BABI

PENDAHULUAN

1.1 Latar Belakang

Radiasi merupakan pancaran energi dimana bisa berupa gelombang atau partikel. Radiasi dapat digolongkan menjadi dua, yaitu radiasi pengion dan radiasi non pengion. Radiasi pengion dapat berupa sinar-X. Sinar-X dalam praktek kedokteran gigi digunakan untuk tujuan diagnostik seperti untuk pemeriksaan penunjang dalam penegakkan diagnosis serta rencana perawatan (Susanti, 2015). Pemeriksaan radiografi gigi adalah pemeriksaan yang sering dilakukan. Survey di Jepang pada tahun 1999 memperkirakan bahwa dokter gigi membuat 82 juta radiografi intraoral dan lebih dari 12 juta panoramik radiografi setiap tahunnya(Woroprobosari, 2016). Penggunaan radiografi intraoral dengan film Espeed atau sensor digital dan bentuk tabung kerucut bundar pendek mempunyai dosis efektif sekitar 10 mSv(Okano and Sur, 2010)

Radiasi pengion tersebut dapat menyebabkan efek stokastik, seperti kematian dari sel serta kerusakan pada *DNA*. Efek radiasi selain yang disebutkan diatas dapat menyebabkan munculnya mikronukleus dan terjadinya karyolisis. Mikronukleus adalah nukleus kecil yang terdapat di sekitar nukleus utama. Mikronukleus dapat menyebabkan ganguan pada saat pembelahan mitosis. Karyolisis merupakan pucatnya nukleus akibat terputusnya kromatin pada *DNA*. Karyolisis dapat menyebabkan kerusakan pada kromosom(Sopandi, 2013).

Munculnya mikronukleus dan terjadinya karyolisis ini berawal dari energi elektromagnetik atau paparan radiasi yang mengenai organ atau jaringan

kemudian terbentuk reaksi ionisasi. Reaksi ionisasi tersebut menghasilkan kerusakan makromolekul dari ikatan kimia yang menyebabkan struktur abnormal yang disebut radikal bebas. Radikal bebas tersebut bersifat reaktif dengan cara menstransfer energi berlebih ke molekul lain.Radikal bebas berikatan dengan molekul komplek di dalam sel sehingga dapat menyebabkan kerusakan pada tingkat kromosom bahkan sampai berubahnya susunan basa nukleotida. (Shantiningsih, et al., 2013).

Efek tersebut bisa terjadi karena adanya paparan radiasi radiografi. Hal ini termasuk didalamnya radiografi periapikal. Radiografi periapikal yang diajukan oleh Internasional Atomic Energy Agency (*IAEA*) dan diadopsi oleh Meksiko dalam Standar Resmi Meksiko NOM-229-SSA1-2002 adalah 7 mGy (Azorin, 2015). Batas dosis untuk paparan radiasi yang diterima oleh pasien tidak boleh melebihi 0,3 milisievert pertahun (Ratna and Farrah, 2015). Pada Saat dosis absorbsi sudah melebihi batas dapat menimbulkan efek terhadap sel dan jaringan hidup yang terpapar(Susanti, 2015). Pada penelitian sebelumnya di dapatkan munculnya mikroknukleus dan terjadinya karyolisis setelah terpapar radiografi panoramik pada manusia(Kesidi *et al.*, 2017).

Islam telah mengajarkan bahwa mencegah adalah cara yang lebih baik dari pada mengobati seperti yang telah di ajarkan oleh Rosullullah dan tertuang di dalam Al-Qur'an. Dalam ajaran agama Islam, sudah ada kedokteran modern agama islam yang telah mengajarkan hal yang bermanfaat bagi semua orang . Jadi harus melaksanakan apa yang sudah diajarkan didalam islam yang tidak disadari

iti bermanfaat bagi kita semua. (Jamaluddin dan Mubasyir, 2006). Allah *subhana* wa taala berfirman,

"Bagi manusia ada malaikat-malaikat yang selalu mengikutinya bergiliran, di muka dan di belakangnya, mereka menjaganya atas perintah Allah. Sesungguhnya Allah tidak merubah keadaan sesuatu kaum sehingga mereka merubah keadaan yang ada pada diri mereka sendiri. Dan apabila Allah menghendaki keburukan terhadap sesuatu kaum, maka tak ada yang dapat menolaknya; dan sekali-kali tak ada pelindung bagi mereka selain Dia " (Q.S. Ar-Ra'ad ayat 11).

