pada Gambar 4.16.

Gambar 4. 16 Tampilan Hasil Analisa Safety Factor

Didapatkan nilai *SF* sebesar 1,223 yang dapat diklasifikasikan sesuai Tabel 4.2 dengan kategori "Longsoran Pernah Terjadi (Kelas Kritis)" karena nilai *SF* antara 1,07 – 1,25.

Nilai Faktor Keamanan (FK)	Kejadian / Intensitas Longsor
FK < 1,07	Longsoran terjadi biasa/sering (kelas labil)
FK antara 1,07 – 1,25	Longsoran pernah terjadi (kelas kritis)
FK > 1,25	Longsoran jarang terjadi (kelas stabil)

 Tabel 4. 2 Klasifikasi Nilai Safety Factor Eksisting Geo-Studio (Slope/W)

(Sumber : Bowles, 1991)

4.3 Analisis Stabilitas Lereng Eksisting dengan Plaxis

Adapun tahapan kelongsoran lereng dengan *Aplikasi Plaxis* adalah sebagai berikut:

 Untuk memulai program *Plaxis*, hal pertama dengan klik 2 kali pada *Plaxis Input*. Lalu akan muncul kotak dialog *Create / Open Project*, kemudian pilih *New Project*, seperti yang terlihat pada Gambar 4.17 berikut :

	New project C Existing project
	<<< More files >>> O Multivas K. Indi Obuent And D: \Aplikasi\\Lesson 5b.PLX
٩. (١	JNISSULA

Gambar 4. 17 Kotak Dialog Create / Open Project

- 2. Lalu muncul kotak dialog General Setting
 - Pada Tab *Project* isi kotak *title* dengan judul yang diinginkan dan tampilan pengaturan ditunjukkan pada Gambar 4.18 berikut:

Project		General op	tions		
Filename	Eksisting Awal.PLX	Model	Plane S	train	-
Directory	D:\AKADEMIK\Unisula\TA SKRIPSI\Per	Elements	15-Noc	le	•
Title	Eksisting Normal				
Comments		Acceleratio	n		
		Gravity ang	jle: -	90 °	1.0 G
		x-accelerat	ion : 🛛	,000	≑ G
		y-accelerat	ion:	,000	🗢 G
		Earth gravi	ty:	,800	♦ m/s ²

Gambar 4. 18 Kotak Dialog General Setting – Project

Pada Tab Dimensions pengaturan dibuat seperti Gambar 4.19 • berikut: General settings × Project Dimens \$ Length Left -5,00 t 🛊 ¢ Grid m kN/m Spacing \$ LNI/r Cancel <u>o</u>ĸ

Gambar 4. 19 Kotak Dialog General Setting – Dimensions

 Lalu buka Menu View – Table, akan muncul kotak dialog tabel koordinat seperti Gambar 4.20, kemudian isi koordinat sesuai dengan keadaan di lapangan;

Point	x	Y
	[m]	[m]
0	0,000	0,000
1	0,000	7,500
2	5,000	7,500
3	11,000	0,000
4	16,000	0,000
5	16,000	-8,000
6	0,000	-8,000

Gambar 4. 20 Kotak Dialog Coordinate Table

4. Kemudian langkah selanjutnya memasukkan parameter data tanah dengan memilih menu *Materials – Soil and Interfaces*, seperti yang terlihat pada Gambar 4.21, berikut:

		Global >>>
	Project Database	
	Set type:	Soil & Interfaces 🔹
	Group order:	None
	🗖 Tanah	
	New	Edit
	New	Edit
2	New Copy	Edit 🛄 SoilTest

Gambar 4. 21 Kotak Dialog Material Sets

 Lalu pilih New dan isi parameter tanah sesuai dengan Tabel 4.3, kemudian *input* data pada tab *General*, *Parameters*, dan *Interfaces*. Berikut merupakan parameter tanah yang digunakan pada analisa, seperti yang ditunjukkan pada Tabel 4.3 berikut.

Tabel 4. 3 Parameter	[.] Tanah	pada	Eksisting	Plaxis
----------------------	--------------------	------	-----------	--------

γsat	γunsat	جامعي ساصا	Φ	v
(kN/m^3)	(kN/m^3)	(kN/m^2)	(°)	
16,7556	13,3498	5,8839	34	0,4

Berikut merupakan hasil kotak dialog Mohr Column, dengan berbagai Tab seperti pada Gambar 4.22, Gambar 4.23 dan Gambar 4.24.

Material model: Moh Material type: Drai	ah r-Coulomb _	General ^γ unsat ^γ sat	properties 13,350 16,756	kN/m ³ kN/m ³
Comments		Permeab k _x : k _y :	oility 0,000 0,000 	m/day m/day Advanced

Gambar 4. 22 Kotak Dialog Tanah Tab General

	1				
	Mohr-Coulom	b - Tanah			
	General Par	rameters Interfaces		5	
	Stiffness		Strength		
	E _{ref} :	4,000E+04 kN/m ²	c _{ref} :	5,884	kN/m ²
	v (nu) :	0,400	φ (phi) :	34,000	°
		1 1	ψ (psi) :	0,000	
				72	
	Alternative	1.429E+04	velocities	102,400	A = /a
	F ct	8.571E+04	v.	250,800	
	-oed	J · KN/m ·			
			5	5	
57 -					Advanced
		4			22
				1	Canad
	Gambar	4. 23 Kotak	Dialog Ta	nah Tal	o Paramete
	Gambar	4. 23 Kotak	<u></u> Dialog Ta	nah Tal	o Paramete
	Gambar	4. 23 Kotak	Dialog Ta	nah Tal	o Paramete
	Gambar Mohr-Coulo General I	Market Sourcest	Dialog Ta	nah Ta	o Paramete
	Gambar Mohr-Coulo General 1 Strengt	r 4. 23 Kotak	Dialog Ta	nah Tal	o Paramete
	Gambar Mohr-Could General 1 © Rigi © Rigi C Mar	r 4. 23 Kotak mb - Tanah Parameters Interfaces	Dialog Ta	nah Tal	o Paramete
	Gambar Mohr-Could General 1 Strengt © Rigi © Mar Butue i	mb - Tanah Parameters Interfaces	Dialog Ta	nah Ta	o Paramete
	Gambar Mohr-Coulo General 1 Strengt C Mar R _{inter} :	A. 23 Kotak	Dialog Ta	nah Ta	o Paramete
	Gambar Mohr-Could General Strengt ○ Rigi ○ Mar R _{inter} : _ Real Int	A. 23 Kotak	Dialog Ta	nah Ta	o Paramete
	Gambar Mohr-Could General 1 Strengt © Man Rinter : Real Int S-inter	A. 23 Kotak	Dialog Ta	nah Ta	o Paramete
	Gambar Mohr-Coulo General 1 Strengt C Nar Rinter : Real Int S-inter	A 23 Kotak	Dialog Ta	nah Ta	o Paramete
	Gambar Mohr-Coulo General 1 Strengt ℃ Mar R _{inter} : Real Int S-Inter	A. 23 Kotak	Dialog Ta	nah Ta	o Paramete
	Gambar Mohr-Could General 1 Strengt © Rigi © Rigi C Mar Rinter : Real int 3-inter	A. 23 Kotak	Dialog Ta	nah Ta	o Paramete
	Gambar Mohr-Could General 1 Strengt C Mar Rinter Real Int S-inter	A. 23 Kotak	Dialog Ta	nah Ta	o Paramete

Gambar 4. 24 Kotak Dialog Tanah Tab Interfaces

 Kemudian buka menu Loads – Standard Fixities, maka tampilan akan berubah menjadi seperti Gambar 4.25 berikut:

Gambar 4. 25 Tampilan Geometri dengan Standard Fixities

Kemudian pilih ikon *Generate Mesh* pada *toolbar*, seperti pada Gambar 4.26;

Gambar 4. 26 Tampilan Geometri dengan Generate Mesh

Setelah gambar seperti di atas muncul, maka klik ikon *update* Update untuk kembali ke tampilan awal. Untuk mendefinisikan kondisi awal sebelum perhitungan, klik ikon pada *Initial conditions* Initial conditions pada bagian *toolbar*. Kemudian muncul kotak dialog yang menampilkan nilai *default* untuk berat volume air yaitu 10 kN/m3 kemudian klik pada bagian OK. 8. Kemudian untuk membuat muka air tanah, klik ikon *Phreatic level* pada *toolbar*, lalu gambar sesuai dengan kondisi di lapangan, seperti yang terlihat pada Gambar 4.27 berikut:

