TABLE OF CONTENTS

TITLE PAGE ... i
APROVAL PAGE ... ii
BERITA ACARA BIMBINGAN TUGAS AKHIR ... iii
ABSTRACT ... iv
ABSTRAK ... v
MOTTO .. vi
DEDICATION ... vii
ACKNOWLEDGEMENT .. viii
LEMBAR ASISTENSI .. xii
TABLE OF CONTENTS ... xx
TABLE OF FIGURE .. xxi
TABLE OF TABLE ... xix
TABLE OF NOTATION .. xxi
TABLE OF EQUATION .. xxii
TABLE OF APPENDICES .. xxiii

CHAPTER I
INRODUCTION ... 1
 1.1. Background and Problem Statement... 1
 1.2. Objectives of the research .. 3
 1.3. Scope of the Study ... 3

CHAPTER II
LITERATURE REVIEW .. 4
 2.1. Introduction ... 4
 2.2. Subgrade ... 4
 2.2.1. Monmorillonite mineral ... 7
 2.3. Cause of roadway failures .. 10
 2.4. Soil stabilization .. 13
 2.4.1. Stabilization materials ... 15
 2.4.2. Lime stabilization ... 16
 2.5. Buton Natural Rock Asphalt (BNRA) ... 19
 2.6. CBR method for soil stabilization ... 23
 2.7. Pavement Design Method .. 24
 2.7.1. Flexible Pavement .. 25
TABLE OF CONTENTS

2.7.2. Rigid Pavement ... 28
2.8. Summary of the literature review 31

CHAPTER III
RESEARCH DESIGN AND METHODOLOGY 33

3.1. Introduction .. 33
3.2. Investigation of Existing Subgrade Soil 33
3.3. Design of pavement structure .. 34
 3.2.1. Pavement type .. 34
 3.2.2. AASHTO 1993 Design Methods 35
 3.2.3. Design of Flexible Pavement 39
 3.2.4. Design of Rigid Pavement 44

CHAPTER IV
PAVEMENT DESIGN AND CALCULATION 50

4.1. Introduction .. 50
4.2. Time Constraints .. 50
4.3. Performance Period .. 50
4.4. Analysis Period .. 51
4.5. Traffic .. 52
4.6. Calculation of Equivalent Single Axle Load (ESAL) 53
4.7. Reliability .. 57
4.8. Serviceability ... 59
4.9. Effective Roadbed Soil Resilient Modulus 60
4.10. Pavement Layer Materials Characterization 60
4.11. Layer Coefficient .. 61
4.12. Drainage Coefficient .. 64
4.13. Determination of Structural Layer Thickness 66
 4.13.1. Flexible Pavement .. 66
 4.13.2. Rigid Pavement .. 75
CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS 82
5.1. Conclusions... 82
5.2. Recommendations... 82