Dari uraian diatas maka penuls tertarik untuk meneliti munculnya mikronukleus dan karyolisis akibat paparan radiasi radiografi periapikal.

1.2 Rumusan Masalah

Berdasarkan dari latar belakang yang telah dijelaskan di atas maka dirumuskan permasalahan yang ada "Apakah terdapat pengaruh paparan radiasi radiografi periapikal terhadap munculnya mikronukleus dan terjadinya karyolisis?"

1.3 Tujuan Penelitian

Tujuan penelitian ini untuk mengetahui pengaruh paparan radiografi periapikal terhadap munculnya mikronukleus dan terjadinya karyolisis.

1.4 Manfaat Penelitian

1.4.1 Manfaat Teoritis

- a. Hasil penelitian dapat menambah pengetahuan praktisi kesehatan dalam bidang kedokteran gigi tentang pengaruh paparan radiasi radiografi periapikal terhadap munculnya mikronukleus dan terjadinya karyolisis.
- Mengembangkan teori tentang pengaruh paparan radiasi radiografi periapikal terhadap munculnya mikronukleus dan terjadinya karyolisis.

1.4.2 Manfaat Praktis

1.4.2.1 Memberikan informasi bahwa terdapat resiko pada tubuh jika terpapar radiasi radiografi secara terus menerus

1.5 Orisinalitas Penelitian

Peneliti	Judul penelitian	Perbedaan
(Kesidi et al.,	Genotoxic and cytotoxic	Pada penelitian ini
2017)	biomonitoring in patients	menggunakan paparan radiasi
	exposed to full mouth	radiografi panoramik untuk
	radiographs – A	melihat munculnya
	radiological and	mikronukleus dan terjadinya
	cytological study.	karyolisis pada mukosa bukal
		dan gingiva pada manusia.
(Shantiningsih,	Peningkatan Jumlah	Pada penelitian ini
Suwaldi,et al.,	Mikronukleus pada	menggunakan radiasi
2013)	Mukosa Gingiva Kelinci	radiografi panoramik untuk
	Setelah Paparan	melihat peningkatan jumlah
	Radiografi Panoramik	mikronukleus pada hari ke
		3,6, dan 9 pada mukosa
		gingiva kelinci.
Shantiningsih, S.	Korelasi antara jumlah	Pada penelitian ini
Suwaldi, et al.,	mikronukleus dan	menggunakan radiasi
2013)	ekspresi 8-oxo-dG akibat	radiografi panoramik untuk
	paparan radiografi	melihat ekspresi 8-oxo-dG
	panoramic	pada mukosa gingiva kelinci.
(Lorenzoni et al.,	Mutagenicity and	Penelitian ini menggunakan
2013)	cytotoxicity in patients	radiografi konvensional
	submitted to ionizing	(CBCT) untuk melihat
	radiation A comparison	mutagenisitas (mikronukleus)
	between cone beam	dan sitotoksisitas
	computed tomography	(karyorrhexis,
	and and radiographs	pyknosis, dan kariolisis)
	for orthodontic treatment.	mukosa bukal pada manusia
(Kb,	Genotoxic effects of	Pada penelitian ini
Kalappanavar	panoramic radiation by	menggunakan radiografi
and Muniyappa,	assessing the frequency	panoramik untuk melihat
2014)	of micronuclei formation	terjadinya genotoksik dengan
	in exfoliated buccal	adanya peningkatan frekuensi
	epithelium.	mikronukleus sel epitel bukal
		pada manusia.