Gambar 4. 27 Tampilan Pemodelan Muka Air Tanah

9. Kemudian klik ikon Generate water pressure ⁺⁺ pada toolbar. Sehingga muncul kotak dialog Water pressure generation lalu pilih Phreatic level – OK. Maka kemudian muncul gambar seperti yang ditampilkan pada Gambar 4.28 dibawah ini:

Gambar 4. 28 Tampilan Pore pressures

Setelah gambar seperti di atas muncul, maka klik ikon \rightarrow Update untuk kembali ke tampilan awal. Lalu klik ikon *switch* pada *toolbar*. Kemudian klik ikon *Generate Initial Stress*⁺⁺⁺, setelah itu akan muncul kotak dialog *K0-procedure*, lalu pilih OK. Maka akan muncul gambar *Initial soil stresses*, seperti pada Gambar 4.29 dan Gambar 4.30;

Gambar 4. 29 Kotak Dialog K0-procedure

- 11. Kemudian klik ikon *calculate* Calculate pada *toolbar*, maka akan muncul kotak dialog *calculations*. Pada saat kalkulasi, akan dibagi menjadi beberapa tahap perhitungan. Setelah itu buatlah tahap identifikasi menjadi sebagai berikut:
 - Tahap 1 merupakan tahap dimana lereng dalam kondisi alami tanpa ada perkuatan, seperti yang ditunjukkan pada Gambar 4.31.

File Edit View Calculate Help Image: Second Secon			
Image: Construction of the second s			
[General] Parameters Multipliers Preview Phase Calculation type Plastc analysis			
Phase Number / ID.: 1 Kondisi Awal Calculation type Plastic analysis			
Number / ID.: 1 Kondisi Awal Plastic analysis			
	-		
Start from phase: 0 - Initial phase	ed 🛛		
Log info			
	_		
Earam	eters		
		1	
••• Next	Insert	×	elete
Identification Phase no. Start from Calculation Loading input Tim	e Wate	er First	
Initial phase 0 0 N/A N/A 0,0	o c	0	
➡ Kondisi Awal 1 0 Plastic analysis Staged construction 0,0	o c		
➡ SF1 2 1 Phi/c reduction Incremental multipliers 0,0	o c		
]			

Gambar 4. 31 Tampilan Kotak Dialog Calculations tahap 1

• Tahap 2 merupakan tahap untuk identifikasi angka keamanan (*safety factor*) dengan memilih *Phi/c reduction* pada tab *General menadj*

(8) F	Plaxis 8.5 Calculation	is - Eksisting Awal.PLX			-	×	
	o 🔊 🧟 🖉	• • • •	-> Calculate				
	<u>General</u> Parameters M	ultipliers Preview					
	Phase / TD -	la loca	_	Calculation type		//	
	Start from phase:	1 - Kandisi Awal		I IPTI/c reduction		/	
	Start non phose.	1 - Kondisi Awai	-		Advanced	/	
	Logimo	_		Comments			
			5				
7 =					Barameters		
				Next	Parameters	Relete	
	Identification F	Phase no. Start from	Calculation	Loading input	Perameters	Delete	
	Identification P Initial phase 0	Phase no. Start from 0 0	Calculation N/A	Loading input NA	Parameters	Delete	
	Identification F Initial phase 0 Kondisi Awal 1 SE1	Phase no. Start from 0 0 1 0 2 1	Calculation N/A Plastic analysis Ph/c reduction	Loading input N/A Staged construction Torcemental multipletes	Descenters Image Insert Time Water 0,00 0 0,00 0	Delete First 0	

Gambar 4. 32 Tampilan Kotak Dialog Calculations tahap 2

 Setelah proses analisa selesai, lalu klik tombol *View – Calucation info*, maka akan muncul hasil analisa berupa nilai *Safety Factor*, seperti yang ditunjukkan pada Gambar 4.33;

Step Info					
Step 117 of 117	Extrapolation factor		0,500		
Plastic STEP	Relative stiffness		0,000		
Multipliers					
	Incremental multi	ipliers	Total mult	pliers	
Prescribed displacements	Mdisp:	0,000	Σ-Mdisp:	1,000	
Load system A	MloadA:	0,000	Σ-MloadA:	1,000	
Load system B	MloadB:	0,000	Σ-MloadB:	1,000	
Soil weight	Mweight:	0,000	Σ-Mweight:	1,000	
Acceleration	Maccel:	0,000	Σ-Maccel:	0,000	
Strength reduction factor	Msf:	0,000	Σ-Msf:	1,249	
Time	Increment:	0,000	End time:	0,000	
Dynamic time	Increment:	0.000	End time:	0.000	

Gambar 4. 33 Kotak Dialog Hasil Calculation

Dari hasil analisa didapatkan nilai *SF* sebesar 1,249 yang dapat diklasifikasikan sesuai Tabel 4.4 dengan kategori "Longsoran pernah terjadi (kelas stabil)" karena nilai *SF* 1,07 – 1,25.

Nilai Faktor Keamanan (FK)	Kejadian / Intensitas Longsor
FK < 1,07	Longsoran terjadi biasa/sering (kelas labil
FK antara 1,07 – 1,25	Longsoran pernah terjadi (kelas kritis)
FK > 1,25	Longsoran jarang terjadi (kelas stabil)

(Sumber : Bowles, 1991)

Setelah lereng eksisting dianalisa menggunakan program PLAXIS & *Geo-Studio (Slope /w)*, berikut merupakan perbandingan nilai *Safety Factor* dari analisa kedua program, seperti pada Tabel 4.5 :

 Tabel 4. 5 Perbandingan Nilai Safety Factor Plaxis & Geo-Studio

 (Slope/W)

Kondisi	Geo-Studio (Slope/W)	Plaxis
Eksisting	1,223	1,249

4.4 Analisis Stabilitas Lereng Perkuatan Cerucuk Bambu dengan Plaxis

Adapun tahapan analisis kelongsoran lereng dengan *Aplikasi Plaxis* adalah sebagai berikut:

 Untuk memulai program *Plaxis*, hal pertama dengan klik 2 kali pada *Plaxis Input*. Lalu akan muncul kotak dialog *Create / Open Project*, kemudian pilih *New Project*, seperti yang terlihat pada Gambar 4.34 :

S Create/Open project	×
Open <u>New project</u> C Existing project	
<<< More files >>> Munikasi(Coba Coba Lob X D: Aplikasi()Lesson 5b.PLX .PLX	

Gambar 4. 34 Kotak Dialog Create / Open Project

2. Lalu muncul kotak dialog General Setting

Pada Tab *Project* isi kotak *title* dengan judul yang diinginkan dan tampilan pengaturan seperti ditunjukkan pada gambar 4.35 berikut:

	General settings		Х
	Project Dimensions		
	Project	General options	ı I.
	Filename <noname></noname>	Model Plane Strain	
	Directory	Elements 15-Node 💌	
	Title Cerucuk		
1 2	Comments	Acceleration	
/ (18	a reginer was	Gravity angle: - 90 ° 1.0 G	
		x-acceleration : 0,000 🗲 G	
		y-acceleration : 0,000 🗲 G	
		Earth gravity : 9,800 🖨 m/s ²	
	Set as <u>d</u> efault		
		Next OK Cancel	

Gambar 4. 35 Kotak Dialog General Setting – Project

• Pada Tab *Dimensions* pengaturan dibuat seperti Gambar 4.36:

Units	Geometry	dimensions	ت	
Length m	• Left:	0,000	∎ " ⊐	
Force kN	Right :	50,000	m	
Time day	▼ Bottom :	-5,000	m	
	Top :	25,000	m	
	Grid			
Stress kN/m ²	Spacing :		0,500 🜲	m
Weights kN/m ³	Number of	snap intervals:	1	

Gambar 4. 36 Kotak Dialog General Setting – Dimensions

3. Lalu buka Menu *View – Table*, akan muncul kotak dialog Tabel Koordinat kemudian isi koordinat sesuai dengan data Tabel 4.6 dan Gambar 4.37;

Tabel 4. 6 Data Koordinat Lereng pada Metode Cerucuk Bambu

Gambar 4. 37 Kotak Dialog Coordinate Table

 Kemudian langkah selanjutnya memasukkan parameter data tanah dengan memilih menu *Materials – Soil and Interfaces*, seperti yang terlihat pada Gambar 4.38, berikut:

		Global >>>
Project Database		
Set type:	Soil & Interfa	ces 💌
Group order:	None	•
Tanah Eksist	ing	
		1
New	Edit	SoilTest
New Copy	Edit	SoiTTest
New Copy	Edit Delete	SoilTest

Gambar 4. 38 Kotak Dialog Material Sets

5. Lalu pilih *New* dan isi parameter tanah sesuai dengan Tabel 4.7, kemudian *input* data pada tab *General, Parameters,* dan *Interfaces* sepeti yang ditunjukkan pada Gambar 4.39, Gambar 4.40 dan Gambar 4.41.