REFERENCES .. 83
APPENDICES .. 84
TABLE OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1.1</td>
<td>Basic flexible pavement structure</td>
<td>2</td>
</tr>
<tr>
<td>Figure 1.2</td>
<td>Basic flexible pavement structure</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Diagram of pavement over subgrade, vertical scale</td>
<td>5</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Structure and morphology from montmorillonite</td>
<td>9</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Diagram illustrating soil deformation under wheel load</td>
<td>2</td>
</tr>
<tr>
<td>Figure 2.4a</td>
<td>Result of plastic deformation in surface course (left) and in base (right)</td>
<td>11</td>
</tr>
<tr>
<td>Figure 2.4b</td>
<td>Result of plastic deformation in surface in basement soil</td>
<td>12</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Buton island and the location of BNRA</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Asbuton natural in the depth 1 to 1.5 meter from the land surface</td>
<td>20</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Buton-NRA in bag (left) and coarse grains of Buton-NRA (right)</td>
<td>22</td>
</tr>
<tr>
<td>Figure 3.1</td>
<td>Flowchart of flexible and rigid pavement design steps</td>
<td>34</td>
</tr>
<tr>
<td>Figure 3.2</td>
<td>Thicknesses of layers using a layered analysis approach</td>
<td>39</td>
</tr>
<tr>
<td>Figure 3.3</td>
<td>Design chart of flexible pavement to determine SN value</td>
<td>41</td>
</tr>
<tr>
<td>Figure 3.4</td>
<td>Design chart of rigid pavement</td>
<td>46</td>
</tr>
<tr>
<td>Figure 3.5</td>
<td>Continued – nomograph to determine the slab thickness of rigid pavement design</td>
<td>47</td>
</tr>
<tr>
<td>Figure 4.1</td>
<td>Plot of cumulative 8.16 ton – ESAL traffic vs time</td>
<td>57</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Environmental serviceability</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Chart to determine coefficient of surface layer</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.2</td>
<td>Environmental serviceability</td>
<td>60</td>
</tr>
<tr>
<td>Figure 4.3</td>
<td>Chart to determine coefficient of surface layer</td>
<td>62</td>
</tr>
<tr>
<td>Figure 4.4</td>
<td>Chart above foundation layer coefficient a2</td>
<td>63</td>
</tr>
<tr>
<td>Figure 4.5</td>
<td>Chart coefficient subgrade a3</td>
<td>64</td>
</tr>
<tr>
<td>Figure 4.6</td>
<td>Procedure for determining thickness of layer</td>
<td>65</td>
</tr>
<tr>
<td>Figure 4.7</td>
<td>Flexible pavement layer thickness over existing subgrade</td>
<td>67</td>
</tr>
<tr>
<td>Figure 4.8</td>
<td>Design chart of Flexible Pavement to determine SN3 over existing subgrade</td>
<td>68</td>
</tr>
<tr>
<td>Figure 4.9</td>
<td>Design chart of Flexible Pavement to determine SN2 over existing subgrade</td>
<td>69</td>
</tr>
<tr>
<td>Figure 4.10</td>
<td>Design chart of Flexible Pavement to determine SN1 over existing subgrade</td>
<td>70</td>
</tr>
<tr>
<td>Figure 4.11</td>
<td>Flexible pavement structure layer thickness over stabilized subgrade</td>
<td>72</td>
</tr>
<tr>
<td>Figure 4.12</td>
<td>Design chart of Flexible Pavement to determine SN3 over stabilized subgrade</td>
<td>73</td>
</tr>
<tr>
<td>Figure 4.13</td>
<td>Design chart of Flexible Pavement to determine SN2 over stabilized subgrade</td>
<td>74</td>
</tr>
</tbody>
</table>
Figure 4.14 Design chart of Flexible Pavement to determine SN1 over stabilized subgrade.. 75
Figure 4.15 Rigid pavement structure layer thickness over existing subgrade77
Figure 4.16 Design chart of Rigid Pavement to determine slab thickness value over existing subgrade ... 78
Figure 4.17 Design chart of Rigid pavement to determine slab thickness (continued)... 79
Figure 4.18 Rigid Pavement structure layer thickness over stabilized subgrade .. 80
Figure 4.19 Design chart of Rigid Pavement to determine slab thickness 81
Figure 4.20 Design chart of Rigid Pavement to determine slab thickness (continued) ... 82
TABLE OF TABLE

Table 2.1 Chemical substance compocition of BNRA 20
Table 2.2 Consistency of the bitumen of BNRA .. 21
Table 2.3. Gradation and properties of BNRA ... 21
Table 2.4. Values of standard unit load of CBR test 23
Table 3.1. Data of base, existing and stabilized subgrade 48
Table 4.1. Average daily traffic year 2016 ... 52
Table 4.2. Number of equivalency (E) of axle load 53
Table 4.3. Load configuration for 8,16 ton ESAL 55
Table 4.4. Worksheet for calculating 8,16 ton ESAL applications 55
Table 4.5. Suggested levels of reliability for various functional classifications ... 58
Table 4.6. Relation between reliability and standard normal deviate 59
Table 4.7. Drainage levels from the pavement .. 65
Table 4.7. The quality of drainage based on humidity levels 65
TABLE OF NOTATION