Tabel 4. 7 Parameter Tanah pada Metode Cerucuk Bambu

γ _{sat} (kN/m ³)	γ_{unsat} (kN/m ³)	c (kN/m ²)	φ	E (kN/m ²)	V
16,7556	13,3498	5,8839	34	4 x 10 ⁴	0,4
الصيم (إجويح الإيسا	امعترساطان	// جا		

General Parameter	s Interfaces			
Material set		General	properties	
Identification:	Fanah Eksisting	γ _{unsat}	13,350	kN/m ³
Material model:	Mohr-Coulomb	 γ_{sat} 	16,756	kN/m ³
Material type:	Drained	-		
Comments		k _x : k _y :	oility 0,000 0,000	m/day m/day
				Advanced

Gambar 4. 39 Kotak Dialog Tanah Eksisting Tab General

Stiffners	Strength
E c: 4.000E+04	5.884
-ref	cref : 15,000 kN/m 2
v (nu) : 0,400	φ (phi) : [34,000
	ψ (psi) : 0,000
Alternatives	Velocities
G _{ref} : 1,429E+04 kN/m ²	V _s : 102,400
E _{oed} : 8,571E+04 kN/m ²	V _p : 250,800
	Advanced

Gambar 4. 40 Kotak Dialog Tanah Eksisting Tab Parameters

Gambar 4. 41 Kotak Dialog Tanah Eksisting Tab Interfaces

 Setelah itu memasukkan perkuatan cerucuk bambu dengan memilih menu Materials – Plates seperti yang ditampilkan pada Gambar 4.42 berikut:

	Gl	obal >>>
Project Database	2	
Set type:	Plates	•
Group order:	None	
Bambu Betu	ng	
	1	
New	Edit	
New Copy	Edit	

Gambar 4. 42 Kotak Dialog Material Sets

7. Lalu pilih *New* dan isi parameter perkuatan sesuai dengan Tabel 4.8 dan seperti yang ditunjukkan pada Gambar 4.43;

Tabel 4.8	Data Plate	Properties
-----------	------------	-------------------

Jenis Material	EA (kN/m)	EI (kN.m ² /m)	V
Bambu Betung Tunggal	1,14 x 10 ⁵	473,7	0,25

Plate properties	55		. A		>
Material set Identification:	Bambu Betung	****	Properties EA :	1,140E+05	kN/m
Material type:	Elastic	•	EI :	473,700	kNm ² /m
			d :	0,223	m
Comments		_	w :	0,000	kN/m/m
			v :	0,250	
			M _p :	1,000E+15	kNm/m
			N _p :	1,000E+15	kN/m
			$Rayleigh\;\alpha:$	0,000	
			Rayleigh β :	0,000	

Gambar 4. 43 Kotak Dialog Plate Properties

Gambar 4. 44 Tampilan Geometri dengan Perkuatan Cerucuk

- 8. Kemudian pilih ikon Generate Mesh e pada toolbar:
 8. Kemudian pilih ikon Generate Mesh pada toolbar:
 9. Gambar 4.45 Tampilan Geometri dengan Generate Mesh
 9. Setelah Gambar 4.45 seperti di atas muncul, maka klik ikon update untuk kembali ke tampilan awal. Untuk mendefinisikan kondisi awal sebelum perhitungan, klik ikon Initial conditions
 Initial conditions
- 9. Kemudian untuk membuat muka air tanah, klik ikon *Phreatic level* pada *toolbar*, lalu gambar sesuai dengan yang direncanakan, seperti yang telah terlihat pada gambar berikut, sepert pada Gambar 4.46

Gambar 4. 46 Tampilan Pemodelan Muka Air Tanah

10. Kemudian klik ikon *Generate water pressure* ⁺⁺ pada *toolbar*. Sehingga muncul kotak dialog *Water pressure generation* lalu pilih *Phreatic level* – *OK*. Maka muncul gambar seperti ditunjukkan gambar 4.47 berikut:

Setelah gambar seperti di atas muncul, maka klik ikon *update* Update untuk kembali ke tampilan awal. Lalu klik ikon *switch* pada *toolbar*.

11. Kemudian klik ikon *Generate Initial Stress*⁺⁺, setelah itu akan muncul kotak dialog *K0-procedure* seperti Gambar 4.48, lalu pilih OK. Maka akan muncul gambar *Initial soil stresses* seperti yang ditunjukkan pada Gambar 4.49.

ΣM-weig	ht: 1.0	00			
			<u> </u>		
Cluster	Material	OCR	POP	ко	L
1	MC	N/A	N/A	0,441	-
	_				

Gambar 4. 48 Kotak Dialog K0-procedure

Gambar 4. 49 Tampilan Initial soil stresses

- 12. Kemudian klik ikon *calculate* Calculate pada *toolbar*, maka kemudian muncul tampialan dialog *calculations* seperti ditunjukkan Gambar 4.50. Saat kalkulasi, proses akan dibagi menjadi beberapa tahap perhitungan. Setelah itu buatlah tahap identifikasi menjadi sebagai berikut:
 - Tahap 1 merupakan tahap dimana lereng dalam kondisi alami tanpa ada perkuatan seperti pada Gambar 4.50.

General Paramete	1							
- 10	rs <u>M</u> ultipliers P	review						
Phase				Calculation type				
Number / ID.	: 1	Cerucuk		Plastic analysis	•			
Start from ph	iase: 0 - Init	tial phase			Advanced			
Log info				Comments				
Prescribed u	ultimate state fully	reached	1					
					Parameters			
					Parameters			
				- Nes	Parameters	j jert	🗮 Del	et
Identification	Phase no.	Start from	Calculation	Loading input	Parameters	iert Water	First	et
Identification Initial phase	Phase no.	Start from	Calculation N/A	Loading input N/A	Parameters	ert Water 0	First 0	let
Identification Initial phase	Phase no. 0	Start from 0 0	Calculation N/A Plastic analysis	Loading input N/A Staged construction	Parameters ct Ins Time 0,00 0,00 0,00	vert Water 0	First 0 1	let
Identification Initial phase	Phase no. 0 1 2	Start from 0 0	Calculation N/A Phastic analysis Phi/c reduction	Loading input N/A Staged construction Incremental multipliers	Parameters ct Ins Time 0,00 0,00 0,00	water 0 1	First 0 1 15	let
Identification Initial phase	Phase no. 0 1 2	Start from 0 1	Calculation N/A Plastic analysis Phi/c reduction	Loading input N/A Staged construction Incremental multipliers	Parameters ct Ins Time 0,00 0,00 0,00	water 0 1 1	Del First 0 1 15	leti

Gambar 4. 50 Tampilan Kotak Dialog Calculations Tahap 1

Tahap 2 merupakan tahap untuk identifikasi angka keamanan (*safety factor*) dengan memilih *Phi/c reduction* pada tab *General*.
 Kemudian klik ikon *calculate* Calculate, seperti pada Gambar 4.51

Plaxis 8.5 Calcul	lations - Cerucuk	2.PLX				- 0	2
e Edit View	/ Calculate	Help					
o 🕾 🐑	🗠 🔒	A	+ Calculate				
eneral Paramete	ers Multipliers Pi	review					
Phase				Calculation type			
Number / ID.	: 2	SF		Phi/c reduction	-		
Start from ph	iase: 1 - Cer	ucuk	•		Advanced		
Log info				Comments			
OK			^				
			~				
					Parameters		
				📇 Next	🗸 Insert	De	lete
	Phase no.	Start from	Calculation	Loading input	Time W	ater First	1
entification		-	N/A	N/A	0,00	0 0	
Initial phase	0	U					
Initial phase Cerucuk	0	0	Plastic analysis	Staged construction	0,00	1 1	
dentification Initial phase Cerucuk	0 1 2	0	Plastic analysis Phi/c reduction	Staged construction Incremental multipliers	0,00	1 15	
n ase			Plastic analysis Phi/c reduction	Staged construction Incremental multiplers	0,00 0,00	1 15	
lentification Initial phase Cerucuk SF			Plastic analysis Phi/c reduction	Staged construction Incremental multipliers	0,00	1 15	

Gambar 4. 51 Tampilan Kotak Dialog Calculations Tahap 2

 Setelah proses analisa selesai, lalu klik tombol View – Calculation info, maka akan muncul hasil analisa berupa nilai Safety Factor, seperti pada Gambar 4.52

				//
Step 141 of 141	Extrapolation facto	e	0,500	/
Plastic STEP	Relative stiffness		0,000	/
Multipliers	Sta 11 - 1			
بهوجرا يرصلك	Incremental m	ultipliers	Total mul	tipliers
Prescribed displacements	Mdisp:	0,000	Σ-Mdisp:	1,000
Load system A	MloadA:	0,000	Σ-MloadA:	1,000
Load system B	MloadB:	0,000	Σ-MloadB:	1,000
Soil weight	Mweight:	0,000	Σ-Mweight:	1,000
Acceleration	Maccel:	0,000	Σ-Maccel:	0,000
Strength reduction factor	Msf:	0,001	Σ-Msf:	1,531
Time	Increment:	0,000	End time:	0,000
Dynamic time	Increment:	0,000	End time:	0,000

Gambar 4. 52 Tampilan Kotak Dialog Hasil Calculation

Dari hasil analisa didapatkan nilai *SF* sebesar 1,531 yang dapat diklasifikasikan sesuai Tabel 4.9 dengan kategori "Longsoran jarang terjadi (kelas stabil)" karena nilai *SF* > 1,25.

Nilai Faktor Keamanan (FK)	Kejadian / Intensitas Longsor
FK < 1,07	Longsoran terjadi biasa/sering (kelas labil)
FK antara 1,07 – 1,25	Longsoran pernah terjadi (kelas kritis)
FK > 1,25	Longsoran jarang terjadi (kelas stabil)

Tabel 4. 9 Klasifikasi Nilai Safety Factor pada Metode Cerucuk Bambu

(Sumber : Bowles, 1991)

4.5 Analisis Stabilitas Lereng Perkuatan Bronjong dengan Plaxis

Adapun tahapan kelongsoran lereng dengan *Aplikasi Plaxis* adalah sebagai berikut:

 Untuk memulai program *Plaxis*, hal pertama dengan klik 2 kali pada *Plaxis Input*. Lalu kemudian muncul tampilan dialog *Create / Open Project*, kemudian klik *New Project*, seperti yang terlihat pada Gambar 4.53 dibawah ini:

Ш	Open © New project
2	C Existing project
2	<<< More files >>>
	C: \Users \\Cerucuk 2.PLX D: \AKADEMIK\\Cerucuk 2.PLX D: \AKADEMIK\\Eksisting Awal.PLX
\\ . .	
	ambar 4, 53 Kotak Dialog Create / Open Proj

- 2. Lalu muncul kotak dialog General Setting
 - Pada Tab *Project* isi kotak *title* dengan judul yang diinginkan dan tampilan pengaturan seperti ditampilkan Gambar 4.54 berikut:

Project Filename <noname> Directory Title Bronjong</noname>	General options Model Plane Strain ▼ Elements 15-Node ▼
Comments	Acceleration Gravity angle: $-90 \circ 1.0 \text{ G}$ x-acceleration: $0,000 \hookrightarrow \text{G}$ y-acceleration: $0,000 \hookrightarrow \text{G}$ Earth gravity: $9,800 \hookrightarrow \text{m/s}^2$

Gambar 4. 54 Kotak Dialog General Settings - Project

Pada Tab Dimensions pengaturan dibuat seperti gambar 4.55 berikut:

Gambar 4. 55 Kotak Dialog General Settings – Dimensions

 Lalu buka Menu View – Table, akan muncul kotak dialog Tabel Koordinat kemudian isi koordinat sesuai dengan keadaan di lapangan, seperti pada Tabel 4.10 dan ditunjukkan pada Gambar 4.56 ;

Tabel 4. 10 Data Koordinat Lereng pada Metode Bronjon

NO	0	1	2	3	4	5	6	7
X	0	0	5	10,25	16	16	0	12
Y	0	7,5	7,5	0	0	-8	-8	0

Coor	dinate table	•		×
	Point	x	Y	^
		[m]	[m]	
	0	0,000	0,000	
	1	0,000	7,500	
	2	5,000	7,500	
	3	10,250	0,000	
	4	16,000	0,000	
	5	16,000	-8,000	
	6	0,000	-8,000	
	7	12,000	0,000	~
	<u>C</u> opy	Print	<u>O</u> K	

Gambar 4. 56 Kotak Dialog Coordinate Table

4. Kemudian langkah selanjutnya memasukkan parameter data tanah dengan memilih menu *Materials – Soil and Interfaces*, seperti yang terlihat pada Gambar 4.57 berikut:

Gambar 4. 57 Kotak Dialog Coordinate Table

5. Lalu pilih *New* dan isi parameter tanah sesuai dengan Tabel 4.11, kemudian *input* data pada tab *General*, *Parameters*, dan *Interfaces*, seperti ditampilkan pada Gambar 4.58, Gambar 4.59 dan Gambar 4.60,

γsat	γunsat	С	Φ	Е	V
(kN/m ³)	(kN/m ³)	(kN/m ²)	(°)	(kN/m ²)	
16,7556	13,3498	5,8839	34	4 x 10 ⁴	0,4

Tabel 4. 11 Parameter Tanah pada Metode Bronjong

Gambar 4. 58 Kotak Dialog Tanah Eksisting Tab General

		2	ë //
	Mohr-Coulomb - Tanah Eksisting		
-	General Parameters Interfaces		
	Stiffness	Strength	
	E _{ref} : 4,000E+04 kN/m ²	c _{ref} : 5,4	884 kN/m ²
	v (nu) : 0,400	φ (phi) : 34	,000 °
	IINICCI	ψ (psi) : 0,0	° 000
	VNIJJO	LA	
1 2	Alternatives	Velocities	
	G _{ref} : 1,429E+04 kN/m ²	V _s : 10	2,400 🚖 m/s
	E oed : 8,571E+04 kN/m 2	V _p : 25	0,800 🚖 m/s
-			
			<u>A</u> dvanced
	SoilTest	Next	<u>O</u> K <u>C</u> ancel

Gambar 4. 59 Kotak Dialog Tanah Eksisting Tab Parameters

General Parameters Interfaces Strength Rigid C Manual Rinter: 1,000 Real interface thickness δ-inter: 0,000	General Parameters Interfaces Strength Qigid C Manual R_{inter}: 1,000 Real interface thickness δ-inter: 0,000 0,000<!--</th--><th>ohr-Coulomb - Tanah Eksisting</th><th></th><th></th>	ohr-Coulomb - Tanah Eksisting		
R _{inter} : 1,000 Real interface thickness 5-inter: δ-inter: 0,000	Rinter : 1,000 Real interface thickness δ-inter : 0,000	General Parameters Interfaces Strength		
δ-inter: 0,000	ō-inter : 0,000	R _{inter} : 1,000 Real interface thickness		
		δ-inter : 0,000		

Gambar 4. 60 Kotak Dialog Tanah Eksisting Tab Interfaces

6. Setelah itu langkah selanjutnya memasukkan parameter data pengisi bronjong dengan memilih menu *Materials – Soil and Interfaces*, tampilan akan ditunjukkan Gambar 4.61 berikut:

	Material Sets		Z] /
		G	obal >>>	
	Project Database	- 6		
	Set type:	Soil & Interface	es 🔽 💌	
	Group order:	None		
U P بىلامىيەت	C Tanah Eksis	نین اللہ اللہ اللہ اللہ اللہ اللہ اللہ الل	A k	
	New	Edit	🚺 SoilTest	
	Copy	Delete		I

Gambar 4. 61 Kotak Dialog Material Sets

 Kemudian pilih *New* dan isi parameter pengisi bronjong sesuai dengan Tabel 4.12, lalu *input* data pada tab *General, Parameters,* dan *Interface,* seperti Gambar 4.62, Gambar 4.63 dan Gambar 4.64.