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Cohesion</td>
</tr>
<tr>
<td>Ca</td>
<td>Drainage coefficient</td>
</tr>
<tr>
<td>CBR</td>
<td>California bearing ratio</td>
</tr>
<tr>
<td>Cd</td>
<td>Drainage coefficient</td>
</tr>
<tr>
<td>GI</td>
<td>Group index</td>
</tr>
<tr>
<td>Gs</td>
<td>Specific Gravity</td>
</tr>
<tr>
<td>Gr</td>
<td>Traffic growth</td>
</tr>
<tr>
<td>D_P</td>
<td>Directional distribution factor</td>
</tr>
<tr>
<td>D_L</td>
<td>Line distribution factor</td>
</tr>
<tr>
<td>E_c</td>
<td>Concrete elastic modulus</td>
</tr>
<tr>
<td>LL</td>
<td>Liquid limit</td>
</tr>
<tr>
<td>μ</td>
<td>Confidence interval</td>
</tr>
<tr>
<td>σ</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>ϕ</td>
<td>Direct shear</td>
</tr>
<tr>
<td>J</td>
<td>Load transfer coefficient</td>
</tr>
<tr>
<td>k</td>
<td>Modulus of subgrade reaction</td>
</tr>
<tr>
<td>PL</td>
<td>Plastic limit</td>
</tr>
<tr>
<td>PI</td>
<td>Plasticity index</td>
</tr>
<tr>
<td>R</td>
<td>Correlation</td>
</tr>
<tr>
<td>R^2</td>
<td>Coefficient of determination</td>
</tr>
<tr>
<td>SL</td>
<td>Shrinkage limit</td>
</tr>
<tr>
<td>S</td>
<td>Development potential</td>
</tr>
<tr>
<td>S_0</td>
<td>Overall standard deviation</td>
</tr>
<tr>
<td>SN</td>
<td>Structural number</td>
</tr>
<tr>
<td>MR</td>
<td>Effective resilient modulus of roadbed material</td>
</tr>
<tr>
<td>VDF</td>
<td>Value damage factor</td>
</tr>
<tr>
<td>W_{18}</td>
<td>Estimated future traffic for the performance period</td>
</tr>
<tr>
<td>Ww</td>
<td>Weight of water</td>
</tr>
<tr>
<td>Ws</td>
<td>Soil particle size</td>
</tr>
<tr>
<td>W_{opt}</td>
<td>Optimum water content</td>
</tr>
<tr>
<td>W</td>
<td>Water content</td>
</tr>
<tr>
<td>γ_s</td>
<td>Weight volume of solid granules</td>
</tr>
<tr>
<td>γ_w</td>
<td>Weight volume of water</td>
</tr>
<tr>
<td>γ_d</td>
<td>Dry density</td>
</tr>
<tr>
<td>γ_b</td>
<td>Wet</td>
</tr>
<tr>
<td>$\alpha_{1,2,3}$</td>
<td>Layer coefficients representative of surface, base, and subbase courses respectively</td>
</tr>
<tr>
<td>$D_{1,2,3}$</td>
<td>Actual thicknesses (in inches) of surface, base and subbase courses, respectively</td>
</tr>
<tr>
<td>$m_{1,2,3}$</td>
<td>Drainage coefficients for base and subbase layers, respectively</td>
</tr>
<tr>
<td>ΔPSI</td>
<td>Design serviceability loss</td>
</tr>
<tr>
<td>ΔPSI_{SW}</td>
<td>Graph of cumulative environmental serviceability loss versus time</td>
</tr>
</tbody>
</table>
TABLE OF EQUATION

Eq.2.1.	CBR Formula	23
Eq.3.1.	8,16 ton ESAL applications formula	35
Eq.3.2.	Environmental serviceability formula	37
Eq.3.3.	Flexible pavement thickness formula	38
Eq.3.4.	Effective modulus of subgrade reaction formula	43
Eq.4.1.	8,16 ton ESAL applications formula	55
Eq.4.2.	Traffic growth formula	56
Eq.4.3.	Serviceability formula	59
Eq.4.4.	Calculation results elastic modulus formula	62