γsat	γunsat	Е	с	Φ	
(kN/m ³)	(kN/m ³)	(kN/m ²)	(kN/m ²)	(°)	V
20,5	17,5	1040	19	33,75	0,3

Tabel 4. 12 Parameter Batu Bengisi Bronjong

Material set		General	properties	
Identification:	Batuan Bronjong	γ _{unsat}	17,500	kN/m ³
Material model:	Mohr-Coulomb	 γ_{sat} 	20,500	kN/m ³
Material type:	Drained	•		
		k _x :	0,000	m/day
		k _x :	0,000	m/day
		Y	1-,	infocty
				Advanced
				Huvanceu

Gambar 4. 62 Kotak Dialog Batuan Bronjong Tab General

//	ë /	E	6		onjong	nb - Batuan B	Mohr-Coulon	2
		10.000	Strength	2	erfaces		General P	2
	750 kN/m ²	33,750	c _{ref} : φ (phi) : ψ (psi) :		kN/m	0,300	v (nu) :	
			Velocities	11	¥	/es	Alternativ	
	970 🔷 m/s .000 ᅌ m/s	14,970 28,000	V _s : V _p :	لطا	kN/m	400,000	G _{ref} : E _{oed} :	ج //
					$\hat{\sim}$			L
.d	Advanced							
			Next		Test	So		

Gambar 4. 63 Kotak Dialog Batuan Bronjong Tab Parameters

Mohr-Coulomb - Batuan Bronjong			
General Parameters Interfaces			
Strength © Rigid © Manual			
R _{inter} : 1,000			
Real interface thickness			
SoiTest	Next	<u>O</u> K	<u>C</u> ancel

Gambar 4. 64 Kotak Dialog Batuan Bronjong Tab Interfaces

Setelah itu memasukkan parameter data kawat pembungkus batu bronjong dengan memilih menu *Materials – Geogrids*, seperti yang terlihat pada gambar 4.65 berikut:

Gambar 4. 65 Kotak Dialog Material Sets

9. Lalu pilih *New* dan isi parameter data kawat pembungkus batu bronjong sesuai dengan Tabel 4.13 dan dapat ditampilkan pada Gambar 4.66.

Identifikasi	Geogrid (Bronjong Box)
Kekakuan axial tarik / EA	1022
(kN / m)	

Tabel 4. 13 Parameter pendekatan kawat Bronjong Box

Material set			Properties	
Identification:	Mesh		EA : 102	2,000 kN/n
Material type:	Elastic	•	N _p 1,0	00E+10 kN/n
			Extension only	

Gambar 4. 66 Kotak Dialog Geogrid properties

10. Setelah itu pilih ikon Generate Mesh pada toolbar, sepeti Gambar 4.67.

Gambar 4. 67 Tampilan Geometri dengan Generate Mesh

Setelah gambar seperti di atas muncul, maka klik ikon *update* untuk kembali ke tampilan awal. Untuk mendefinisikan kondisi awal sebelum perhitungan, klik bagian *Initial conditions* pada *toolbar*. Kemudian muncul kotak dialog yang menampilkan nilai *default* berat volume air yaitu 10 kN/m³ kemudian klik pada bagian OK. 11. Kemudian untuk membuat muka air tanah klik ikon *Phreatic level* pada *toolbar*, lalu gambar sesuai dengan kondisi di lapangan, seperti yang terlihat pada Gambar 4.68 berikut:

Gambar 4. 68 Tampilan Pemodelan Muka Air Tanah

12. Kemudian klik ikon Generate water pressure ⁺⁺⁺ pada toolbar. Sehingga muncul kotak dialog Water pressure generation lalu pilih Phreatic level – OK. Maka tampilan menjadi seperti Gambar 4.69 berikut:

Gambar 4. 69 Tampilan Pore Pressures

Setelah gambar seperti di atas muncul, maka klik ikon 🔸 Update untuk kembali ke tampilan awal. Lalu klik ikon *switch* 💽 pada *toolbar*.

13. Kemudian klik ikon *Generate Initial Stress*⁺⁺, setelah itu akan muncul kotak dialog *K0-procedure*, lalu pilih OK. Maka akan muncul gambar *Initial soil stresses*, seperti ditampilkan Gambar 4.70 dan Gambar 4.71.

Gambar 4. 70 Kotak Dialog K0-procedure

- 14. Setelah itu klik ikon *calculate* Pada *toolbar*, maka akan muncul kotak dialog *calculations*. Pada saat kalkulasi akan dibagi menjadi beberapa tahap perhitungan. Setelah itu buatlah tahap identifikasi menjadi sebagai berikut:
 - Tahap 1 merupakan tahap dimana lereng dalam kondisi alami tanpa ada perkuatan, seperti yang ditampilkan Gambar 4.72.

- Edit View	Calculate	Hole					
Di 🔝 🕥			➡ Calculate				
eneral Parameter	rs Multipliers	Preview					
Phase	in Lindard L			Calculation type			
Number / ID.:	: 1	Perkuatan		Plastic analysis	•		
Start from ph	ase: 0 - I	initial phase		ㅋ	Advanced		
Log info	,			Comments			
Prescribed u	ltimate state fu	llv reached					
		ing reacted					
					Parameters		
					Parameters		
				Rext	Parameters		Delete
lentification	Phase no.	Start from	Calculation	Loading input	Parameters	ater Fir	k Delete
ientification Initial phase	Phase no.	Start from	Calculation	Loading input N/A	Parameters	ater Fir	Delete
Ientification Initial phase Perkuatan	Phase no. 0	Start from 0	Calculation N/A Plastic analysis	Loading input N/A Staged construction	Parameters Parameters Insert Time W 0,00 0,00	ater Fir 0 0 0 1	Delete
entification Initial phase Perkuatan SF	Phase no. 0 1 2	Start from 0 0 1	Calculation N/A Plastic analysis Phi/c reduction	Leading input N/A Staged construction Incremental multipliers	Parameters Image: Insert Time W 0,00 0,00 0,00 0,00	ater Fir 0 0 0 1 0 16	k Delete
Jentification Initial phase Perkuatan SF	Phase no. 0 1 2	Start from 0 1	Calculation N/A Plastic analysis Phi/c reduction	Loading input N/A Staged construction Incremental multipliers	Parameters Time W 0,00 0,00 0,00 0,00	ater Fin 0 0 0 1 0 16	k Delete
lentification Initial phase Perkuatan SF	Phase no. 0 1 2	Start from 0 1	Calculation N/A Plastic analysis Phi/c reduction	Loading input N/A Staged construction Incremental multipliers	Parameters Image: Description Time 0,00 0,00	ater Fir 0 0 0 1 0 16	Delete
ientification Initial phase Perkuatan SF	Phase no. 0 1 2	Start from 0 0 1	Calculation N/A Plastic analysis Phi/c reduction	Loading input N/A Staged construction Incremental multipliers	Parameters Time W 0,00 0,00 0,00 0,00	ater Fin 0 0 0 1 0 16	k Delete
ientification Initial phase Perkuatan SF	Phase no. 0 1 2	Start from 0 0 1	Calculation N/A Plastic analysis Phi/c reduction	Loading input N/A Staged construction Incremental multipliers	Parameters Image: Description Time W 0,00 0,00	ater Fir 0 0 0 1 0 16	Activa

Gambar 4. 72 Tampilan Kotak Dialog Calcalations Tahap 1

Tahap 2 merupakan tahap untuk identifikasi angka keamanan (*safety factor*) dengan memilih *Phi/c reduction* pada tab *General*. Kemudian klik ikon *calculate* Calculate
 C

Gambar 4.73 Tampilan Kotak Dialog Calculations Tahap 2

15. Setelah proses analisa selesai, lalu klik tombol View – Calculation info, maka akan muncul hasil analisa berupa nilai Safety Factor. Setelaj unss setelaj oubaj, seperti pada Gambar 4.74.

0					
Step 122 of 12	22 Extrapolation factor		1,000		
Plastic STEP	Relative stiffness		0,000		
Multipliers					
	Incremental mult	tipliers	Total mult	ipliers	
Prescribed displacements	Mdisp:	0,000	Σ-Mdisp:	1,000	
Load system A	MloadA:	0,000	Σ-MloadA:	1,000	
Load system B	MloadB:	0,000	Σ-MloadB:	1,000	
Soil weight	Mweight:	0,000	Σ-Mweight:	1,000	
Acceleration	Maccel:	0,000	Σ-Maccel:	0,000	
Strength reduction factor	Msf:	0,000	Σ-Msf:	1,563	
Time	Increment:	0,000	End time:	0,000	
Dynamic time	Increment:	0,000	End time:	0.000	

Gambar 4. 74 Kotak Dialog Hasil Calculation

Dari hasil analisa didapatkan nilai *SF* sebesar 1,563 yang dapat diklasifikasikan sesuai Tabel 4.14 dengan kategori "Longsoran jarang terjadi (kelas stabil)" karena nilai *SF* > 1,25.

Setelah lereng eksisting diberi perkuatan dan dianalisa menggunakan program PLAXIS, berikut merupakan perbandingan nilai *Safety Factor* dari analisa kedua metode perbaikan, seperti pada Tabel 4.15 berikut :

Tabel 4. 15 Perbandingan Nilai Safety Factor Cerucuk & Bronjong

Metode	Cerucuk	Bronjong
Plaxis	1,531	1,563

4.6 Perbandingan Rencana Anggaran Biaya Perkuatan Darurat

Setelah memperoleh nilai faktor keamanan (*SF Value*), langkah selanjutnya adalah membandingkan anggaran biaya yang dibutuhkan dalam konstruksi perkuatan lereng darurat dengan cerucuk bambu maupun bronjong. Harga satuan yang dipakai merupakan harga satuan dari harga perkiraan sendiri (HPS) PT Jasamarga Tollroad Maintenance pada pekerjannaan Cerucuk & Bronjong tahun 2019. Adapun contoh anggaran biaya dapat ditampilkan seperti Tabel 4.16 dibawah ini:

Tabel 4. 16 Rencana Anggaran Biaya Perkuata2.10n Lereng DaruratDengan Metode Cerucuk Bambu

MATA PEMBAYARA	URAIAN PEKERJAAN	SATUAN	KUANTITAS	HARGA SATUAN (RP.)	JUMLAH HARGA (Rp.)
1 2	PEKERJAAN CERUCUK BAMBU				- 10-11-100 F
V	SPESIFIKASI KHUSUS			11	
	Pengamanan & Pengaturan Lalu Lintas, Tipe B	Ls	1,00	20.000.000,00	20.000.000,00
BAB 1	PEKERJAAN UMUM		F		
	Mobilisasi Alat	Ls	1,00	17.500.000,00	17.500.000,00
BAB 4	PEKERJAAN TANAH				
	Galian Biasa Untuk Dibuang	m3	63,09	150.000,00	9.463.200,00
	Urugan Pilihan	m3	63,09	294.822,00	18.599.730,34
BAB 7	PEKERJAAN LAIN - LAIN			/	
	Pemadatan Tanah Dengan Stamper	m2	96,05	9.000,00	864.423,00
BAB 12	PEKERJAAN UMUM		NJ /		
	Cerucuk Bambu (P=7,5 m)	Titik	303,00	110.000,00	33.330.000,00
	Sasak Bambu	m2	27,50	95.750,00	2.633.125,00
Jumlah		<u> </u>		8	102.390.478,34
Jumlah (Dibu	latkan)				102.390.400,00
PPN 10%					10.239.040,00
TOTAL					112.629.440,00

DAFTAR KUANTITAS DAN HARGA PEKERJAAN PERLINDUNGAN LERENG DENGAN CERUCUK BAMBU

Dari Tabel 4.16 dapat dilihat bahwa konstruksi perkuatan lereng darurat dengan metode Cerucuk Bambu memiliki nilai pekerjaan sebesar **Rp.112.629.440,-** (**Termasuk PPN**).

Tabel 4. 17 Rencana Anggaran Biaya Perkuatan Lereng Darurat

Dengan Metode Bronjong

DAFTAR KUANTITAS DAN HARGA PEKERJAAN BRONJONG GABIONS

MATA PEMBAYAR	URAIAN PEKERJAAN	SATUAN	KUANTITAS	HARGA SATUAN (RP.)	JUMLAH HARGA (Rp.)
I	PEKERJAAN BRONJONG GABIONS	2	8		o
19	SPESIFIKASI KHUSUS	2	8		о
19	Pengamanan & Pengaturan Lalu Lintas, Tipe B	Ls	1,00	20.000.000,00	20.000.000,00
BAB 1	PEKERJAAN UMUM	3	3		0 O
19.	Mobilisasi Alat	Ls	1,00	17.500.000,00	17.500.000,00
BAB 4	PEKERJAAN TANAH	2	2		о
2	Galian Biasa Untuk Dibuang	m3	76,82	150.000,00	11.522.250,00
	Urugan Pilihan	m3	85,87	294.822,00	25.317.249,61
BAB 7	PEKERJAAN LAIN - LAIN			-	с. С
1 <u>9</u>	Pernadatan Tanah Dengan Stamper	m2	60,21	9.000,00	541.872,00
BAB 12	PEKERJAAN UMUM				\$\$
-9.	Bronjong (Gabions)	m3	52,50	908.915,00	47.718.037,50
Jumlah					122.599.409,11
Jumlah (Dibula	itkan)		8		122.599.400,00
PPN 10%					12.259.940,00
TOTAL				-	134.859.340,00
2					8

Dari Tabel 4.17 dapat dilihat bahwa konstruksi perkuatan lereng darurat dengan metode Bronjong memiliki nilai pekerjaan sebesar **Rp.134.859.340,-** (**Termasuk PPN**).

Setelah kedua metode dihitung Rencana Anggaran Biaya (RAB), berikut merupakan perbandingan nilai anggaran pekerjaan dari kedua metode perbaikan darurat, ditunjukkan pada Tabel 4.18 :

Tabel 4. 18 Perbandingan Nilai RAB Cerucuk & Bronjong

Perbandingan	Cerucuk	Bronjong
RAB	Rp.112.629.440,-	Rp.134.859.340,-

BAB V PENUTUP

5.1 Kesimpulan

Dari hasil penelitian yang telah dilakukan pada Tugas Akhir ini dapat diambil kesimpulan bahwa:

- Setelah lereng eksisting dianalisa menggunakan program *Plaxis* dan *Geo-Studio (Slope / w)*, berikut merupakan perbandingan nilai *Safety Factor* dari analisa kedua program. Didapat nilai *safety factor* 1,223 untuk analisa aplikasi *Geo-Studio (Slope/W)* dan 1,249 untuk analisa aplikasi *Plaxis*, dapat dilihat nilai *safety factor* tidak terpaut jauh.
- 2. Perbandingan hasil analisa pada stabilitas lereng dengan metode perbaikan cerucuk dan bronjong pada aplikasi *Plaxis* diperoleh nilai Faktor Keamanan (*Safety Factor*) 1,531 dengan metode cerucuk bambu dan 1,563 dengan metode bronjong, sehingga metode bronjong lebih unggul dari metode cerucuk bambu dalam hal angka keamanan.
- Perbandingan Rencana Anggaran Biaya (RAB) dari konstruksi perkuatan darurat didapat nilai konstruksi Rp.112.629.440,- untuk metode cerucuk bambu dan Rp. 134.859.340,- sehingga metode cerucuk lebih ekonomis dibanding metode bronjong
- 4. Berdasarkan kompilasi data di atas dapat disimpulkan bahwa dari segi nilai Faktor Keamanan (SF) metode bronjong lebih unggul dari metode cerucuk bambu sebagai perkuatan darurat, namun dari segi nilai ekonomis pekerjaan metode cerucuk bambu lebih ekonomis dibandingkan dengan metode bronjong.

5.2 Saran

Setelah dilakukannya analisa stabilitas lereng pada studi ini, dapat diberikan beberapa saran atau solusi alternatif diantaranya sebagai berikut:

- 1. Walaupun metode perkuatan lereng dengan cerucuk bambu dan bronjong sudah sudah cukup efektif untuk menahan terjadinya longsor dalam keadaan sementara, namun alangkah baiknya untuk lereng yang berpotensi terjadinya longsor tetap dilakukan penanganan perkuatan secara permanen seperti *Retaining Wall*, Dinding Penahan Tanah Pasangan Batu, *Shotcrete*, Dinding *Borepile* dan lainnya.
- Apabila perkuatan darurat Metode Cerucuk Bambu dipilih sebagai opsi perkuatan sementara, perlu diawasi betul bambu yang dipancang memiliki panjang tertanam minimal 7 m, mengingat panjang tertanam cerucuk bambu tidak terlihat secara kasat mata karena berada didalam

DAFTAR PUSTAKA

- Badan Geologi Pusat Vulkanologi dan Mitigasi Bencana Geologi. 2004. *Booklet* Gerakan Tanah, Kementerian Energi dan Sumber Daya Mineral.
- Bowles, J.E, Sifat-sifat Fisis dan Geoteknis Tanah, Erlangga, Jakarta, 1986.
- Departemen Pekerjaan Umum, 2005. Pedoman Rekayasa Penangangan Keruntuhan Lereng pada Tanah Residual dan Batuan. Departemen Pekerjaan Umum Republik Indonesia.
- Diklat Penanganan Longsoran Pada Struktur Jalan. 2017. Pengertian Lereng dan Longsoran, Kementrian Pekerjaan Umum dan Perumahan Rakyat Badan Pengembangan Sumber Daya Manusia.
- LPT (Lembaga Penelitian Tanah). 1979. Penuntun Analisa Fisika Tanah. Lembaga Penelitian Tanah, Bogor.
- Prayitno, Rendi Teguh, dkk. 2017. Analisis Stabilitas Lereng Bertingkat dengan Pekuatan Bronjong. Surakarta: Universitas Sebelas Maret.
- Wahhab, Mohammad Abdul dan Ramadhan, Mokhamad Rizki. 2017. Analisis Stabilitas Lereng Menggunakan Bambu sebagai Alternatif Pekuatan Lereng (Studi Kasus di Jalan Raya Kaliwungu- Boja Desa Darupono, Kab Kendal). Semarang. Tugas Akhir Universitas Islam Sultan Agung.

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS ISLAM SULTAN AGUNG SEMARANG

Jln. Kaligawe Raya KM. 4, Terboyo Kulon, Genuk, Semarang, 50112 Telp. (024) 6583584

LEMBAR ASISTENSI

TUGAS AKHIR

Nama Mahasiswa

: 1. Bayu Surya Agung Widodo (3.02.019.00225) (3.02.019.00228)

2. Dian Eko Saputro

Program Studi : S1 Teknik Sipil

Dosen Pembimbing 1 : Dr. Abdul Rochim, ST., MT.

No.	Tanggal	Keterangan	Paraf]
1.	Selasa/ 23 Februari 2021 Senin	- Revisi pada rumusan masalah dan tujuan penelitian - Perbaiki tata penulisan - Revisi bentuk Flowchart - Bode 1213 ACC	yf	
_	15 Maret 2021	Langutran Bab IV	Y +	
3	Kamis/ 18 Movef 2021	- Back analisis schingge date tench yang diinputka menghasilka lareng longsor sesuai nealita di Lapangan - Revisi flow chart.	\sim	A
ч	Rabu / 28 April 2021	Perbaiki penobelan Cencule + < Sasak banbu di Plaxis	X	~
2	Rabu / 23 Juni 2021	Dicola permodelan Remball' hingga SF > 1.5	rt.	$\overline{}$
A	Selasa / OG Juli 2021	Bisa mgu disposisi seminor TA Aecc	γ	\bigwedge

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS ISLAM SULTAN AGUNG SEMARANG

Jln. Kaligawe Raya KM. 4, Terboyo Kulon, Genuk, Semarang, 50112 Telp. (024) 6583584

LEMBAR ASISTENSI

TUGAS AKHIR

Nama Mahasiswa :

 : 1. Bayu Surya Agung Widodo
 (3.02.019.00225)

 2. Dian Eko Saputro
 (3.02.019.00228)

Program Studi : S1 Teknik Sipil

Dosen Pembimbing 2 : Lisa Fitriyana, ST., M.Eng.

No.	Tanggal	Keterangan	Paraf
١.	Rahu/ 17 Februari 2021	- fabaiki penulisan sumber poida tabel dan gambar	-11
า.	Stuss (c -3 - 2021	- bac 2 percontri peari / mentri strucilescoi	ll.
		- B-C 3 : metor personi	-147
3	Kamis/ 18-3-2021	- pertonioni 646 2 2- 3	lf
4	Rahu/ 21-4-2021	Langutkan Bab IV	ff
5	Rabu / 23 - 6-2021	Dirabihkan penulisan Babiv & v	H
6	Rabu / 07- 7-2021	- Perbaiki Penulisan Sumber Kutipan. tak perlu <u>titik</u> diantam kurung - Sahan keterantan Punus beboa titani	De
		- Foto Cerucul Can yang Lebih Jelas .	-97

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS ISLAM SULTAN AGUNG SEMARANG

Jln. Kaligawe Raya KM. 4, Terboyo Kulon, Genuk, Semarang, 50112 Telp. (024) 6583584

LEMBAR ASISTENSI

TUGAS AKHIR

Nama Mahasiswa

: 1. Bayu Surya Agung Widodo2. Dian Eko Saputro

(3.02.019.00225) (3.02.019.00228)

Program Studi : S1 Teknik Sipil

Dosen Pembimbing 2 : Lisa Fitriyana, ST., M.Eng.

PERBANDINGAN SLOPE PROTECTION DARURAT DENGAN METODE CERUCUK BAMBU & BRONJONG (STUDI KASUS JALAN TOL SEMARANG ABC)

by Bayu - Dian

Submission date: 28-Jul-2021 01:32PM (UTC+0800) Submission ID: 1624956859 File name: Bayu_Dian_Turnity_rev.1.pdf (6.71M) Word count: 11962 Character count: 68812

PERBANDINGAN SLOPE PROTECTION DARURAT DENGAN METODE CERUCUK BAMBU & BRONJONG (STUDI KASUS JALAN TOL SEMARANG ABC)

ORIGINALITY	REPORT			1 1/2
24 Similarity	% INDEX	22% INTERNET SOURCES	3% PUBLICATIONS	10% List P STUDENT PAPERS
PRIMARY SOU	IRCES			
1 d	e.slidesh ternet Source	hare.net		1 %
2 Int	kelbb.blo ternet Source	ogspot.com		1%
3 al	rchive.or ternet Source			1 %
4 St Int	utikno.bl ternet Source	log.undip.ac.id		1%
5 Stu	ubmitter udent Paper	d to Politeknik	Negeri Bandur جامعتسامان	ng 1 %
6 Int	brary.bir ternet Source	nus.ac.id		1 %
7 es	s.scribd. ternet Source	com		1 %
8 e Int	prints.wa ternet Source	alisongo.ac.id		1 %

masmukriyadi.files.wordpress.com

Internet Source

20

		<1%
21	ardi-lamadi.blogspot.com	<1%
22	repo.itera.ac.id	<1%
23	repository.ung.ac.id	<1%
24	miniaha34.blogspot.com Internet Source	<1%
25	www.gurupendidikan.co.id	<1%
26	Morteza Esmaeili, Morteza Gharouni Nik, Farid Khayyer. "Efficiency of micro piles in reinforcing embankments", Proceedings of the Institution of Civil Engineers - Ground Improvement, 2014 Publication	< 1 %
27	noviafujalestariwahyani.wordpress.com	<1%
28	akupintar.id	<1%
29	digilibadmin.unismuh.ac.id	<1%

mitigasitanahlongsor.blogspot.com

Internet Source

40 sipil.ft.uns.ac.id

<1 %

41	eprints.polbeng.ac.id	<1%
42	idcloudhost.com Internet Source	<1%
43	publikasiilmiah.unwahas.ac.id	<1%
44	repository.maranatha.edu	<1%
45	repository.unj.ac.id	<1%
46	kgmasrodikhin.blogspot.com	<1%
47	repository.president.ac.id	<1%
48	Submitted to Universitas Muria Kudus	<1%
49	journal.eng.unila.ac.id	<1%
50	mte.unissula.ac.id	<1%
51	sartikahikaru.blogspot.com	<1%
52	Submitted to LL Dikti IX Turnitin Consortium Student Paper	<1%

53	eprints.radenfatah.ac.id	<1%
54	jurnal.unived.ac.id Internet Source	<1%
55	Submitted to Binus University International Student Paper	<1%
56	Submitted to UIN Sunan Kalijaga Yogyakarta Student Paper	<1%
57	digilib.unmuhjember.ac.id	<1%
58	ilmu-pertanian-modern.blogspot.com	<1%
59	Ippm.unmuhjember.ac.id	<1%
60	tr.scribd.com Internet Source	<1%
61	baturisit.blogspot.com	<1%
62	ejournalunb.ac.id	<1 %
63	evogene.com Internet Source	<1%
64	Submitted to Universitas Brawijaya Student Paper	<1%
65	Submitted to Universitas Kristen Duta Wacana Student Paper	<1 %
----	--	------
66	digilib.unhas.ac.id	<1%
67	e-journal.uajy.ac.id	<1%
68	Submitted to iGroup	<1%
69	repository.unpas.ac.id	<1%
70	Ying Xia Huo, Hong Fei Zhai. "The Study on Slope Stability Analysis Based on Finite Element Method", Advanced Materials Research, 2012 Publication	<1%
71	cimahikota.go.idUNISSULA Internet Source	<1%
72	ejournal.unikama.ac.id	<1%
73	eprints.umm.ac.id	<1%
74	imamzuhri.blogspot.com Internet Source	<1%
75	repository.stei.ac.id	<1%

76	repository.uir.ac.id	<1 %
77	www.upi-yptk.ac.id	<1%
78	Stanov Purnawibowo. "Fragmen Keramik Asing: Jejak Hubungan Dagang di Situs Kotacina", Berkala Arkeologi Sangkhakala, 2018 Publication	<1 %
79	ejournal.itn.ac.id	<1%
80	eprints.akakom.ac.id	<1%
81	imantatrg.files.wordpress.com	<1%
82	jge.eng.unila.ac.id NISSULA Internet Source	<1 %
83	jongka.com Internet Source	<1%
84	journal.ubb.ac.id	<1%
85	kawat.bangunsaranamakmur.co.id	<1%
86	lasvaga11.blogspot.com	<1%

87	tempatharapan.blogspot.com	<1%
88	vibdoc.com Internet Source	<1%
89	www.kawatharmonika.net	<1%
90	Sisca M. Sapulete, Matheus Souisa, Sitti Jubaedah. "INTERPRETASI DATA RESISTIVITAS UNTUK MENGIDENTIFIKASI MUNCULNYA LONGSOR SUSULAN DI BLOK V WAYAME AMBON", BAREKENG: Jurnal Ilmu Matematika dan Terapan, 2019 Publication	<1%
91	Usep Tatang Suryadi, Yana Supriatna. "SISTEM CLUSTERING TINDAK KEJAHATAN PENCURIAN DI WILAYAH JAWA BARAT MENGGUNAKAN ALGORITMA K-MEANS", Jurnal Teknologi dan Komunikasi STMIK Subang, 2019 Publication	<1%
92	digilib.polban.ac.id	<1%
93	eprints.polsri.ac.id	<1%
94	pcucamel.petra.ac.id	<1%

95	pt.slideshare.net Internet Source	<1%
96	repository.radenfatah.ac.id	<1%
97	repository.stmikroyal.ac.id	<1%
98	repository.uinjkt.ac.id	<1%
99	Pulung Arya Pranantya, Emi Sukiyah, Edi Prasetyo Utomo, Hendarmawan H. "KORELASI NILAI SONDIR terhadap PARAMETER GEOTEKNIK dan rembesan pada PONDASI TANGGUL FASE E, KALIBARU, JAKARTA UTARA", JURNAL SUMBER DAYA AIR, 2018 Publication	<1%
100	Repository.umy.ac.id	<1%
101	ascelibrary.org	<1%
102	eprints.itenas.ac.id	<1%
103	expressclass.blogspot.com	<1%
104	jasarpp.blogspot.com Internet Source	<1%

105	karyailmiah.polnes.ac.id	<1%
106	lib.ui.ac.id Internet Source	<1%
107	libraryeproceeding.telkomuniversity.ac.id	<1%
108	literaturbook.blogspot.com	<1%
109	rifandyf.wordpress.com	<1%
110	www.curhatbidan.com	<1%
111	www.ndrangsan.com	<1%
112	zombiedoc.com Internet Source	<1%
113	bacabse.blogspot.com Internet Source	<1%
114	editingsite.blogspot.com	<1%
115	Altaeb Mohammed. "Study the Native Vegetation around the <i>Al Hosh</i> Highway Slope in Sudan (Gezira State) as Bioengineering Method of Slope Erosion	<1%

Protection", Advances in Bioscience and Bioengineering, 2017

Publication

ordinaryyogo.blogspot.com

<1%

PERBANDINGAN SLOPE PROTECTION DARURAT DENGAN METODE CERUCUK BAMBU & BRONJONG (STUDI KASUS JALAN TOL SEMARANG ABC)

GRADEMARK REPORT

FINAL GRADE

/0

GENERAL COMMENTS

Instructor

	PAGE 1
	PAGE 2
	PAGE 3
-	PAGE 4
-	PAGE 5
-	
	PAGE 7
-	PAGE 8
	PAGE 9
	PAGE 10
	PAGE 11
	PAGE 12
	PAGE 13
	PAGE 14
	PAGE 15
	PAGE 16
	PAGE 17
	PAGE 18
-	PAGE 19

PAGE 20	
PAGE 21	
PAGE 22	
PAGE 23	
PAGE 24	
PAGE 25	
PAGE 26	
PAGE 27	
PAGE 28	
PAGE 29	
PAGE 30	AS ISLAM SULL
PAGE 31	
PAGE 32	
PAGE 33	
PAGE 34	
PAGE 35	
PAGE 36	جامعننسلطان أجونج الإسلامية
PAGE 37	
PAGE 38	
PAGE 39	
PAGE 40	
PAGE 41	
PAGE 42	
PAGE 43	
PAGE 44	

PAGE 45	
PAGE 46	
PAGE 47	
PAGE 48	
PAGE 49	
PAGE 50	
PAGE 51	
PAGE 52	
PAGE 53	
PAGE 54	
PAGE 55	SISLAM SU
PAGE 56	
PAGE 57	
PAGE 58	
PAGE 59	5 2005 5
PAGE 60	
PAGE 61	UNISSULA
PAGE 62	
PAGE 63	
PAGE 64	
PAGE 65	
PAGE 66	
PAGE 67	
PAGE 68	
PAGE 69	
PAGE 70	

PAGE 71	
PAGE 72	
PAGE 73	
PAGE 74	
PAGE 75	
PAGE 76	
PAGE 77	
PAGE 78	
PAGE 79	
PAGE 80	
PAGE 81	
PAGE 82	
PAGE 83	
PAGE 84	
PAGE 85	
PAGE 86	
PAGE 87	
PAGE 88	
PAGE 89	
PAGE 90	
PAGE 91	
PAGE 92	
PAGE 93	
PAGE 94	
PAGE 95	
PAGE 96	

PAGE 97	
PAGE 98	
PAGE 99	
PAGE 100	
PAGE 101	
PAGE 102	
PAGE 103	
PAGE 104	
PAGE 105	
PAGE 106	
PAGE 107	SISLAM SU
PAGE 108	
	UNISSULA Alasimulai jenis